}
};
-/// RegSortData - This class holds data which is used to order reuse candidates.
+/// This class holds data which is used to order reuse candidates.
class RegSortData {
public:
- /// UsedByIndices - This represents the set of LSRUse indices which reference
+ /// This represents the set of LSRUse indices which reference
/// a particular register.
SmallBitVector UsedByIndices;
namespace {
-/// RegUseTracker - Map register candidates to information about how they are
-/// used.
+/// Map register candidates to information about how they are used.
class RegUseTracker {
typedef DenseMap<const SCEV *, RegSortData> RegUsesTy;
namespace {
-/// Formula - This class holds information that describes a formula for
-/// computing satisfying a use. It may include broken-out immediates and scaled
-/// registers.
+/// This class holds information that describes a formula for computing
+/// satisfying a use. It may include broken-out immediates and scaled registers.
struct Formula {
/// Global base address used for complex addressing.
GlobalValue *BaseGV;
/// The scale of any complex addressing.
int64_t Scale;
- /// BaseRegs - The list of "base" registers for this use. When this is
- /// non-empty. The canonical representation of a formula is
+ /// The list of "base" registers for this use. When this is non-empty. The
+ /// canonical representation of a formula is
/// 1. BaseRegs.size > 1 implies ScaledReg != NULL and
/// 2. ScaledReg != NULL implies Scale != 1 || !BaseRegs.empty().
/// #1 enforces that the scaled register is always used when at least two
/// form.
SmallVector<const SCEV *, 4> BaseRegs;
- /// ScaledReg - The 'scaled' register for this use. This should be non-null
- /// when Scale is not zero.
+ /// The 'scaled' register for this use. This should be non-null when Scale is
+ /// not zero.
const SCEV *ScaledReg;
- /// UnfoldedOffset - An additional constant offset which added near the
- /// use. This requires a temporary register, but the offset itself can
- /// live in an add immediate field rather than a register.
+ /// An additional constant offset which added near the use. This requires a
+ /// temporary register, but the offset itself can live in an add immediate
+ /// field rather than a register.
int64_t UnfoldedOffset;
Formula()
}
-/// DoInitialMatch - Recursion helper for initialMatch.
+/// Recursion helper for initialMatch.
static void DoInitialMatch(const SCEV *S, Loop *L,
SmallVectorImpl<const SCEV *> &Good,
SmallVectorImpl<const SCEV *> &Bad,
Bad.push_back(S);
}
-/// initialMatch - Incorporate loop-variant parts of S into this Formula,
-/// attempting to keep all loop-invariant and loop-computable values in a
-/// single base register.
+/// Incorporate loop-variant parts of S into this Formula, attempting to keep
+/// all loop-invariant and loop-computable values in a single base register.
void Formula::initialMatch(const SCEV *S, Loop *L, ScalarEvolution &SE) {
SmallVector<const SCEV *, 4> Good;
SmallVector<const SCEV *, 4> Bad;
return true;
}
-/// getNumRegs - Return the total number of register operands used by this
-/// formula. This does not include register uses implied by non-constant
-/// addrec strides.
+/// Return the total number of register operands used by this formula. This does
+/// not include register uses implied by non-constant addrec strides.
size_t Formula::getNumRegs() const {
return !!ScaledReg + BaseRegs.size();
}
-/// getType - Return the type of this formula, if it has one, or null
-/// otherwise. This type is meaningless except for the bit size.
+/// Return the type of this formula, if it has one, or null otherwise. This type
+/// is meaningless except for the bit size.
Type *Formula::getType() const {
return !BaseRegs.empty() ? BaseRegs.front()->getType() :
ScaledReg ? ScaledReg->getType() :
nullptr;
}
-/// deleteBaseReg - Delete the given base reg from the BaseRegs list.
+/// Delete the given base reg from the BaseRegs list.
void Formula::deleteBaseReg(const SCEV *&S) {
if (&S != &BaseRegs.back())
std::swap(S, BaseRegs.back());
BaseRegs.pop_back();
}
-/// referencesReg - Test if this formula references the given register.
+/// Test if this formula references the given register.
bool Formula::referencesReg(const SCEV *S) const {
return S == ScaledReg ||
std::find(BaseRegs.begin(), BaseRegs.end(), S) != BaseRegs.end();
}
-/// hasRegsUsedByUsesOtherThan - Test whether this formula uses registers
-/// which are used by uses other than the use with the given index.
+/// Test whether this formula uses registers which are used by uses other than
+/// the use with the given index.
bool Formula::hasRegsUsedByUsesOtherThan(size_t LUIdx,
const RegUseTracker &RegUses) const {
if (ScaledReg)
}
#endif
-/// isAddRecSExtable - Return true if the given addrec can be sign-extended
-/// without changing its value.
+/// Return true if the given addrec can be sign-extended without changing its
+/// value.
static bool isAddRecSExtable(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(AR->getType()) + 1);
return isa<SCEVAddRecExpr>(SE.getSignExtendExpr(AR, WideTy));
}
-/// isAddSExtable - Return true if the given add can be sign-extended
-/// without changing its value.
