class BuilderLocGuard {
public:
BuilderLocGuard(IRBuilder<> &B) : Builder(B), Loc(B.GetInsertPoint()) {}
- ~BuilderLocGuard() { Builder.SetInsertPoint(Loc); }
+ ~BuilderLocGuard() { if (Loc) Builder.SetInsertPoint(Loc); }
private:
// Prevent copying.
}
int getIndex(Instruction *I) {
+ assert(I->getParent() == BB && "Invalid instruction");
if (!Valid)
numberInstructions();
assert(InstrIdx.count(I) && "Unknown instruction");
std::vector<Instruction *> InstrVec;
};
-class FuncSLP {
+/// \returns the parent basic block if all of the instructions in \p VL
+/// are in the same block or null otherwise.
+static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
+ Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+ if (!I0)
+ return 0;
+ BasicBlock *BB = I0->getParent();
+ for (int i = 1, e = VL.size(); i < e; i++) {
+ Instruction *I = dyn_cast<Instruction>(VL[i]);
+ if (!I)
+ return 0;
+
+ if (BB != I->getParent())
+ return 0;
+ }
+ return BB;
+}
+
+/// \returns True if all of the values in \p VL are constants.
+static bool allConstant(ArrayRef<Value *> VL) {
+ for (unsigned i = 0, e = VL.size(); i < e; ++i)
+ if (!isa<Constant>(VL[i]))
+ return false;
+ return true;
+}
+
+/// \returns True if all of the values in \p VL are identical.
+static bool isSplat(ArrayRef<Value *> VL) {
+ for (unsigned i = 1, e = VL.size(); i < e; ++i)
+ if (VL[i] != VL[0])
+ return false;
+ return true;
+}
+
+/// \returns The opcode if all of the Instructions in \p VL have the same
+/// opcode, or zero.
+static unsigned getSameOpcode(ArrayRef<Value *> VL) {
+ Instruction *I0 = dyn_cast<Instruction>(VL[0]);
+ if (!I0)
+ return 0;
+ unsigned Opcode = I0->getOpcode();
+ for (int i = 1, e = VL.size(); i < e; i++) {
+ Instruction *I = dyn_cast<Instruction>(VL[i]);
+ if (!I || Opcode != I->getOpcode())
+ return 0;
+ }
+ return Opcode;
+}
+
+/// \returns The type that all of the values in \p VL have or null if there
+/// are different types.
+static Type* getSameType(ArrayRef<Value *> VL) {
+ Type *Ty = VL[0]->getType();
+ for (int i = 1, e = VL.size(); i < e; i++)
+ if (VL[0]->getType() != Ty)
+ return 0;
+
+ return Ty;
+}
+
+/// \returns True if the ExtractElement instructions in VL can be vectorized
+/// to use the original vector.
+static bool CanReuseExtract(ArrayRef<Value *> VL) {
+ assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
+ // Check if all of the extracts come from the same vector and from the
+ // correct offset.
+ Value *VL0 = VL[0];
+ ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
+ Value *Vec = E0->getOperand(0);
+
+ // We have to extract from the same vector type.
+ unsigned NElts = Vec->getType()->getVectorNumElements();
+
+ if (NElts != VL.size())
+ return false;
+
+ // Check that all of the indices extract from the correct offset.
+ ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
+ if (!CI || CI->getZExtValue())
+ return false;
+
+ for (unsigned i = 1, e = VL.size(); i < e; ++i) {
+ ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
+ ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
+
+ if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
+ return false;
+ }
+
+ return true;
+}
+
+/// Bottom Up SLP Vectorizer.
+class BoUpSLP {
+public:
typedef SmallVector<Value *, 8> ValueList;
typedef SmallVector<Instruction *, 16> InstrList;
typedef SmallPtrSet<Value *, 16> ValueSet;
typedef SmallVector<StoreInst *, 8> StoreList;
-public:
- static const int MAX_COST = INT_MIN;
-
- FuncSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
- TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
+ BoUpSLP(Function *Func, ScalarEvolution *Se, DataLayout *Dl,
+ TargetTransformInfo *Tti, AliasAnalysis *Aa, LoopInfo *Li,
DominatorTree *Dt) :
F(Func), SE(Se), DL(Dl), TTI(Tti), AA(Aa), LI(Li), DT(Dt),
Builder(Se->getContext()) {
- for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
- BasicBlock *BB = it;
- BlocksNumbers[BB] = BlockNumbering(BB);
+ // Setup the block numbering utility for all of the blocks in the
+ // function.
+ for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
+ BasicBlock *BB = it;
+ BlocksNumbers[BB] = BlockNumbering(BB);
+ }
}
- }
-
- /// \brief Take the pointer operand from the Load/Store instruction.
- /// \returns NULL if this is not a valid Load/Store instruction.
- static Value *getPointerOperand(Value *I);
-
- /// \brief Take the address space operand from the Load/Store instruction.
- /// \returns -1 if this is not a valid Load/Store instruction.
- static unsigned getAddressSpaceOperand(Value *I);
-
- /// \returns true if the memory operations A and B are consecutive.
- bool isConsecutiveAccess(Value *A, Value *B);
/// \brief Vectorize the tree that starts with the elements in \p VL.
- /// \returns the vectorized value.
- Value *vectorizeTree(ArrayRef<Value *> VL);
+ void vectorizeTree();
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
- int getTreeCost(ArrayRef<Value *> VL);
+ int getTreeCost();
+
+ /// Construct a vectorizable tree that starts at \p Roots.
+ void buildTree(ArrayRef<Value *> Roots);
+
+ /// Clear the internal data structures that are created by 'buildTree'.
+ void deleteTree() {
+ VectorizableTree.clear();
+ ScalarToTreeEntry.clear();
+ MustGather.clear();
+ MemBarrierIgnoreList.clear();
+ }
/// \returns the scalarization cost for this list of values. Assuming that
/// this subtree gets vectorized, we may need to extract the values from the
/// roots. This method calculates the cost of extracting the values.
int getGatherCost(ArrayRef<Value *> VL);
- /// \brief Attempts to order and vectorize a sequence of stores. This
- /// function does a quadratic scan of the given stores.
- /// \returns true if the basic block was modified.
- bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold);
+ /// \returns true if the memory operations A and B are consecutive.
+ bool isConsecutiveAccess(Value *A, Value *B);
+
+ /// \brief Perform LICM and CSE on the newly generated gather sequences.
+ void optimizeGatherSequence();
+private:
+ struct TreeEntry;
- /// \brief Vectorize a group of scalars into a vector tree.
- /// \returns the vectorized value.
- Value *vectorizeArith(ArrayRef<Value *> Operands);
+ /// \returns the cost of the vectorizable entry.
+ int getEntryCost(TreeEntry *E);
- /// \brief This method contains the recursive part of getTreeCost.
- int getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth);
+ /// This is the recursive part of buildTree.
+ void buildTree_rec(ArrayRef<Value *> Roots, unsigned Depth);
- /// \brief This recursive method looks for vectorization hazards such as
- /// values that are used by multiple users and checks that values are used
- /// by only one vector lane. It updates the variables LaneMap, MultiUserVals.
- void getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth);
+ /// Vectorizer a single entry in the tree.
+ Value *vectorizeTree(TreeEntry *E);
+
+ /// Vectorizer a single entry in the tree, starting in \p VL.
+ Value *vectorizeTree(ArrayRef<Value *> VL);
- /// \brief This method contains the recursive part of vectorizeTree.
- Value *vectorizeTree_rec(ArrayRef<Value *> VL);
+ /// \brief Take the pointer operand from the Load/Store instruction.
+ /// \returns NULL if this is not a valid Load/Store instruction.
+ static Value *getPointerOperand(Value *I);
- /// \brief Vectorize a sorted sequence of stores.
- bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold);
+ /// \brief Take the address space operand from the Load/Store instruction.
+ /// \returns -1 if this is not a valid Load/Store instruction.
+ static unsigned getAddressSpaceOperand(Value *I);
/// \returns the scalarization cost for this type. Scalarization in this
/// context means the creation of vectors from a group of scalars.
/// \returns a vector from a collection of scalars in \p VL.
Value *Gather(ArrayRef<Value *> VL, VectorType *Ty);
- /// \brief Perform LICM and CSE on the newly generated gather sequences.
