StringRef Contents;
EHFrame.getContents(Contents);
+ /// A few fields of the CIE are used when decoding the FDE's. This struct
+ /// will cache those fields we need so that we don't have to decode it
+ /// repeatedly for each FDE that references it.
+ struct DecodedCIE {
+ Optional<uint32_t> FDEPointerEncoding;
+ Optional<uint32_t> LSDAPointerEncoding;
+ bool hasAugmentationLength;
+ };
- //===----------------------------------
- // Entry header
- //===----------------------------------
+ // Map from the start offset of the CIE to the cached data for that CIE.
+ DenseMap<uint64_t, DecodedCIE> CachedCIEs;
for (const char *Pos = Contents.data(), *End = Contents.end(); Pos != End; ) {
+ const char *EntryStartPos = Pos;
+
uint64_t Length = readNext<uint32_t>(Pos);
if (Length == 0xffffffff)
Length = readNext<uint64_t>(Pos);
outs());
outs() << "\n";
Pos = EntryEndPos;
+
+ // Cache this entry.
+ uint64_t Offset = EntryStartPos - Contents.data();
+ CachedCIEs[Offset] = { FDEPointerEncoding, LSDAPointerEncoding,
+ AugmentationLength.hasValue() };
continue;
}
+
// This is an FDE.
+ // The CIE pointer for an FDE is the same location as the ID which we
+ // already read.
+ uint32_t CIEPointer = ID;
+
+ const char *CIEStart = PosAfterLength - CIEPointer;
+ assert(CIEStart >= Contents.data() &&
+ "FDE points to CIE before the __eh_frame start");
+
+ uint64_t CIEOffset = CIEStart - Contents.data();
+ auto CIEIt = CachedCIEs.find(CIEOffset);
+ if (CIEIt == CachedCIEs.end())
+ llvm_unreachable("Couldn't find CIE at offset in to __eh_frame section");
+
+ const DecodedCIE &CIE = CIEIt->getSecond();
+ assert(CIE.FDEPointerEncoding &&
+ "FDE references CIE which did not set pointer encoding");
+
+ uint64_t PCPointerSize = getSizeForEncoding(is64Bit,
+ *CIE.FDEPointerEncoding);
+
+ uint64_t PCBegin;
+ uint64_t PCRange;
+ switch (PCPointerSize) {
+ case 2:
+ PCBegin = readNext<uint16_t>(Pos);
+ PCRange = readNext<uint16_t>(Pos);
+ break;
+ case 4:
+ PCBegin = readNext<uint32_t>(Pos);
+ PCRange = readNext<uint32_t>(Pos);
+ break;
+ case 8:
+ PCBegin = readNext<uint64_t>(Pos);
+ PCRange = readNext<uint64_t>(Pos);
+ break;
+ default:
+ llvm_unreachable("Illegal data size");
+ }
+
+ Optional<uint64_t> AugmentationLength;
+ uint32_t LSDAPointerSize;
+ Optional<uint64_t> LSDAPointer;
+ if (CIE.hasAugmentationLength) {
+ unsigned ULEBByteCount;
+ AugmentationLength = decodeULEB128((const uint8_t *)Pos,
+ &ULEBByteCount);
+ Pos += ULEBByteCount;
+
+ // Decode the LSDA if the CIE augmentation string said we should.
+ if (CIE.LSDAPointerEncoding) {
+ LSDAPointerSize = getSizeForEncoding(is64Bit, *CIE.LSDAPointerEncoding);
+ switch (LSDAPointerSize) {
+ case 2:
+ LSDAPointer = readNext<uint16_t>(Pos);
+ break;
+ case 4:
+ LSDAPointer = readNext<uint32_t>(Pos);
+ break;
+ case 8:
+ LSDAPointer = readNext<uint64_t>(Pos);
+ break;
+ default:
+ llvm_unreachable("Illegal data size");
+ }
+ }
+ }
+
outs() << "FDE:\n";
outs() << " Length: " << Length << "\n";
- outs() << " ";
+ outs() << " CIE Offset: " << CIEOffset << "\n";
+
+ if (PCPointerSize == 8) {
+ outs() << format(" PC Begin: %016" PRIx64, PCBegin) << "\n";
+ outs() << format(" PC Range: %016" PRIx64, PCRange) << "\n";
+ } else {
+ outs() << format(" PC Begin: %08" PRIx64, PCBegin) << "\n";
+ outs() << format(" PC Range: %08" PRIx64, PCRange) << "\n";
+ }
+ if (AugmentationLength) {
+ outs() << " Augmentation Data Length: " << *AugmentationLength << "\n";
+ if (LSDAPointer) {
+ if (LSDAPointerSize == 8)
+ outs() << format(" LSDA Pointer: %016\n" PRIx64, *LSDAPointer);
+ else
+ outs() << format(" LSDA Pointer: %08\n" PRIx64, *LSDAPointer);
+ }
+ }
+
+ // FIXME: Handle instructions.
+ // For now just emit some bytes
+ outs() << " Instructions:\n ";
dumpBytes(makeArrayRef((const uint8_t*)Pos, (const uint8_t*)EntryEndPos),
outs());
outs() << "\n";
Pos = EntryEndPos;
-
}
}