+/// Return true if the given add can be sign-extended without changing its
+/// value.
static bool isAddSExtable(const SCEVAddExpr *A, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(), SE.getTypeSizeInBits(A->getType()) + 1);
return isa<SCEVAddExpr>(SE.getSignExtendExpr(A, WideTy));
}
-/// isMulSExtable - Return true if the given mul can be sign-extended
-/// without changing its value.
+/// Return true if the given mul can be sign-extended without changing its
+/// value.
static bool isMulSExtable(const SCEVMulExpr *M, ScalarEvolution &SE) {
Type *WideTy =
IntegerType::get(SE.getContext(),
return isa<SCEVMulExpr>(SE.getSignExtendExpr(M, WideTy));
}
-/// getExactSDiv - Return an expression for LHS /s RHS, if it can be determined
-/// and if the remainder is known to be zero, or null otherwise. If
-/// IgnoreSignificantBits is true, expressions like (X * Y) /s Y are simplified
-/// to Y, ignoring that the multiplication may overflow, which is useful when
-/// the result will be used in a context where the most significant bits are
-/// ignored.
+/// Return an expression for LHS /s RHS, if it can be determined and if the
+/// remainder is known to be zero, or null otherwise. If IgnoreSignificantBits
+/// is true, expressions like (X * Y) /s Y are simplified to Y, ignoring that
+/// the multiplication may overflow, which is useful when the result will be
+/// used in a context where the most significant bits are ignored.
static const SCEV *getExactSDiv(const SCEV *LHS, const SCEV *RHS,
ScalarEvolution &SE,
bool IgnoreSignificantBits = false) {
return nullptr;
}
-/// ExtractImmediate - If S involves the addition of a constant integer value,
-/// return that integer value, and mutate S to point to a new SCEV with that
-/// value excluded.
+/// If S involves the addition of a constant integer value, return that integer
+/// value, and mutate S to point to a new SCEV with that value excluded.
static int64_t ExtractImmediate(const SCEV *&S, ScalarEvolution &SE) {
if (const SCEVConstant *C = dyn_cast<SCEVConstant>(S)) {
if (C->getValue()->getValue().getMinSignedBits() <= 64) {
return 0;
}
-/// ExtractSymbol - If S involves the addition of a GlobalValue address,
-/// return that symbol, and mutate S to point to a new SCEV with that
-/// value excluded.
+/// If S involves the addition of a GlobalValue address, return that symbol, and
+/// mutate S to point to a new SCEV with that value excluded.
static GlobalValue *ExtractSymbol(const SCEV *&S, ScalarEvolution &SE) {
if (const SCEVUnknown *U = dyn_cast<SCEVUnknown>(S)) {
if (GlobalValue *GV = dyn_cast<GlobalValue>(U->getValue())) {
return nullptr;
}
-/// isAddressUse - Returns true if the specified instruction is using the
-/// specified value as an address.
+/// Returns true if the specified instruction is using the specified value as an
+/// address.
static bool isAddressUse(Instruction *Inst, Value *OperandVal) {
bool isAddress = isa<LoadInst>(Inst);
if (StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
return isAddress;
}
-/// getAccessType - Return the type of the memory being accessed.
+/// Return the type of the memory being accessed.
static MemAccessTy getAccessType(const Instruction *Inst) {
MemAccessTy AccessTy(Inst->getType(), MemAccessTy::UnknownAddressSpace);
if (const StoreInst *SI = dyn_cast<StoreInst>(Inst)) {
return AccessTy;
}
-/// isExistingPhi - Return true if this AddRec is already a phi in its loop.
+/// Return true if this AddRec is already a phi in its loop.
static bool isExistingPhi(const SCEVAddRecExpr *AR, ScalarEvolution &SE) {
for (BasicBlock::iterator I = AR->getLoop()->getHeader()->begin();
PHINode *PN = dyn_cast<PHINode>(I); ++I) {
return true;
}
-/// DeleteTriviallyDeadInstructions - If any of the instructions is the
-/// specified set are trivially dead, delete them and see if this makes any of
-/// their operands subsequently dead.
+/// If any of the instructions is the specified set are trivially dead, delete
+/// them and see if this makes any of their operands subsequently dead.
static bool
DeleteTriviallyDeadInstructions(SmallVectorImpl<WeakVH> &DeadInsts) {
bool Changed = false;
namespace {
-/// Cost - This class is used to measure and compare candidate formulae.
+/// This class is used to measure and compare candidate formulae.
class Cost {
/// TODO: Some of these could be merged. Also, a lexical ordering
/// isn't always optimal.
}
-/// RateRegister - Tally up interesting quantities from the given register.
+/// Tally up interesting quantities from the given register.
void Cost::RateRegister(const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
SE.hasComputableLoopEvolution(Reg, L);
}
-/// RatePrimaryRegister - Record this register in the set. If we haven't seen it
-/// before, rate it. Optional LoserRegs provides a way to declare any formula
-/// that refers to one of those regs an instant loser.
+/// Record this register in the set. If we haven't seen it before, rate
+/// it. Optional LoserRegs provides a way to declare any formula that refers to
+/// one of those regs an instant loser.
void Cost::RatePrimaryRegister(const SCEV *Reg,
SmallPtrSetImpl<const SCEV *> &Regs,
const Loop *L,
assert(isValid() && "invalid cost");
}
-/// Lose - Set this cost to a losing value.