- void optimizeGatherSequence();
+ struct TreeEntry {
+ TreeEntry() : Scalars(), VectorizedValue(0), LastScalarIndex(0),
+ NeedToGather(0) {}
- bool needToGatherAny(ArrayRef<Value *> VL) {
- for (int i = 0, e = VL.size(); i < e; ++i)
- if (MustGather.count(VL[i]))
- return true;
- return false;
- }
+ /// \returns true if the scalars in VL are equal to this entry.
+ bool isSame(ArrayRef<Value *> VL) {
+ assert(VL.size() == Scalars.size() && "Invalid size");
+ for (int i = 0, e = VL.size(); i != e; ++i)
+ if (VL[i] != Scalars[i])
+ return false;
+ return true;
+ }
+
+ /// A vector of scalars.
+ ValueList Scalars;
+
+ /// The Scalars are vectorized into this value. It is initialized to Null.
+ Value *VectorizedValue;
+
+ /// The index in the basic block of the last scalar.
+ int LastScalarIndex;
+
+ /// Do we need to gather this sequence ?
+ bool NeedToGather;
+ };
- void forgetNumbering() {
- for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it)
- BlocksNumbers[it].forget();
+ /// Create a new VectorizableTree entry.
+ TreeEntry *newTreeEntry(ArrayRef<Value *> VL, bool Vectorized) {
+ VectorizableTree.push_back(TreeEntry());
+ int idx = VectorizableTree.size() - 1;
+ TreeEntry *Last = &VectorizableTree[idx];
+ Last->Scalars.insert(Last->Scalars.begin(), VL.begin(), VL.end());
+ Last->NeedToGather = !Vectorized;
+ if (Vectorized) {
+ Last->LastScalarIndex = getLastIndex(VL);
+ for (int i = 0, e = VL.size(); i != e; ++i) {
+ assert(!ScalarToTreeEntry.count(VL[i]) && "Scalar already in tree!");
+ ScalarToTreeEntry[VL[i]] = idx;
+ }
+ } else {
+ Last->LastScalarIndex = 0;
+ MustGather.insert(VL.begin(), VL.end());
+ }
+ return Last;
}
/// -- Vectorization State --
+ /// Holds all of the tree entries.
+ std::vector<TreeEntry> VectorizableTree;
- /// Maps values in the tree to the vector lanes that uses them. This map must
- /// be reset between runs of getCost.
- std::map<Value *, int> LaneMap;
- /// A list of instructions to ignore while sinking
- /// memory instructions. This map must be reset between runs of getCost.
- ValueSet MemBarrierIgnoreList;
-
- /// Maps between the first scalar to the vector. This map must be reset
- /// between runs.
- DenseMap<Value *, Value *> VectorizedValues;
+ /// Maps a specific scalar to its tree entry.
+ SmallDenseMap<Value*, int> ScalarToTreeEntry;
- /// Contains values that must be gathered because they are used
- /// by multiple lanes, or by users outside the tree.
- /// NOTICE: The vectorization methods also use this set.
+ /// A list of scalars that we found that we need to keep as scalars.
ValueSet MustGather;
- /// Contains PHINodes that are being processed. We use this data structure
- /// to stop cycles in the graph.
- ValueSet VisitedPHIs;
-
- /// Contains a list of values that are used outside the current tree, the
- /// first element in the bundle and the insertion point for extracts. This
- /// set must be reset between runs.
- struct UseInfo{
- UseInfo(Instruction *VL0, int I) :
- Leader(VL0), LastIndex(I) {}
- UseInfo() : Leader(0), LastIndex(0) {}
- /// The first element in the bundle.
- Instruction *Leader;
- /// The insertion index.
- int LastIndex;
- };
- MapVector<Instruction*, UseInfo> MultiUserVals;
- SetVector<Instruction*> ExtractedLane;
+ /// A list of instructions to ignore while sinking
+ /// memory instructions. This map must be reset between runs of getCost.
+ ValueSet MemBarrierIgnoreList;
/// Holds all of the instructions that we gathered.
SetVector<Instruction *> GatherSeq;
IRBuilder<> Builder;
};
-int FuncSLP::getGatherCost(Type *Ty) {
- int Cost = 0;
- for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
- Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
- return Cost;
+void BoUpSLP::buildTree(ArrayRef<Value *> Roots) {
+ deleteTree();
+ buildTree_rec(Roots, 0);
}
-int FuncSLP::getGatherCost(ArrayRef<Value *> VL) {
- // Find the type of the operands in VL.
- Type *ScalarTy = VL[0]->getType();
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- ScalarTy = SI->getValueOperand()->getType();
- VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- // Find the cost of inserting/extracting values from the vector.
- return getGatherCost(VecTy);
-}
-AliasAnalysis::Location FuncSLP::getLocation(Instruction *I) {
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return AA->getLocation(SI);
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return AA->getLocation(LI);
- return AliasAnalysis::Location();
-}
+void BoUpSLP::buildTree_rec(ArrayRef<Value *> VL, unsigned Depth) {
+ bool SameTy = getSameType(VL); (void)SameTy;
+ assert(SameTy && "Invalid types!");
-Value *FuncSLP::getPointerOperand(Value *I) {
- if (LoadInst *LI = dyn_cast<LoadInst>(I))
- return LI->getPointerOperand();
- if (StoreInst *SI = dyn_cast<StoreInst>(I))
- return SI->getPointerOperand();
- return 0;
-}
+ if (Depth == RecursionMaxDepth) {
+ DEBUG(dbgs() << "SLP: Gathering due to max recursion depth.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
-unsigned FuncSLP::getAddressSpaceOperand(Value *I) {
- if (LoadInst *L = dyn_cast<LoadInst>(I))
- return L->getPointerAddressSpace();
- if (StoreInst *S = dyn_cast<StoreInst>(I))
- return S->getPointerAddressSpace();
- return -1;
-}
+ // Don't handle vectors.
+ if (VL[0]->getType()->isVectorTy()) {
+ DEBUG(dbgs() << "SLP: Gathering due to vector type.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
-bool FuncSLP::isConsecutiveAccess(Value *A, Value *B) {
- Value *PtrA = getPointerOperand(A);
- Value *PtrB = getPointerOperand(B);
- unsigned ASA = getAddressSpaceOperand(A);
- unsigned ASB = getAddressSpaceOperand(B);
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ if (SI->getValueOperand()->getType()->isVectorTy()) {
+ DEBUG(dbgs() << "SLP: Gathering due to store vector type.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
- // Check that the address spaces match and that the pointers are valid.
- if (!PtrA || !PtrB || (ASA != ASB))
- return false;
+ // If all of the operands are identical or constant we have a simple solution.
+ if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL) ||
+ !getSameOpcode(VL)) {
+ DEBUG(dbgs() << "SLP: Gathering due to C,S,B,O. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
- // Check that A and B are of the same type.
- if (PtrA->getType() != PtrB->getType())
- return false;
+ // We now know that this is a vector of instructions of the same type from
+ // the same block.
+
+ // Check if this is a duplicate of another entry.
+ if (ScalarToTreeEntry.count(VL[0])) {
+ int Idx = ScalarToTreeEntry[VL[0]];
+ TreeEntry *E = &VectorizableTree[Idx];
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ DEBUG(dbgs() << "SLP: \tChecking bundle: " << *VL[i] << ".\n");
+ if (E->Scalars[i] != VL[i]) {
+ DEBUG(dbgs() << "SLP: Gathering due to partial overlap.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
+ DEBUG(dbgs() << "SLP: Perfect diamond merge at " << *VL[0] << ".\n");
+ return;
+ }
- // Calculate the distance.
- const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
- const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
- const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
- const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);
+ // Check that none of the instructions in the bundle are already in the tree.
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ if (ScalarToTreeEntry.count(VL[i])) {
+ DEBUG(dbgs() << "SLP: The instruction (" << *VL[i] <<
+ ") is already in tree.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
- // Non constant distance.
- if (!ConstOffSCEV)
- return false;
+ // If any of the scalars appears in the table OR it is marked as a value that
+ // needs to stat scalar then we need to gather the scalars.
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ if (ScalarToTreeEntry.count(VL[i]) || MustGather.count(VL[i])) {
+ DEBUG(dbgs() << "SLP: Gathering due to gathered scalar. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
- int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
- Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
- // The Instructions are connsecutive if the size of the first load/store is
- // the same as the offset.
- int64_t Sz = DL->getTypeStoreSize(Ty);
- return ((-Offset) == Sz);
-}
+ // Check that all of the users of the scalars that we want to vectorize are
+ // schedulable.