+/// Set this cost to a losing value.
void Cost::Lose() {
NumRegs = ~0u;
AddRecCost = ~0u;
ScaleCost = ~0u;
}
-/// operator< - Choose the lower cost.
+/// Choose the lower cost.
bool Cost::operator<(const Cost &Other) const {
return std::tie(NumRegs, AddRecCost, NumIVMuls, NumBaseAdds, ScaleCost,
ImmCost, SetupCost) <
namespace {
-/// LSRFixup - An operand value in an instruction which is to be replaced
-/// with some equivalent, possibly strength-reduced, replacement.
+/// An operand value in an instruction which is to be replaced with some
+/// equivalent, possibly strength-reduced, replacement.
struct LSRFixup {
- /// UserInst - The instruction which will be updated.
+ /// The instruction which will be updated.
Instruction *UserInst;
- /// OperandValToReplace - The operand of the instruction which will
- /// be replaced. The operand may be used more than once; every instance
- /// will be replaced.
+ /// The operand of the instruction which will be replaced. The operand may be
+ /// used more than once; every instance will be replaced.
Value *OperandValToReplace;
- /// PostIncLoops - If this user is to use the post-incremented value of an
- /// induction variable, this variable is non-null and holds the loop
- /// associated with the induction variable.
+ /// If this user is to use the post-incremented value of an induction
+ /// variable, this variable is non-null and holds the loop associated with the
+ /// induction variable.
PostIncLoopSet PostIncLoops;
- /// LUIdx - The index of the LSRUse describing the expression which
- /// this fixup needs, minus an offset (below).
+ /// The index of the LSRUse describing the expression which this fixup needs,
+ /// minus an offset (below).
size_t LUIdx;
- /// Offset - A constant offset to be added to the LSRUse expression.
- /// This allows multiple fixups to share the same LSRUse with different
- /// offsets, for example in an unrolled loop.
+ /// A constant offset to be added to the LSRUse expression. This allows
+ /// multiple fixups to share the same LSRUse with different offsets, for
+ /// example in an unrolled loop.
int64_t Offset;
bool isUseFullyOutsideLoop(const Loop *L) const;
: UserInst(nullptr), OperandValToReplace(nullptr), LUIdx(~size_t(0)),
Offset(0) {}
-/// isUseFullyOutsideLoop - Test whether this fixup always uses its
-/// value outside of the given loop.
+/// Test whether this fixup always uses its value outside of the given loop.
bool LSRFixup::isUseFullyOutsideLoop(const Loop *L) const {
// PHI nodes use their value in their incoming blocks.
if (const PHINode *PN = dyn_cast<PHINode>(UserInst)) {
namespace {
-/// UniquifierDenseMapInfo - A DenseMapInfo implementation for holding
-/// DenseMaps and DenseSets of sorted SmallVectors of const SCEV*.
+/// A DenseMapInfo implementation for holding DenseMaps and DenseSets of sorted
+/// SmallVectors of const SCEV*.
struct UniquifierDenseMapInfo {
static SmallVector<const SCEV *, 4> getEmptyKey() {
SmallVector<const SCEV *, 4> V;
}
};
-/// LSRUse - This class holds the state that LSR keeps for each use in
-/// IVUsers, as well as uses invented by LSR itself. It includes information
-/// about what kinds of things can be folded into the user, information about
-/// the user itself, and information about how the use may be satisfied.
-/// TODO: Represent multiple users of the same expression in common?
+/// This class holds the state that LSR keeps for each use in IVUsers, as well
+/// as uses invented by LSR itself. It includes information about what kinds of
+/// things can be folded into the user, information about the user itself, and
+/// information about how the use may be satisfied. TODO: Represent multiple
+/// users of the same expression in common?
class LSRUse {
DenseSet<SmallVector<const SCEV *, 4>, UniquifierDenseMapInfo> Uniquifier;
public:
- /// KindType - An enum for a kind of use, indicating what types of
- /// scaled and immediate operands it might support.
+ /// An enum for a kind of use, indicating what types of scaled and immediate
+ /// operands it might support.
enum KindType {
Basic, ///< A normal use, with no folding.
Special, ///< A special case of basic, allowing -1 scales.
int64_t MinOffset;
int64_t MaxOffset;
- /// AllFixupsOutsideLoop - This records whether all of the fixups using this
- /// LSRUse are outside of the loop, in which case some special-case heuristics
- /// may be used.
+ /// This records whether all of the fixups using this LSRUse are outside of
+ /// the loop, in which case some special-case heuristics may be used.
bool AllFixupsOutsideLoop;
/// RigidFormula is set to true to guarantee that this use will be associated
/// changing the formula.
bool RigidFormula;
- /// WidestFixupType - This records the widest use type for any fixup using
- /// this LSRUse. FindUseWithSimilarFormula can't consider uses with different
- /// max fixup widths to be equivalent, because the narrower one may be relying
- /// on the implicit truncation to truncate away bogus bits.
+ /// This records the widest use type for any fixup using this
+ /// LSRUse. FindUseWithSimilarFormula can't consider uses with different max
+ /// fixup widths to be equivalent, because the narrower one may be relying on
+ /// the implicit truncation to truncate away bogus bits.
Type *WidestFixupType;
- /// Formulae - A list of ways to build a value that can satisfy this user.
- /// After the list is populated, one of these is selected heuristically and
- /// used to formulate a replacement for OperandValToReplace in UserInst.
+ /// A list of ways to build a value that can satisfy this user. After the
+ /// list is populated, one of these is selected heuristically and used to
+ /// formulate a replacement for OperandValToReplace in UserInst.
SmallVector<Formula, 12> Formulae;
- /// Regs - The set of register candidates used by all formulae in this LSRUse.
+ /// The set of register candidates used by all formulae in this LSRUse.
SmallPtrSet<const SCEV *, 4> Regs;
LSRUse(KindType K, MemAccessTy AT)
}
-/// HasFormula - Test whether this use as a formula which has the same
-/// registers as the given formula.
+/// Test whether this use as a formula which has the same registers as the given
+/// formula.
bool LSRUse::HasFormulaWithSameRegs(const Formula &F) const {
SmallVector<const SCEV *, 4> Key = F.BaseRegs;
if (F.ScaledReg) Key.push_back(F.ScaledReg);
return Uniquifier.count(Key);
}
-/// InsertFormula - If the given formula has not yet been inserted, add it to
-/// the list, and return true. Return false otherwise.
-/// The formula must be in canonical form.
+/// If the given formula has not yet been inserted, add it to the list, and
+/// return true. Return false otherwise. The formula must be in canonical form.
bool LSRUse::InsertFormula(const Formula &F) {
assert(F.isCanonical() && "Invalid canonical representation");
return true;
}
-/// DeleteFormula - Remove the given formula from this use's list.
+/// Remove the given formula from this use's list.
void LSRUse::DeleteFormula(Formula &F) {
if (&F != &Formulae.back())
std::swap(F, Formulae.back());
Formulae.pop_back();
}
-/// RecomputeRegs - Recompute the Regs field, and update RegUses.
+/// Recompute the Regs field, and update RegUses.
void LSRUse::RecomputeRegs(size_t LUIdx, RegUseTracker &RegUses) {
// Now that we've filtered out some formulae, recompute the Regs set.
SmallPtrSet<const SCEV *, 4> OldRegs = std::move(Regs);
F.BaseGV, F.BaseOffset, F.HasBaseReg, F.Scale);
}
-/// isLegalUse - Test whether we know how to expand the current formula.
+/// Test whether we know how to expand the current formula.
static bool isLegalUse(const TargetTransformInfo &TTI, int64_t MinOffset,
int64_t MaxOffset, LSRUse::KindType Kind,
MemAccessTy AccessTy, GlobalValue *BaseGV,
namespace {
-/// IVInc - An individual increment in a Chain of IV increments.
-/// Relate an IV user to an expression that computes the IV it uses from the IV
-/// used by the previous link in the Chain.
+/// An individual increment in a Chain of IV increments. Relate an IV user to
+/// an expression that computes the IV it uses from the IV used by the previous
+/// link in the Chain.
///
/// For the head of a chain, IncExpr holds the absolute SCEV expression for the
/// original IVOperand. The head of the chain's IVOperand is only valid during
UserInst(U), IVOperand(O), IncExpr(E) {}
};
-// IVChain - The list of IV increments in program order.
-// We typically add the head of a chain without finding subsequent links.
+// The list of IV increments in program order. We typically add the head of a
+// chain without finding subsequent links.
struct IVChain {
SmallVector<IVInc,1> Incs;
const SCEV *ExprBase;
typedef SmallVectorImpl<IVInc>::const_iterator const_iterator;
- // begin - return the first increment in the chain.
+ // Return the first increment in the chain.
const_iterator begin() const {
assert(!Incs.empty());
return std::next(Incs.begin());
return Incs.end();
}
- // hasIncs - Returns true if this chain contains any increments.
+ // Returns true if this chain contains any increments.
bool hasIncs() const { return Incs.size() >= 2; }
- // add - Add an IVInc to the end of this chain.
+ // Add an IVInc to the end of this chain.
void add(const IVInc &X) { Incs.push_back(X); }
- // tailUserInst - Returns the last UserInst in the chain.
+ // Returns the last UserInst in the chain.
Instruction *tailUserInst() const { return Incs.back().UserInst; }
- // isProfitableIncrement - Returns true if IncExpr can be profitably added to
- // this chain.
+ // Returns true if IncExpr can be profitably added to this chain.
bool isProfitableIncrement(const SCEV *OperExpr,
const SCEV *IncExpr,
ScalarEvolution&);
};
-/// ChainUsers - Helper for CollectChains to track multiple IV increment uses.
-/// Distinguish between FarUsers that definitely cross IV increments and
-/// NearUsers that may be used between IV increments.
+/// Helper for CollectChains to track multiple IV increment uses. Distinguish
+/// between FarUsers that definitely cross IV increments and NearUsers that may
+/// be used between IV increments.
struct ChainUsers {
SmallPtrSet<Instruction*, 4> FarUsers;
SmallPtrSet<Instruction*, 4> NearUsers;
};
-/// LSRInstance - This class holds state for the main loop strength reduction
-/// logic.
+/// This class holds state for the main loop strength reduction logic.
class LSRInstance {
IVUsers &IU;
ScalarEvolution &SE;
Loop *const L;
bool Changed;
- /// IVIncInsertPos - This is the insert position that the current loop's
- /// induction variable increment should be placed. In simple loops, this is
- /// the latch block's terminator. But in more complicated cases, this is a
- /// position which will dominate all the in-loop post-increment users.