+ Instruction *VL0 = cast<Instruction>(VL[0]);
+ int MyLastIndex = getLastIndex(VL);
+ BasicBlock *BB = cast<Instruction>(VL0)->getParent();
-Value *FuncSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
- assert(Src->getParent() == Dst->getParent() && "Not the same BB");
- BasicBlock::iterator I = Src, E = Dst;
- /// Scan all of the instruction from SRC to DST and check if
- /// the source may alias.
- for (++I; I != E; ++I) {
- // Ignore store instructions that are marked as 'ignore'.
- if (MemBarrierIgnoreList.count(I))
- continue;
- if (Src->mayWriteToMemory()) /* Write */ {
- if (!I->mayReadOrWriteMemory())
+ for (unsigned i = 0, e = VL.size(); i != e; ++i) {
+ Instruction *Scalar = cast<Instruction>(VL[i]);
+ DEBUG(dbgs() << "SLP: Checking users of " << *Scalar << ". \n");
+ for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
+ U != UE; ++U) {
+ DEBUG(dbgs() << "SLP: \tUser " << **U << ". \n");
+ Instruction *User = dyn_cast<Instruction>(*U);
+ if (!User) {
+ DEBUG(dbgs() << "SLP: Gathering due unknown user. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+
+ // We don't care if the user is in a different basic block.
+ BasicBlock *UserBlock = User->getParent();
+ if (UserBlock != BB) {
+ DEBUG(dbgs() << "SLP: User from a different basic block "
+ << *User << ". \n");
continue;
- } else /* Read */ {
- if (!I->mayWriteToMemory())
+ }
+
+ // If this is a PHINode within this basic block then we can place the
+ // extract wherever we want.
+ if (isa<PHINode>(*User)) {
+ DEBUG(dbgs() << "SLP: \tWe can schedule PHIs:" << *User << ". \n");
continue;
- }
- AliasAnalysis::Location A = getLocation(&*I);
- AliasAnalysis::Location B = getLocation(Src);
+ }
- if (!A.Ptr || !B.Ptr || AA->alias(A, B))
- return I;
- }
- return 0;
-}
+ // Check if this is a safe in-tree user.
+ if (ScalarToTreeEntry.count(User)) {
+ int Idx = ScalarToTreeEntry[User];
+ int VecLocation = VectorizableTree[Idx].LastScalarIndex;
+ if (VecLocation <= MyLastIndex) {
+ DEBUG(dbgs() << "SLP: Gathering due to unschedulable vector. \n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ DEBUG(dbgs() << "SLP: In-tree user (" << *User << ") at #" <<
+ VecLocation << " vector value (" << *Scalar << ") at #"
+ << MyLastIndex << ".\n");
+ continue;
+ }
-static BasicBlock *getSameBlock(ArrayRef<Value *> VL) {
- BasicBlock *BB = 0;
- for (int i = 0, e = VL.size(); i < e; i++) {
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- if (!I)
- return 0;
+ // Make sure that we can schedule this unknown user.
+ BlockNumbering &BN = BlocksNumbers[BB];
+ int UserIndex = BN.getIndex(User);
+ if (UserIndex < MyLastIndex) {
- if (!BB) {
- BB = I->getParent();
- continue;
+ DEBUG(dbgs() << "SLP: Can't schedule extractelement for "
+ << *User << ". \n");
+ newTreeEntry(VL, false);
+ return;
+ }
}
-
- if (BB != I->getParent())
- return 0;
}
- return BB;
-}
-static bool allConstant(ArrayRef<Value *> VL) {
+ // Check that every instructions appears once in this bundle.
for (unsigned i = 0, e = VL.size(); i < e; ++i)
- if (!isa<Constant>(VL[i]))
- return false;
- return true;
-}
+ for (unsigned j = i+1; j < e; ++j)
+ if (VL[i] == VL[j]) {
+ DEBUG(dbgs() << "SLP: Scalar used twice in bundle.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
-static bool isSplat(ArrayRef<Value *> VL) {
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (VL[i] != VL[0])
- return false;
- return true;
-}
-
-static unsigned getSameOpcode(ArrayRef<Value *> VL) {
- unsigned Opcode = 0;
- for (int i = 0, e = VL.size(); i < e; i++) {
- if (Instruction *I = dyn_cast<Instruction>(VL[i])) {
- if (!Opcode) {
- Opcode = I->getOpcode();
- continue;
+ // Check that instructions in this bundle don't reference other instructions.
+ // The runtime of this check is O(N * N-1 * uses(N)) and a typical N is 4.
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
+ U != UE; ++U) {
+ for (unsigned j = 0; j < e; ++j) {
+ if (i != j && *U == VL[j]) {
+ DEBUG(dbgs() << "SLP: Intra-bundle dependencies!" << **U << ". \n");
+ newTreeEntry(VL, false);
+ return;
+ }
}
- if (Opcode != I->getOpcode())
- return 0;
}
}
- return Opcode;
-}
-
-static bool CanReuseExtract(ArrayRef<Value *> VL, unsigned VF,
- VectorType *VecTy) {
- assert(Instruction::ExtractElement == getSameOpcode(VL) && "Invalid opcode");
- // Check if all of the extracts come from the same vector and from the
- // correct offset.
- Value *VL0 = VL[0];
- ExtractElementInst *E0 = cast<ExtractElementInst>(VL0);
- Value *Vec = E0->getOperand(0);
- // We have to extract from the same vector type.
- if (Vec->getType() != VecTy)
- return false;
+ DEBUG(dbgs() << "SLP: We are able to schedule this bundle.\n");
- // Check that all of the indices extract from the correct offset.
- ConstantInt *CI = dyn_cast<ConstantInt>(E0->getOperand(1));
- if (!CI || CI->getZExtValue())
- return false;
+ unsigned Opcode = getSameOpcode(VL);
- for (unsigned i = 1, e = VF; i < e; ++i) {
- ExtractElementInst *E = cast<ExtractElementInst>(VL[i]);
- ConstantInt *CI = dyn_cast<ConstantInt>(E->getOperand(1));
+ // Check if it is safe to sink the loads or the stores.
+ if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
+ Instruction *Last = getLastInstruction(VL);
- if (!CI || CI->getZExtValue() != i || E->getOperand(0) != Vec)
- return false;
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ if (VL[i] == Last)
+ continue;
+ Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
+ if (Barrier) {
+ DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
+ << "\n because of " << *Barrier << ". Gathering.\n");
+ newTreeEntry(VL, false);
+ return;
+ }
+ }
}
- return true;
-}
+ switch (Opcode) {
+ case Instruction::PHI: {
+ PHINode *PH = dyn_cast<PHINode>(VL0);
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of PHINodes.\n");
+
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
+
+ buildTree_rec(Operands, Depth + 1);
+ }
+ return;
+ }
+ case Instruction::ExtractElement: {
+ bool Reuse = CanReuseExtract(VL);
+ if (Reuse) {
+ DEBUG(dbgs() << "SLP: Reusing extract sequence.\n");
+ }
+ newTreeEntry(VL, Reuse);
+ return;
+ }
+ case Instruction::Load: {
+ // Check if the loads are consecutive or of we need to swizzle them.
+ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
+ if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Need to swizzle loads.\n");
+ return;
+ }
-void FuncSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
- if (Depth == RecursionMaxDepth)
- return MustGather.insert(VL.begin(), VL.end());
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of loads.\n");
+ return;
+ }
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ Type *SrcTy = VL0->getOperand(0)->getType();
+ for (unsigned i = 0; i < VL.size(); ++i) {
+ Type *Ty = cast<Instruction>(VL[i])->getOperand(0)->getType();
+ if (Ty != SrcTy || Ty->isAggregateType() || Ty->isVectorTy()) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering casts with different src types.\n");
+ return;
+ }
+ }
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of casts.\n");
- // Don't handle vectors.
- if (VL[0]->getType()->isVectorTy())
- return;
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
- if (SI->getValueOperand()->getType()->isVectorTy())
+ buildTree_rec(Operands, Depth+1);
+ }
return;
+ }
+ case Instruction::ICmp:
+ case Instruction::FCmp: {
+ // Check that all of the compares have the same predicate.
+ CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
+ for (unsigned i = 1, e = VL.size(); i < e; ++i) {
+ CmpInst *Cmp = cast<CmpInst>(VL[i]);
+ if (Cmp->getPredicate() != P0) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering cmp with different predicate.\n");
+ return;
+ }
+ }
- // If all of the operands are identical or constant we have a simple solution.