+ /// This is the insert position that the current loop's induction variable
+ /// increment should be placed. In simple loops, this is the latch block's
+ /// terminator. But in more complicated cases, this is a position which will
+ /// dominate all the in-loop post-increment users.
Instruction *IVIncInsertPos;
- /// Factors - Interesting factors between use strides.
+ /// Interesting factors between use strides.
SmallSetVector<int64_t, 8> Factors;
- /// Types - Interesting use types, to facilitate truncation reuse.
+ /// Interesting use types, to facilitate truncation reuse.
SmallSetVector<Type *, 4> Types;
- /// Fixups - The list of operands which are to be replaced.
+ /// The list of operands which are to be replaced.
SmallVector<LSRFixup, 16> Fixups;
- /// Uses - The list of interesting uses.
+ /// The list of interesting uses.
SmallVector<LSRUse, 16> Uses;
- /// RegUses - Track which uses use which register candidates.
+ /// Track which uses use which register candidates.
RegUseTracker RegUses;
// Limit the number of chains to avoid quadratic behavior. We don't expect to
// back to normal LSR behavior for those uses.
static const unsigned MaxChains = 8;
- /// IVChainVec - IV users can form a chain of IV increments.
+ /// IV users can form a chain of IV increments.
SmallVector<IVChain, MaxChains> IVChainVec;
- /// IVIncSet - IV users that belong to profitable IVChains.
+ /// IV users that belong to profitable IVChains.
SmallPtrSet<Use*, MaxChains> IVIncSet;
void OptimizeShadowIV();
}
-/// OptimizeShadowIV - If IV is used in a int-to-float cast
-/// inside the loop then try to eliminate the cast operation.
+/// If IV is used in a int-to-float cast inside the loop then try to eliminate
+/// the cast operation.
void LSRInstance::OptimizeShadowIV() {
const SCEV *BackedgeTakenCount = SE.getBackedgeTakenCount(L);
if (isa<SCEVCouldNotCompute>(BackedgeTakenCount))
}
}
-/// FindIVUserForCond - If Cond has an operand that is an expression of an IV,
-/// set the IV user and stride information and return true, otherwise return
-/// false.
+/// If Cond has an operand that is an expression of an IV, set the IV user and
+/// stride information and return true, otherwise return false.
bool LSRInstance::FindIVUserForCond(ICmpInst *Cond, IVStrideUse *&CondUse) {
for (IVStrideUse &U : IU)
if (U.getUser() == Cond) {
return false;
}
-/// OptimizeMax - Rewrite the loop's terminating condition if it uses
-/// a max computation.
+/// Rewrite the loop's terminating condition if it uses a max computation.
///
/// This is a narrow solution to a specific, but acute, problem. For loops
/// like this:
return NewCond;
}
-/// OptimizeLoopTermCond - Change loop terminating condition to use the
-/// postinc iv when possible.
+/// Change loop terminating condition to use the postinc iv when possible.
void
LSRInstance::OptimizeLoopTermCond() {
SmallPtrSet<Instruction *, 4> PostIncs;
}
}
-/// reconcileNewOffset - Determine if the given use can accommodate a fixup
-/// at the given offset and other details. If so, update the use and
-/// return true.
+/// Determine if the given use can accommodate a fixup at the given offset and
+/// other details. If so, update the use and return true.
bool LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset,
bool HasBaseReg, LSRUse::KindType Kind,
MemAccessTy AccessTy) {
return true;
}
-/// getUse - Return an LSRUse index and an offset value for a fixup which
-/// needs the given expression, with the given kind and optional access type.
-/// Either reuse an existing use or create a new one, as needed.
+/// Return an LSRUse index and an offset value for a fixup which needs the given
+/// expression, with the given kind and optional access type. Either reuse an
+/// existing use or create a new one, as needed.
std::pair<size_t, int64_t> LSRInstance::getUse(const SCEV *&Expr,
LSRUse::KindType Kind,
MemAccessTy AccessTy) {
return std::make_pair(LUIdx, Offset);
}
-/// DeleteUse - Delete the given use from the Uses list.
+/// Delete the given use from the Uses list.
void LSRInstance::DeleteUse(LSRUse &LU, size_t LUIdx) {
if (&LU != &Uses.back())
std::swap(LU, Uses.back());
RegUses.swapAndDropUse(LUIdx, Uses.size());
}
-/// FindUseWithFormula - Look for a use distinct from OrigLU which is has
-/// a formula that has the same registers as the given formula.
+/// Look for a use distinct from OrigLU which is has a formula that has the same
+/// registers as the given formula.
LSRUse *
LSRInstance::FindUseWithSimilarFormula(const Formula &OrigF,
const LSRUse &OrigLU) {
DEBUG(print_factors_and_types(dbgs()));
}
-/// findIVOperand - Helper for CollectChains that finds an IV operand (computed
-/// by an AddRec in this loop) within [OI,OE) or returns OE. If IVUsers mapped
-/// Instructions to IVStrideUses, we could partially skip this.
+/// Helper for CollectChains that finds an IV operand (computed by an AddRec in
+/// this loop) within [OI,OE) or returns OE. If IVUsers mapped Instructions to
+/// IVStrideUses, we could partially skip this.
static User::op_iterator
findIVOperand(User::op_iterator OI, User::op_iterator OE,
Loop *L, ScalarEvolution &SE) {
return OI;
}
-/// getWideOperand - IVChain logic must consistenctly peek base TruncInst
-/// operands, so wrap it in a convenient helper.
+/// IVChain logic must consistenctly peek base TruncInst operands, so wrap it in
+/// a convenient helper.
static Value *getWideOperand(Value *Oper) {
if (TruncInst *Trunc = dyn_cast<TruncInst>(Oper))
return Trunc->getOperand(0);
return Oper;
}
-/// isCompatibleIVType - Return true if we allow an IV chain to include both
-/// types.
+/// Return true if we allow an IV chain to include both types.
static bool isCompatibleIVType(Value *LVal, Value *RVal) {
Type *LType = LVal->getType();
Type *RType = RVal->getType();
return (LType == RType) || (LType->isPointerTy() && RType->isPointerTy());
}
-/// getExprBase - Return an approximation of this SCEV expression's "base", or
-/// NULL for any constant. Returning the expression itself is
-/// conservative. Returning a deeper subexpression is more precise and valid as
-/// long as it isn't less complex than another subexpression. For expressions
-/// involving multiple unscaled values, we need to return the pointer-type
-/// SCEVUnknown. This avoids forming chains across objects, such as:
-/// PrevOper==a[i], IVOper==b[i], IVInc==b-a.
+/// Return an approximation of this SCEV expression's "base", or NULL for any
+/// constant. Returning the expression itself is conservative. Returning a
+/// deeper subexpression is more precise and valid as long as it isn't less
+/// complex than another subexpression. For expressions involving multiple
+/// unscaled values, we need to return the pointer-type SCEVUnknown. This avoids
+/// forming chains across objects, such as: PrevOper==a[i], IVOper==b[i],
+/// IVInc==b-a.
///
/// Since SCEVUnknown is the rightmost type, and pointers are the rightmost
/// SCEVUnknown, we simply return the rightmost SCEV operand.
return cost < 0;
}
-/// ChainInstruction - Add this IV user to an existing chain or make it the head
-/// of a new chain.
+/// Add this IV user to an existing chain or make it the head of a new chain.
void LSRInstance::ChainInstruction(Instruction *UserInst, Instruction *IVOper,
SmallVectorImpl<ChainUsers> &ChainUsersVec) {
// When IVs are used as types of varying widths, they are generally converted
ChainUsersVec[ChainIdx].FarUsers.erase(UserInst);
}
-/// CollectChains - Populate the vector of Chains.
+/// Populate the vector of Chains.
///
/// This decreases ILP at the architecture level. Targets with ample registers,
/// multiple memory ports, and no register renaming probably don't want
return true;
}
-/// GenerateIVChains - Generate an add or subtract for each IVInc in a chain to
-/// materialize the IV user's operand from the previous IV user's operand.
+/// Generate an add or subtract for each IVInc in a chain to materialize the IV
+/// user's operand from the previous IV user's operand.
void LSRInstance::GenerateIVChain(const IVChain &Chain, SCEVExpander &Rewriter,
SmallVectorImpl<WeakVH> &DeadInsts) {
// Find the new IVOperand for the head of the chain. It may have been replaced
DEBUG(print_fixups(dbgs()));
}
-/// InsertInitialFormula - Insert a formula for the given expression into
-/// the given use, separating out loop-variant portions from loop-invariant
-/// and loop-computable portions.
+/// Insert a formula for the given expression into the given use, separating out
+/// loop-variant portions from loop-invariant and loop-computable portions.
void
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
// Mark uses whose expressions cannot be expanded.
assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}
-/// InsertSupplementalFormula - Insert a simple single-register formula for
-/// the given expression into the given use.
+/// Insert a simple single-register formula for the given expression into the
+/// given use.
void
LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
assert(Inserted && "Supplemental formula already exists!"); (void)Inserted;
}
-/// CountRegisters - Note which registers are used by the given formula,
-/// updating RegUses.
+/// Note which registers are used by the given formula, updating RegUses.
void LSRInstance::CountRegisters(const Formula &F, size_t LUIdx) {
if (F.ScaledReg)
RegUses.countRegister(F.ScaledReg, LUIdx);
RegUses.countRegister(BaseReg, LUIdx);
}
-/// InsertFormula - If the given formula has not yet been inserted, add it to
-/// the list, and return true. Return false otherwise.
+/// If the given formula has not yet been inserted, add it to the list, and
+/// return true. Return false otherwise.
bool LSRInstance::InsertFormula(LSRUse &LU, unsigned LUIdx, const Formula &F) {
// Do not insert formula that we will not be able to expand.
assert(isLegalUse(TTI, LU.MinOffset, LU.MaxOffset, LU.Kind, LU.AccessTy, F) &&
return true;
}
-/// CollectLoopInvariantFixupsAndFormulae - Check for other uses of
-/// loop-invariant values which we're tracking. These other uses will pin these
-/// values in registers, making them less profitable for elimination.
+/// Check for other uses of loop-invariant values which we're tracking. These
+/// other uses will pin these values in registers, making them less profitable
+/// for elimination.