- if (allConstant(VL) || isSplat(VL) || !getSameBlock(VL))
- return MustGather.insert(VL.begin(), VL.end());
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of compares.\n");
- // Stop the scan at unknown IR.
- Instruction *VL0 = dyn_cast<Instruction>(VL[0]);
- assert(VL0 && "Invalid instruction");
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
- // Mark instructions with multiple users.
- int LastIndex = getLastIndex(VL);
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- if (PHINode *PN = dyn_cast<PHINode>(VL[i])) {
- unsigned NumUses = 0;
- // Check that PHINodes have only one external (non-self) use.
- for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
- U != UE; ++U) {
- // Don't count self uses.
- if (*U == PN)
- continue;
- NumUses++;
+ buildTree_rec(Operands, Depth+1);
}
- if (NumUses > 1) {
- DEBUG(dbgs() << "SLP: Adding PHI to MultiUserVals "
- "because it has " << NumUses << " users:" << *PN << " \n");
- UseInfo UI(VL0, 0);
- MultiUserVals[PN] = UI;
- }
- continue;
- }
-
- Instruction *I = dyn_cast<Instruction>(VL[i]);
- // Remember to check if all of the users of this instruction are vectorized
- // within our tree. At depth zero we have no local users, only external
- // users that we don't care about.
- if (Depth && I && I->getNumUses() > 1) {
- DEBUG(dbgs() << "SLP: Adding to MultiUserVals "
- "because it has " << I->getNumUses() << " users:" << *I << " \n");
- UseInfo UI(VL0, LastIndex);
- MultiUserVals[I] = UI;
+ return;
}
- }
-
- // Check that the instruction is only used within one lane.
- for (int i = 0, e = VL.size(); i < e; ++i) {
- if (LaneMap.count(VL[i]) && LaneMap[VL[i]] != i) {
- DEBUG(dbgs() << "SLP: Value used by multiple lanes:" << *VL[i] << "\n");
- return MustGather.insert(VL.begin(), VL.end());
+ case Instruction::Select:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of bin op.\n");
+
+ for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
+ ValueList Operands;
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < VL.size(); ++j)
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
+
+ buildTree_rec(Operands, Depth+1);
+ }
+ return;
}
- // Make this instruction as 'seen' and remember the lane.
- LaneMap[VL[i]] = i;
- }
-
- unsigned Opcode = getSameOpcode(VL);
- if (!Opcode)
- return MustGather.insert(VL.begin(), VL.end());
-
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
+ case Instruction::Store: {
+ // Check if the stores are consecutive or of we need to swizzle them.
+ for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
+ if (!isConsecutiveAccess(VL[i], VL[i + 1])) {
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Non consecutive store.\n");
+ return;
+ }
- // Stop self cycles.
- if (VisitedPHIs.count(PH))
- return;
+ newTreeEntry(VL, true);
+ DEBUG(dbgs() << "SLP: added a vector of stores.\n");
- VisitedPHIs.insert(PH);
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
ValueList Operands;
- // Prepare the operand vector.
for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
+ Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- getTreeUses_rec(Operands, Depth + 1);
- }
- return;
- }
- case Instruction::ExtractElement: {
- VectorType *VecTy = VectorType::get(VL[0]->getType(), VL.size());
- // No need to follow ExtractElements that are going to be optimized away.
- if (CanReuseExtract(VL, VL.size(), VecTy))
+ // We can ignore these values because we are sinking them down.
+ MemBarrierIgnoreList.insert(VL.begin(), VL.end());
+ buildTree_rec(Operands, Depth + 1);
return;
- // Fall through.
- }
- case Instruction::Load:
- return;
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast:
- case Instruction::Select:
- case Instruction::ICmp:
- case Instruction::FCmp:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
-
- getTreeUses_rec(Operands, Depth + 1);
}
- return;
- }
- case Instruction::Store: {
- ValueList Operands;
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- getTreeUses_rec(Operands, Depth + 1);
- return;
- }
- default:
- return MustGather.insert(VL.begin(), VL.end());
+ default:
+ newTreeEntry(VL, false);
+ DEBUG(dbgs() << "SLP: Gathering unknown instruction.\n");
+ return;
}
}
-int FuncSLP::getLastIndex(ArrayRef<Value *> VL) {
- BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
- BlockNumbering &BN = BlocksNumbers[BB];
-
- int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
- return MaxIdx;
-}
-
-Instruction *FuncSLP::getLastInstruction(ArrayRef<Value *> VL) {
- BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
- assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
- BlockNumbering &BN = BlocksNumbers[BB];
-
- int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
- return BN.getInstruction(MaxIdx);
-}
-
-Instruction *FuncSLP::getInstructionForIndex(unsigned Index, BasicBlock *BB) {
- BlockNumbering &BN = BlocksNumbers[BB];
- return BN.getInstruction(Index);
-}
-
-int FuncSLP::getFirstUserIndex(ArrayRef<Value *> VL) {
- BasicBlock *BB = getSameBlock(VL);
- assert(BB && "All instructions must come from the same block");
- BlockNumbering &BN = BlocksNumbers[BB];
-
- // Find the first user of the values.
- int FirstUser = BN.getIndex(BB->getTerminator());
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
- U != UE; ++U) {
- Instruction *Instr = dyn_cast<Instruction>(*U);
-
- if (!Instr || Instr->getParent() != BB)
- continue;
-
- FirstUser = std::min(FirstUser, BN.getIndex(Instr));
- }
- }
- return FirstUser;
-}
+int BoUpSLP::getEntryCost(TreeEntry *E) {
+ ArrayRef<Value*> VL = E->Scalars;
-int FuncSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
Type *ScalarTy = VL[0]->getType();
-
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
-
- /// Don't mess with vectors.
- if (ScalarTy->isVectorTy())
- return FuncSLP::MAX_COST;
-
- if (allConstant(VL))
- return 0;
-
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- if (isSplat(VL))
- return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
-
- int GatherCost = getGatherCost(VecTy);
- if (Depth == RecursionMaxDepth || needToGatherAny(VL))
- return GatherCost;
-
- BasicBlock *BB = getSameBlock(VL);
- unsigned Opcode = getSameOpcode(VL);
- assert(Opcode && BB && "Invalid Instruction Value");
-
- // Check if it is safe to sink the loads or the stores.
- if (Opcode == Instruction::Load || Opcode == Instruction::Store) {
- int MaxIdx = getLastIndex(VL);
- Instruction *Last = getInstructionForIndex(MaxIdx, BB);
-
- for (unsigned i = 0, e = VL.size(); i < e; ++i) {
- if (VL[i] == Last)
- continue;
- Value *Barrier = getSinkBarrier(cast<Instruction>(VL[i]), Last);
- if (Barrier) {
- DEBUG(dbgs() << "SLP: Can't sink " << *VL[i] << "\n down to " << *Last
- << "\n because of " << *Barrier << "\n");
- return MAX_COST;
- }
+ if (E->NeedToGather) {
+ if (allConstant(VL))
+ return 0;
+ if (isSplat(VL)) {
+ return TTI->getShuffleCost(TargetTransformInfo::SK_Broadcast, VecTy, 0);
}
+ return getGatherCost(E->Scalars);
}
- // Calculate the extract cost.
- unsigned ExternalUserExtractCost = 0;
- for (unsigned i = 0, e = VL.size(); i < e; ++i)
- if (ExtractedLane.count(cast<Instruction>(VL[i])))
- ExternalUserExtractCost +=
- TTI->getVectorInstrCost(Instruction::ExtractElement, VecTy, i);
-
+ assert(getSameOpcode(VL) && getSameType(VL) && getSameBlock(VL) &&
+ "Invalid VL");
Instruction *VL0 = cast<Instruction>(VL[0]);
+ unsigned Opcode = VL0->getOpcode();
switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
-
- // Stop self cycles.
- if (VisitedPHIs.count(PH))
- return 0;
-
- VisitedPHIs.insert(PH);
- int TotalCost = 0;
- // Calculate the cost of all of the operands.
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<PHINode>(VL[j])->getIncomingValue(i));
-
- int Cost = getTreeCost_rec(Operands, Depth + 1);
- if (Cost == MAX_COST)
- return MAX_COST;
- TotalCost += TotalCost;
- }
-
- if (TotalCost > GatherCost) {
- MustGather.insert(VL.begin(), VL.end());
- return GatherCost;
- }
-
- return TotalCost + ExternalUserExtractCost;
- }
- case Instruction::ExtractElement: {
- if (CanReuseExtract(VL, VL.size(), VecTy))
+ case Instruction::PHI: {
return 0;
- return getGatherCost(VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList Operands;
- Type *SrcTy = VL0->getOperand(0)->getType();
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j) {
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- // Check that the casted type is the same for all users.
- if (cast<Instruction>(VL[j])->getOperand(0)->getType() != SrcTy)
- return getGatherCost(VecTy);
}
-
- int Cost = getTreeCost_rec(Operands, Depth + 1);
- if (Cost == MAX_COST)
- return MAX_COST;
-
- // Calculate the cost of this instruction.
- int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
- VL0->getType(), SrcTy);
-
- VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
- int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
- Cost += (VecCost - ScalarCost);
-
- if (Cost > GatherCost) {
- MustGather.insert(VL.begin(), VL.end());
- return GatherCost;
+ case Instruction::ExtractElement: {
+ if (CanReuseExtract(VL))
+ return 0;
+ return getGatherCost(VecTy);
}
-
- return Cost + ExternalUserExtractCost;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if (Cmp->getPredicate() != P0)
- return getGatherCost(VecTy);
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ Type *SrcTy = VL0->getOperand(0)->getType();
+
+ // Calculate the cost of this instruction.
+ int ScalarCost = VL.size() * TTI->getCastInstrCost(VL0->getOpcode(),
+ VL0->getType(), SrcTy);
+
+ VectorType *SrcVecTy = VectorType::get(SrcTy, VL.size());
+ int VecCost = TTI->getCastInstrCost(VL0->getOpcode(), VecTy, SrcVecTy);
+ return VecCost - ScalarCost;
}
- // Fall through.
- }
- case Instruction::Select:
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- int TotalCost = 0;
- // Calculate the cost of all of the operands.
- for (unsigned i = 0, e = VL0->getNumOperands(); i < e; ++i) {
- ValueList Operands;
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(i));
-
- int Cost = getTreeCost_rec(Operands, Depth + 1);
- if (Cost == MAX_COST)
- return MAX_COST;
- TotalCost += Cost;
+ case Instruction::FCmp:
+ case Instruction::ICmp:
+ case Instruction::Select:
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ // Calculate the cost of this instruction.
+ int ScalarCost = 0;
+ int VecCost = 0;
+ if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
+ Opcode == Instruction::Select) {
+ VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
+ ScalarCost = VecTy->getNumElements() *
+ TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
+ VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
+ } else {
+ ScalarCost = VecTy->getNumElements() *
+ TTI->getArithmeticInstrCost(Opcode, ScalarTy);
+ VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
+ }
+ return VecCost - ScalarCost;
}
-
- // Calculate the cost of this instruction.
- int ScalarCost = 0;
- int VecCost = 0;
- if (Opcode == Instruction::FCmp || Opcode == Instruction::ICmp ||
- Opcode == Instruction::Select) {
- VectorType *MaskTy = VectorType::get(Builder.getInt1Ty(), VL.size());
- ScalarCost =
- VecTy->getNumElements() *
- TTI->getCmpSelInstrCost(Opcode, ScalarTy, Builder.getInt1Ty());
- VecCost = TTI->getCmpSelInstrCost(Opcode, VecTy, MaskTy);
- } else {
- ScalarCost = VecTy->getNumElements() *
- TTI->getArithmeticInstrCost(Opcode, ScalarTy);
- VecCost = TTI->getArithmeticInstrCost(Opcode, VecTy);
+ case Instruction::Load: {
+ // Cost of wide load - cost of scalar loads.
+ int ScalarLdCost = VecTy->getNumElements() *
+ TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
+ int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
+ return VecLdCost - ScalarLdCost;
}
- TotalCost += (VecCost - ScalarCost);
-
- if (TotalCost > GatherCost) {
- MustGather.insert(VL.begin(), VL.end());
- return GatherCost;
+ case Instruction::Store: {
+ // We know that we can merge the stores. Calculate the cost.
+ int ScalarStCost = VecTy->getNumElements() *
+ TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
+ int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
+ return VecStCost - ScalarStCost;
}
-
- return TotalCost + ExternalUserExtractCost;
+ default:
+ llvm_unreachable("Unknown instruction");
}
- case Instruction::Load: {
- // If we are scalarize the loads, add the cost of forming the vector.
- for (unsigned i = 0, e = VL.size() - 1; i < e; ++i)
- if (!isConsecutiveAccess(VL[i], VL[i + 1]))
- return getGatherCost(VecTy);
-
- // Cost of wide load - cost of scalar loads.
- int ScalarLdCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- int VecLdCost = TTI->getMemoryOpCost(Instruction::Load, ScalarTy, 1, 0);
- int TotalCost = VecLdCost - ScalarLdCost;
-
- if (TotalCost > GatherCost) {
- MustGather.insert(VL.begin(), VL.end());
- return GatherCost;
- }
+}
- return TotalCost + ExternalUserExtractCost;
+int BoUpSLP::getTreeCost() {
+ int Cost = 0;
+ DEBUG(dbgs() << "SLP: Calculating cost for tree of size " <<
+ VectorizableTree.size() << ".\n");
+
+ for (unsigned i = 0, e = VectorizableTree.size(); i != e; ++i) {
+ int C = getEntryCost(&VectorizableTree[i]);
+ DEBUG(dbgs() << "SLP: Adding cost " << C << " for bundle that starts with "
+ << *VectorizableTree[i].Scalars[0] << " .\n");
+ Cost += C;
}
- case Instruction::Store: {
- // We know that we can merge the stores. Calculate the cost.
- int ScalarStCost = VecTy->getNumElements() *
- TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
- int VecStCost = TTI->getMemoryOpCost(Instruction::Store, ScalarTy, 1, 0);
- int StoreCost = VecStCost - ScalarStCost;
-
- ValueList Operands;
- for (unsigned j = 0; j < VL.size(); ++j) {
- Operands.push_back(cast<Instruction>(VL[j])->getOperand(0));
- MemBarrierIgnoreList.insert(VL[j]);
- }
+ DEBUG(dbgs() << "SLP: Total Cost " << Cost << ".\n");
+ return Cost;
+}
- int Cost = getTreeCost_rec(Operands, Depth + 1);
- if (Cost == MAX_COST)
- return MAX_COST;
+int BoUpSLP::getGatherCost(Type *Ty) {
+ int Cost = 0;
+ for (unsigned i = 0, e = cast<VectorType>(Ty)->getNumElements(); i < e; ++i)
+ Cost += TTI->getVectorInstrCost(Instruction::InsertElement, Ty, i);
+ return Cost;
+}
- int TotalCost = StoreCost + Cost;
- return TotalCost + ExternalUserExtractCost;
- }
- default:
- // Unable to vectorize unknown instructions.
- return getGatherCost(VecTy);
- }
+int BoUpSLP::getGatherCost(ArrayRef<Value *> VL) {
+ // Find the type of the operands in VL.
+ Type *ScalarTy = VL[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
+ // Find the cost of inserting/extracting values from the vector.
+ return getGatherCost(VecTy);
}
-int FuncSLP::getTreeCost(ArrayRef<Value *> VL) {
- // Get rid of the list of stores that were removed, and from the
- // lists of instructions with multiple users.
- MemBarrierIgnoreList.clear();
- LaneMap.clear();
- MultiUserVals.clear();
- ExtractedLane.clear();
- MustGather.clear();
- VisitedPHIs.clear();
-
- if (!getSameBlock(VL))
- return MAX_COST;
-
- // Find the location of the last root.
- int LastRootIndex = getLastIndex(VL);
- int FirstUserIndex = getFirstUserIndex(VL);
-
- // Don't vectorize if there are users of the tree roots inside the tree
- // itself.
- if (LastRootIndex > FirstUserIndex)
- return MAX_COST;
-
- // Scan the tree and find which value is used by which lane, and which values
- // must be scalarized.
- getTreeUses_rec(VL, 0);
-
- // Check that instructions with multiple users can be vectorized. Mark
- // unsafe instructions.
- for (MapVector<Instruction *, UseInfo>::iterator UI = MultiUserVals.begin(),
- e = MultiUserVals.end(); UI != e; ++UI) {
- Instruction *Scalar = UI->first;
-
- if (MustGather.count(Scalar))
- continue;
+AliasAnalysis::Location BoUpSLP::getLocation(Instruction *I) {
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return AA->getLocation(SI);
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return AA->getLocation(LI);
+ return AliasAnalysis::Location();
+}
- assert(LaneMap.count(Scalar) && "Unknown scalar");
- int ScalarLane = LaneMap[Scalar];
-
- bool ExternalUse = false;
- // Check that all of the users of this instr are within the tree.