/// TODO: This currently misses non-constant addrec step registers.
/// TODO: Should this give more weight to users inside the loop?
void
}
}
-/// CollectSubexprs - Split S into subexpressions which can be pulled out into
-/// separate registers. If C is non-null, multiply each subexpression by C.
+/// Split S into subexpressions which can be pulled out into separate
+/// registers. If C is non-null, multiply each subexpression by C.
///
/// Return remainder expression after factoring the subexpressions captured by
/// Ops. If Ops is complete, return NULL.
}
}
-/// GenerateReassociations - Split out subexpressions from adds and the bases of
-/// addrecs.
+/// Split out subexpressions from adds and the bases of addrecs.
void LSRInstance::GenerateReassociations(LSRUse &LU, unsigned LUIdx,
Formula Base, unsigned Depth) {
assert(Base.isCanonical() && "Input must be in the canonical form");
/* Idx */ -1, /* IsScaledReg */ true);
}
-/// GenerateCombinations - Generate a formula consisting of all of the
-/// loop-dominating registers added into a single register.
+/// Generate a formula consisting of all of the loop-dominating registers added
+/// into a single register.
void LSRInstance::GenerateCombinations(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// This method is only interesting on a plurality of registers.
(void)InsertFormula(LU, LUIdx, F);
}
-/// GenerateSymbolicOffsets - Generate reuse formulae using symbolic offsets.
+/// Generate reuse formulae using symbolic offsets.
void LSRInstance::GenerateSymbolicOffsets(LSRUse &LU, unsigned LUIdx,
Formula Base) {
// We can't add a symbolic offset if the address already contains one.
/* IsScaledReg */ true);
}
-/// GenerateICmpZeroScales - For ICmpZero, check to see if we can scale up
-/// the comparison. For example, x == y -> x*c == y*c.
+/// For ICmpZero, check to see if we can scale up the comparison. For example, x
+/// == y -> x*c == y*c.
void LSRInstance::GenerateICmpZeroScales(LSRUse &LU, unsigned LUIdx,
Formula Base) {
if (LU.Kind != LSRUse::ICmpZero) return;
}
}
-/// GenerateScales - Generate stride factor reuse formulae by making use of
-/// scaled-offset address modes, for example.
+/// Generate stride factor reuse formulae by making use of scaled-offset address
+/// modes, for example.
void LSRInstance::GenerateScales(LSRUse &LU, unsigned LUIdx, Formula Base) {
// Determine the integer type for the base formula.
Type *IntTy = Base.getType();
}
}
-/// GenerateTruncates - Generate reuse formulae from different IV types.
+/// Generate reuse formulae from different IV types.
void LSRInstance::GenerateTruncates(LSRUse &LU, unsigned LUIdx, Formula Base) {
// Don't bother truncating symbolic values.
if (Base.BaseGV) return;
namespace {
-/// WorkItem - Helper class for GenerateCrossUseConstantOffsets. It's used to
-/// defer modifications so that the search phase doesn't have to worry about
-/// the data structures moving underneath it.
+/// Helper class for GenerateCrossUseConstantOffsets. It's used to defer
+/// modifications so that the search phase doesn't have to worry about the data
+/// structures moving underneath it.
struct WorkItem {
size_t LUIdx;
int64_t Imm;
}
#endif
-/// GenerateCrossUseConstantOffsets - Look for registers which are a constant
-/// distance apart and try to form reuse opportunities between them.
+/// Look for registers which are a constant distance apart and try to form reuse
+/// opportunities between them.
void LSRInstance::GenerateCrossUseConstantOffsets() {
// Group the registers by their value without any added constant offset.
typedef std::map<int64_t, const SCEV *> ImmMapTy;
}
}
-/// GenerateAllReuseFormulae - Generate formulae for each use.
+/// Generate formulae for each use.
void
LSRInstance::GenerateAllReuseFormulae() {
// This is split into multiple loops so that hasRegsUsedByUsesOtherThan
// This is a rough guess that seems to work fairly well.
static const size_t ComplexityLimit = UINT16_MAX;
-/// EstimateSearchSpaceComplexity - Estimate the worst-case number of
-/// solutions the solver might have to consider. It almost never considers
-/// this many solutions because it prune the search space, but the pruning
-/// isn't always sufficient.
+/// Estimate the worst-case number of solutions the solver might have to
+/// consider. It almost never considers this many solutions because it prune the
+/// search space, but the pruning isn't always sufficient.
size_t LSRInstance::EstimateSearchSpaceComplexity() const {
size_t Power = 1;
for (const LSRUse &LU : Uses) {
return Power;
}
-/// NarrowSearchSpaceByDetectingSupersets - When one formula uses a superset
-/// of the registers of another formula, it won't help reduce register
-/// pressure (though it may not necessarily hurt register pressure); remove
-/// it to simplify the system.
+/// When one formula uses a superset of the registers of another formula, it
+/// won't help reduce register pressure (though it may not necessarily hurt
+/// register pressure); remove it to simplify the system.
void LSRInstance::NarrowSearchSpaceByDetectingSupersets() {
if (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
DEBUG(dbgs() << "The search space is too complex.\n");
}
}
-/// NarrowSearchSpaceByCollapsingUnrolledCode - When there are many registers
-/// for expressions like A, A+1, A+2, etc., allocate a single register for
-/// them.