- for (Value::use_iterator Usr = Scalar->use_begin(),
- UE = Scalar->use_end(); Usr != UE; ++Usr) {
- // If this user is within the tree, make sure it is from the same lane.
- // Notice that we have both in-tree and out-of-tree users.
- if (LaneMap.count(*Usr)) {
- if (LaneMap[*Usr] != ScalarLane) {
- DEBUG(dbgs() << "SLP: Adding to MustExtract "
- "because of an out-of-lane usage.\n");
- MustGather.insert(Scalar);
- break;
- }
- continue;
- }
+Value *BoUpSLP::getPointerOperand(Value *I) {
+ if (LoadInst *LI = dyn_cast<LoadInst>(I))
+ return LI->getPointerOperand();
+ if (StoreInst *SI = dyn_cast<StoreInst>(I))
+ return SI->getPointerOperand();
+ return 0;
+}
- // We have an out-of-tree user. Check if we can place an 'extract'.
- Instruction *User = cast<Instruction>(*Usr);
- // We care about the order only if the user is in the same block.
- if (User->getParent() == Scalar->getParent()) {
- int LastLoc = UI->second.LastIndex;
- BlockNumbering &BN = BlocksNumbers[User->getParent()];
- int UserIdx = BN.getIndex(User);
- if (UserIdx <= LastLoc) {
- DEBUG(dbgs() << "SLP: Adding to MustExtract because of an external "
- "user that we can't schedule.\n");
- MustGather.insert(Scalar);
- break;
- }
- }
- // We have an external user.
- ExternalUse = true;
- }
+unsigned BoUpSLP::getAddressSpaceOperand(Value *I) {
+ if (LoadInst *L = dyn_cast<LoadInst>(I))
+ return L->getPointerAddressSpace();
+ if (StoreInst *S = dyn_cast<StoreInst>(I))
+ return S->getPointerAddressSpace();
+ return -1;
+}
- if (ExternalUse) {
- // Items that are left in MultiUserVals are to be extracted.
- // ExtractLane is used for the lookup.
- ExtractedLane.insert(Scalar);
- }
+bool BoUpSLP::isConsecutiveAccess(Value *A, Value *B) {
+ Value *PtrA = getPointerOperand(A);
+ Value *PtrB = getPointerOperand(B);
+ unsigned ASA = getAddressSpaceOperand(A);
+ unsigned ASB = getAddressSpaceOperand(B);
- }
+ // Check that the address spaces match and that the pointers are valid.
+ if (!PtrA || !PtrB || (ASA != ASB))
+ return false;
- // Now calculate the cost of vectorizing the tree.
- return getTreeCost_rec(VL, 0);
-}
-bool FuncSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
- unsigned ChainLen = Chain.size();
- DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
- << "\n");
- Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
- unsigned Sz = DL->getTypeSizeInBits(StoreTy);
- unsigned VF = MinVecRegSize / Sz;
+ // Check that A and B are of the same type.
+ if (PtrA->getType() != PtrB->getType())
+ return false;
- if (!isPowerOf2_32(Sz) || VF < 2)
+ // Calculate the distance.
+ const SCEV *PtrSCEVA = SE->getSCEV(PtrA);
+ const SCEV *PtrSCEVB = SE->getSCEV(PtrB);
+ const SCEV *OffsetSCEV = SE->getMinusSCEV(PtrSCEVA, PtrSCEVB);
+ const SCEVConstant *ConstOffSCEV = dyn_cast<SCEVConstant>(OffsetSCEV);
+
+ // Non constant distance.
+ if (!ConstOffSCEV)
return false;
- bool Changed = false;
- // Look for profitable vectorizable trees at all offsets, starting at zero.
- for (unsigned i = 0, e = ChainLen; i < e; ++i) {
- if (i + VF > e)
- break;
- DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
- << "\n");
- ArrayRef<Value *> Operands = Chain.slice(i, VF);
+ int64_t Offset = ConstOffSCEV->getValue()->getSExtValue();
+ Type *Ty = cast<PointerType>(PtrA->getType())->getElementType();
+ // The Instructions are connsecutive if the size of the first load/store is
+ // the same as the offset.
+ int64_t Sz = DL->getTypeStoreSize(Ty);
+ return ((-Offset) == Sz);
+}
- int Cost = getTreeCost(Operands);
- if (Cost == FuncSLP::MAX_COST)
+Value *BoUpSLP::getSinkBarrier(Instruction *Src, Instruction *Dst) {
+ assert(Src->getParent() == Dst->getParent() && "Not the same BB");
+ BasicBlock::iterator I = Src, E = Dst;
+ /// Scan all of the instruction from SRC to DST and check if
+ /// the source may alias.
+ for (++I; I != E; ++I) {
+ // Ignore store instructions that are marked as 'ignore'.
+ if (MemBarrierIgnoreList.count(I))
continue;
- DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
- if (Cost < CostThreshold) {
- DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
- vectorizeTree(Operands);
-
- // Remove the scalar stores.
- for (int j = 0, e = VF; j < e; ++j)
- cast<Instruction>(Operands[j])->eraseFromParent();
-
- // Move to the next bundle.
- i += VF - 1;
- Changed = true;
+ if (Src->mayWriteToMemory()) /* Write */ {
+ if (!I->mayReadOrWriteMemory())
+ continue;
+ } else /* Read */ {
+ if (!I->mayWriteToMemory())
+ continue;
}
+ AliasAnalysis::Location A = getLocation(&*I);
+ AliasAnalysis::Location B = getLocation(Src);
+
+ if (!A.Ptr || !B.Ptr || AA->alias(A, B))
+ return I;
}
+ return 0;
+}
- if (Changed || ChainLen > VF)
- return Changed;
+int BoUpSLP::getLastIndex(ArrayRef<Value *> VL) {
+ BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
+ assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
+ BlockNumbering &BN = BlocksNumbers[BB];
- // Handle short chains. This helps us catch types such as <3 x float> that
- // are smaller than vector size.
- int Cost = getTreeCost(Chain);
- if (Cost == FuncSLP::MAX_COST)
- return false;
- if (Cost < CostThreshold) {
- DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost
- << " for size = " << ChainLen << "\n");
- vectorizeTree(Chain);
+ int MaxIdx = BN.getIndex(BB->getFirstNonPHI());
+ for (unsigned i = 0, e = VL.size(); i < e; ++i)
+ MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
+ return MaxIdx;
+}
- // Remove all of the scalar stores.
- for (int i = 0, e = Chain.size(); i < e; ++i)
- cast<Instruction>(Chain[i])->eraseFromParent();
+Instruction *BoUpSLP::getLastInstruction(ArrayRef<Value *> VL) {
+ BasicBlock *BB = cast<Instruction>(VL[0])->getParent();
+ assert(BB == getSameBlock(VL) && BlocksNumbers.count(BB) && "Invalid block");
+ BlockNumbering &BN = BlocksNumbers[BB];
- return true;
- }
+ int MaxIdx = BN.getIndex(cast<Instruction>(VL[0]));
+ for (unsigned i = 1, e = VL.size(); i < e; ++i)
+ MaxIdx = std::max(MaxIdx, BN.getIndex(cast<Instruction>(VL[i])));
+ Instruction *I = BN.getInstruction(MaxIdx);
+ assert(I && "bad location");
+ return I;
+}
- return false;
+Instruction *BoUpSLP::getInstructionForIndex(unsigned Index, BasicBlock *BB) {
+ BlockNumbering &BN = BlocksNumbers[BB];
+ return BN.getInstruction(Index);
}
-bool FuncSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
- SetVector<Value *> Heads, Tails;
- SmallDenseMap<Value *, Value *> ConsecutiveChain;
+int BoUpSLP::getFirstUserIndex(ArrayRef<Value *> VL) {
+ BasicBlock *BB = getSameBlock(VL);
+ assert(BB && "All instructions must come from the same block");
+ BlockNumbering &BN = BlocksNumbers[BB];
- // We may run into multiple chains that merge into a single chain. We mark the
- // stores that we vectorized so that we don't visit the same store twice.
- ValueSet VectorizedStores;
- bool Changed = false;
+ // Find the first user of the values.
+ int FirstUser = BN.getIndex(BB->getTerminator());
+ for (unsigned i = 0, e = VL.size(); i < e; ++i) {
+ for (Value::use_iterator U = VL[i]->use_begin(), UE = VL[i]->use_end();
+ U != UE; ++U) {
+ Instruction *Instr = dyn_cast<Instruction>(*U);
- // Do a quadratic search on all of the given stores and find
- // all of the pairs of loads that follow each other.