+/// When there are many registers for expressions like A, A+1, A+2, etc.,
+/// allocate a single register for them.
void LSRInstance::NarrowSearchSpaceByCollapsingUnrolledCode() {
if (EstimateSearchSpaceComplexity() < ComplexityLimit)
return;
DEBUG(dbgs() << "After pre-selection:\n"; print_uses(dbgs()));
}
-/// NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters - Call
-/// FilterOutUndesirableDedicatedRegisters again, if necessary, now that
+/// Call FilterOutUndesirableDedicatedRegisters again, if necessary, now that
/// we've done more filtering, as it may be able to find more formulae to
/// eliminate.
void LSRInstance::NarrowSearchSpaceByRefilteringUndesirableDedicatedRegisters(){
}
}
-/// NarrowSearchSpaceByPickingWinnerRegs - Pick a register which seems likely
-/// to be profitable, and then in any use which has any reference to that
-/// register, delete all formulae which do not reference that register.
+/// Pick a register which seems likely to be profitable, and then in any use
+/// which has any reference to that register, delete all formulae which do not
+/// reference that register.
void LSRInstance::NarrowSearchSpaceByPickingWinnerRegs() {
// With all other options exhausted, loop until the system is simple
// enough to handle.
}
}
-/// NarrowSearchSpaceUsingHeuristics - If there are an extraordinary number of
-/// formulae to choose from, use some rough heuristics to prune down the number
-/// of formulae. This keeps the main solver from taking an extraordinary amount
-/// of time in some worst-case scenarios.
+/// If there are an extraordinary number of formulae to choose from, use some
+/// rough heuristics to prune down the number of formulae. This keeps the main
+/// solver from taking an extraordinary amount of time in some worst-case
+/// scenarios.
void LSRInstance::NarrowSearchSpaceUsingHeuristics() {
NarrowSearchSpaceByDetectingSupersets();
NarrowSearchSpaceByCollapsingUnrolledCode();
NarrowSearchSpaceByPickingWinnerRegs();
}
-/// SolveRecurse - This is the recursive solver.
+/// This is the recursive solver.
void LSRInstance::SolveRecurse(SmallVectorImpl<const Formula *> &Solution,
Cost &SolutionCost,
SmallVectorImpl<const Formula *> &Workspace,
}
}
-/// Solve - Choose one formula from each use. Return the results in the given
-/// Solution vector.
+/// Choose one formula from each use. Return the results in the given Solution
+/// vector.
void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
SmallVector<const Formula *, 8> Workspace;
Cost SolutionCost;
assert(Solution.size() == Uses.size() && "Malformed solution!");
}
-/// HoistInsertPosition - Helper for AdjustInsertPositionForExpand. Climb up
-/// the dominator tree far as we can go while still being dominated by the
-/// input positions. This helps canonicalize the insert position, which
-/// encourages sharing.
+/// Helper for AdjustInsertPositionForExpand. Climb up the dominator tree far as
+/// we can go while still being dominated by the input positions. This helps
+/// canonicalize the insert position, which encourages sharing.
BasicBlock::iterator
LSRInstance::HoistInsertPosition(BasicBlock::iterator IP,
const SmallVectorImpl<Instruction *> &Inputs)
return IP;
}
-/// AdjustInsertPositionForExpand - Determine an input position which will be
-/// dominated by the operands and which will dominate the result.
+/// Determine an input position which will be dominated by the operands and
+/// which will dominate the result.
BasicBlock::iterator
LSRInstance::AdjustInsertPositionForExpand(BasicBlock::iterator LowestIP,
const LSRFixup &LF,
return IP;
}
-/// Expand - Emit instructions for the leading candidate expression for this
-/// LSRUse (this is called "expanding").
+/// Emit instructions for the leading candidate expression for this LSRUse (this
+/// is called "expanding").
Value *LSRInstance::Expand(const LSRFixup &LF,
const Formula &F,
BasicBlock::iterator IP,
return FullV;
}
-/// RewriteForPHI - Helper for Rewrite. PHI nodes are special because the use
-/// of their operands effectively happens in their predecessor blocks, so the
-/// expression may need to be expanded in multiple places.
+/// Helper for Rewrite. PHI nodes are special because the use of their operands
+/// effectively happens in their predecessor blocks, so the expression may need
+/// to be expanded in multiple places.
void LSRInstance::RewriteForPHI(PHINode *PN,
const LSRFixup &LF,
const Formula &F,
}
}
-/// Rewrite - Emit instructions for the leading candidate expression for this
-/// LSRUse (this is called "expanding"), and update the UserInst to reference
-/// the newly expanded value.
+/// Emit instructions for the leading candidate expression for this LSRUse (this
+/// is called "expanding"), and update the UserInst to reference the newly
+/// expanded value.
void LSRInstance::Rewrite(const LSRFixup &LF,
const Formula &F,
SCEVExpander &Rewriter,
DeadInsts.emplace_back(LF.OperandValToReplace);
}
-/// ImplementSolution - Rewrite all the fixup locations with new values,
-/// following the chosen solution.
+/// Rewrite all the fixup locations with new values, following the chosen
+/// solution.
void
LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Pass *P) {