- for (unsigned i = 0, e = Stores.size(); i < e; ++i)
- for (unsigned j = 0; j < e; ++j) {
- if (i == j)
+ if (!Instr || Instr->getParent() != BB)
continue;
- if (isConsecutiveAccess(Stores[i], Stores[j])) {
- Tails.insert(Stores[j]);
- Heads.insert(Stores[i]);
- ConsecutiveChain[Stores[i]] = Stores[j];
- }
- }
-
- // For stores that start but don't end a link in the chain:
- for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
- it != e; ++it) {
- if (Tails.count(*it))
- continue;
-
- // We found a store instr that starts a chain. Now follow the chain and try
- // to vectorize it.
- ValueList Operands;
- Value *I = *it;
- // Collect the chain into a list.
- while (Tails.count(I) || Heads.count(I)) {
- if (VectorizedStores.count(I))
- break;
- Operands.push_back(I);
- // Move to the next value in the chain.
- I = ConsecutiveChain[I];
+ FirstUser = std::min(FirstUser, BN.getIndex(Instr));
}
-
- bool Vectorized = vectorizeStoreChain(Operands, costThreshold);
-
- // Mark the vectorized stores so that we don't vectorize them again.
- if (Vectorized)
- VectorizedStores.insert(Operands.begin(), Operands.end());
- Changed |= Vectorized;
}
-
- return Changed;
+ return FirstUser;
}
-Value *FuncSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
+Value *BoUpSLP::Gather(ArrayRef<Value *> VL, VectorType *Ty) {
Value *Vec = UndefValue::get(Ty);
// Generate the 'InsertElement' instruction.
for (unsigned i = 0; i < Ty->getNumElements(); ++i) {
return Vec;
}
-Value *FuncSLP::vectorizeTree_rec(ArrayRef<Value *> VL) {
- BuilderLocGuard Guard(Builder);
+Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL) {
+ if (ScalarToTreeEntry.count(VL[0])) {
+ int Idx = ScalarToTreeEntry[VL[0]];
+ TreeEntry *E = &VectorizableTree[Idx];
+ if (E->isSame(VL))
+ return vectorizeTree(E);
+ }
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
VectorType *VecTy = VectorType::get(ScalarTy, VL.size());
- if (needToGatherAny(VL))
- return Gather(VL, VecTy);
+ return Gather(VL, VecTy);
+}
+
+Value *BoUpSLP::vectorizeTree(TreeEntry *E) {
+ BuilderLocGuard Guard(Builder);
- if (VectorizedValues.count(VL[0])) {
- DEBUG(dbgs() << "SLP: Diamond merged at depth.\n");
- return VectorizedValues[VL[0]];
+ if (E->VectorizedValue) {
+ DEBUG(dbgs() << "SLP: Diamond merged for " << *E->Scalars[0] << ".\n");
+ return E->VectorizedValue;
}
- Instruction *VL0 = cast<Instruction>(VL[0]);
- unsigned Opcode = VL0->getOpcode();
- assert(Opcode == getSameOpcode(VL) && "Invalid opcode");
+ Type *ScalarTy = E->Scalars[0]->getType();
+ if (StoreInst *SI = dyn_cast<StoreInst>(E->Scalars[0]))
+ ScalarTy = SI->getValueOperand()->getType();
+ VectorType *VecTy = VectorType::get(ScalarTy, E->Scalars.size());
- switch (Opcode) {
- case Instruction::PHI: {
- PHINode *PH = dyn_cast<PHINode>(VL0);
- Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
- PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
- VectorizedValues[VL0] = NewPhi;
+ if (E->NeedToGather) {
+ return Gather(E->Scalars, VecTy);
+ }
- for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
- ValueList Operands;
- BasicBlock *IBB = PH->getIncomingBlock(i);
+ Instruction *VL0 = cast<Instruction>(E->Scalars[0]);
+ unsigned Opcode = VL0->getOpcode();
+ assert(Opcode == getSameOpcode(E->Scalars) && "Invalid opcode");
- // Prepare the operand vector.
- for (unsigned j = 0; j < VL.size(); ++j)
- Operands.push_back(cast<PHINode>(VL[j])->getIncomingValueForBlock(IBB));
+ switch (Opcode) {
+ case Instruction::PHI: {
+ PHINode *PH = dyn_cast<PHINode>(VL0);
+ Builder.SetInsertPoint(PH->getParent()->getFirstInsertionPt());
+ PHINode *NewPhi = Builder.CreatePHI(VecTy, PH->getNumIncomingValues());
+ E->VectorizedValue = NewPhi;
+
+ for (unsigned i = 0, e = PH->getNumIncomingValues(); i < e; ++i) {
+ ValueList Operands;
+ BasicBlock *IBB = PH->getIncomingBlock(i);
+
+ // Prepare the operand vector.
+ for (unsigned j = 0; j < E->Scalars.size(); ++j)
+ Operands.push_back(cast<PHINode>(E->Scalars[j])->
+ getIncomingValueForBlock(IBB));
+
+ Builder.SetInsertPoint(IBB->getTerminator());
+ Value *Vec = vectorizeTree(Operands);
+ NewPhi->addIncoming(Vec, IBB);
+ }
- Builder.SetInsertPoint(IBB->getTerminator());
- Value *Vec = vectorizeTree_rec(Operands);
- NewPhi->addIncoming(Vec, IBB);
+ assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
+ "Invalid number of incoming values");
+ return NewPhi;
}
- assert(NewPhi->getNumIncomingValues() == PH->getNumIncomingValues() &&
- "Invalid number of incoming values");
- return NewPhi;
- }
-
- case Instruction::ExtractElement: {
- if (CanReuseExtract(VL, VL.size(), VecTy))
- return VL0->getOperand(0);
- return Gather(VL, VecTy);
- }
- case Instruction::ZExt:
- case Instruction::SExt:
- case Instruction::FPToUI:
- case Instruction::FPToSI:
- case Instruction::FPExt:
- case Instruction::PtrToInt:
- case Instruction::IntToPtr:
- case Instruction::SIToFP:
- case Instruction::UIToFP:
- case Instruction::Trunc:
- case Instruction::FPTrunc:
- case Instruction::BitCast: {
- ValueList INVL;
- for (int i = 0, e = VL.size(); i < e; ++i)
- INVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
-
- Builder.SetInsertPoint(getLastInstruction(VL));
- Value *InVec = vectorizeTree_rec(INVL);
- CastInst *CI = dyn_cast<CastInst>(VL0);
- Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
- VectorizedValues[VL0] = V;
- return V;
- }
- case Instruction::FCmp:
- case Instruction::ICmp: {
- // Check that all of the compares have the same predicate.
- CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
- for (unsigned i = 1, e = VL.size(); i < e; ++i) {
- CmpInst *Cmp = cast<CmpInst>(VL[i]);
- if (Cmp->getPredicate() != P0)
- return Gather(VL, VecTy);
+ case Instruction::ExtractElement: {
+ if (CanReuseExtract(E->Scalars)) {
+ Value *V = VL0->getOperand(0);
+ E->VectorizedValue = V;
+ return V;
+ }
+ return Gather(E->Scalars, VecTy);
}
-
- ValueList LHSV, RHSV;
- for (int i = 0, e = VL.size(); i < e; ++i) {
- LHSV.push_back(cast<Instruction>(VL[i])->getOperand(0));
- RHSV.push_back(cast<Instruction>(VL[i])->getOperand(1));
+ case Instruction::ZExt:
+ case Instruction::SExt:
+ case Instruction::FPToUI:
+ case Instruction::FPToSI:
+ case Instruction::FPExt:
+ case Instruction::PtrToInt:
+ case Instruction::IntToPtr:
+ case Instruction::SIToFP:
+ case Instruction::UIToFP:
+ case Instruction::Trunc:
+ case Instruction::FPTrunc:
+ case Instruction::BitCast: {
+ ValueList INVL;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+ INVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+
+ Builder.SetInsertPoint(getLastInstruction(E->Scalars));
+ Value *InVec = vectorizeTree(INVL);
+ CastInst *CI = dyn_cast<CastInst>(VL0);
+ Value *V = Builder.CreateCast(CI->getOpcode(), InVec, VecTy);
+ E->VectorizedValue = V;
+ return V;
}
+ case Instruction::FCmp:
+ case Instruction::ICmp: {
+ ValueList LHSV, RHSV;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ LHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ RHSV.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ }
- Builder.SetInsertPoint(getLastInstruction(VL));
- Value *L = vectorizeTree_rec(LHSV);
- Value *R = vectorizeTree_rec(RHSV);
- Value *V;
+ Builder.SetInsertPoint(getLastInstruction(E->Scalars));
+ Value *L = vectorizeTree(LHSV);
+ Value *R = vectorizeTree(RHSV);
+ Value *V;
- if (Opcode == Instruction::FCmp)
- V = Builder.CreateFCmp(P0, L, R);
- else
- V = Builder.CreateICmp(P0, L, R);
+ CmpInst::Predicate P0 = dyn_cast<CmpInst>(VL0)->getPredicate();
+ if (Opcode == Instruction::FCmp)
+ V = Builder.CreateFCmp(P0, L, R);
+ else
+ V = Builder.CreateICmp(P0, L, R);
- VectorizedValues[VL0] = V;
- return V;
- }
- case Instruction::Select: {
- ValueList TrueVec, FalseVec, CondVec;
- for (int i = 0, e = VL.size(); i < e; ++i) {
- CondVec.push_back(cast<Instruction>(VL[i])->getOperand(0));
- TrueVec.push_back(cast<Instruction>(VL[i])->getOperand(1));
- FalseVec.push_back(cast<Instruction>(VL[i])->getOperand(2));
+ E->VectorizedValue = V;
+ return V;
}
+ case Instruction::Select: {
+ ValueList TrueVec, FalseVec, CondVec;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ CondVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ TrueVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ FalseVec.push_back(cast<Instruction>(E->Scalars[i])->getOperand(2));
+ }
- Builder.SetInsertPoint(getLastInstruction(VL));
- Value *True = vectorizeTree_rec(TrueVec);
- Value *False = vectorizeTree_rec(FalseVec);
- Value *Cond = vectorizeTree_rec(CondVec);
- Value *V = Builder.CreateSelect(Cond, True, False);
- VectorizedValues[VL0] = V;
- return V;
- }
- case Instruction::Add:
- case Instruction::FAdd:
- case Instruction::Sub:
- case Instruction::FSub:
- case Instruction::Mul:
- case Instruction::FMul:
- case Instruction::UDiv:
- case Instruction::SDiv:
- case Instruction::FDiv:
- case Instruction::URem:
- case Instruction::SRem:
- case Instruction::FRem:
- case Instruction::Shl:
- case Instruction::LShr:
- case Instruction::AShr:
- case Instruction::And:
- case Instruction::Or:
- case Instruction::Xor: {
- ValueList LHSVL, RHSVL;
- for (int i = 0, e = VL.size(); i < e; ++i) {
- LHSVL.push_back(cast<Instruction>(VL[i])->getOperand(0));
- RHSVL.push_back(cast<Instruction>(VL[i])->getOperand(1));
+ Builder.SetInsertPoint(getLastInstruction(E->Scalars));
+ Value *Cond = vectorizeTree(CondVec);
+ Value *True = vectorizeTree(TrueVec);
+ Value *False = vectorizeTree(FalseVec);
+ Value *V = Builder.CreateSelect(Cond, True, False);
+ E->VectorizedValue = V;
+ return V;
}
+ case Instruction::Add:
+ case Instruction::FAdd:
+ case Instruction::Sub:
+ case Instruction::FSub:
+ case Instruction::Mul:
+ case Instruction::FMul:
+ case Instruction::UDiv:
+ case Instruction::SDiv:
+ case Instruction::FDiv:
+ case Instruction::URem:
+ case Instruction::SRem:
+ case Instruction::FRem:
+ case Instruction::Shl:
+ case Instruction::LShr:
+ case Instruction::AShr:
+ case Instruction::And:
+ case Instruction::Or:
+ case Instruction::Xor: {
+ ValueList LHSVL, RHSVL;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i) {
+ LHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(0));
+ RHSVL.push_back(cast<Instruction>(E->Scalars[i])->getOperand(1));
+ }
- Builder.SetInsertPoint(getLastInstruction(VL));
- Value *LHS = vectorizeTree_rec(LHSVL);
- Value *RHS = vectorizeTree_rec(RHSVL);
+ Builder.SetInsertPoint(getLastInstruction(E->Scalars));
+ Value *LHS = vectorizeTree(LHSVL);
+ Value *RHS = vectorizeTree(RHSVL);
- if (LHS == RHS) {
- assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
- }
+ if (LHS == RHS && isa<Instruction>(LHS)) {
+ assert((VL0->getOperand(0) == VL0->getOperand(1)) && "Invalid order");
+ }
- BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
- Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
- VectorizedValues[VL0] = V;
- return V;
- }
- case Instruction::Load: {
- // Check if all of the loads are consecutive.
- for (unsigned i = 1, e = VL.size(); i < e; ++i)
- if (!isConsecutiveAccess(VL[i - 1], VL[i]))
- return Gather(VL, VecTy);
-
- // Loads are inserted at the head of the tree because we don't want to
- // sink them all the way down past store instructions.
- Builder.SetInsertPoint(getLastInstruction(VL));
- LoadInst *LI = cast<LoadInst>(VL0);
- Value *VecPtr =
- Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
- unsigned Alignment = LI->getAlignment();
- LI = Builder.CreateLoad(VecPtr);
- LI->setAlignment(Alignment);
-
- VectorizedValues[VL0] = LI;
- return LI;
+ BinaryOperator *BinOp = cast<BinaryOperator>(VL0);
+ Value *V = Builder.CreateBinOp(BinOp->getOpcode(), LHS, RHS);
+ E->VectorizedValue = V;
+ return V;
+ }
+ case Instruction::Load: {
+ // Loads are inserted at the head of the tree because we don't want to
+ // sink them all the way down past store instructions.
+ Builder.SetInsertPoint(getLastInstruction(E->Scalars));
+ LoadInst *LI = cast<LoadInst>(VL0);
+ Value *VecPtr =
+ Builder.CreateBitCast(LI->getPointerOperand(), VecTy->getPointerTo());
+ unsigned Alignment = LI->getAlignment();
+ LI = Builder.CreateLoad(VecPtr);
+ LI->setAlignment(Alignment);
+ E->VectorizedValue = LI;
+ return LI;
+ }
+ case Instruction::Store: {
+ StoreInst *SI = cast<StoreInst>(VL0);
+ unsigned Alignment = SI->getAlignment();
+
+ ValueList ValueOp;
+ for (int i = 0, e = E->Scalars.size(); i < e; ++i)
+ ValueOp.push_back(cast<StoreInst>(E->Scalars[i])->getValueOperand());
+
+ Builder.SetInsertPoint(getLastInstruction(E->Scalars));
+ Value *VecValue = vectorizeTree(ValueOp);
+ Value *VecPtr =
+ Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
+ StoreInst *S = Builder.CreateStore(VecValue, VecPtr);
+ S->setAlignment(Alignment);
+ E->VectorizedValue = S;
+ return S;
+ }
+ default:
+ llvm_unreachable("unknown inst");
}
- case Instruction::Store: {
- StoreInst *SI = cast<StoreInst>(VL0);
- unsigned Alignment = SI->getAlignment();
+ return 0;
+}
- ValueList ValueOp;
- for (int i = 0, e = VL.size(); i < e; ++i)
- ValueOp.push_back(cast<StoreInst>(VL[i])->getValueOperand());
+void BoUpSLP::vectorizeTree() {
+ vectorizeTree(&VectorizableTree[0]);
- Value *VecValue = vectorizeTree_rec(ValueOp);
+ // For each vectorized value:
+ for (int EIdx = 0, EE = VectorizableTree.size(); EIdx < EE; ++EIdx) {
+ TreeEntry *Entry = &VectorizableTree[EIdx];
- Builder.SetInsertPoint(getLastInstruction(VL));
- Value *VecPtr =
- Builder.CreateBitCast(SI->getPointerOperand(), VecTy->getPointerTo());
- Builder.CreateStore(VecValue, VecPtr)->setAlignment(Alignment);
- return 0;
- }
- default:
- return Gather(VL, VecTy);
- }
-}
+ // For each lane:
+ for (int Lane = 0, LE = Entry->Scalars.size(); Lane != LE; ++Lane) {
+ Value *Scalar = Entry->Scalars[Lane];
-Value *FuncSLP::vectorizeTree(ArrayRef<Value *> VL) {
- Builder.SetInsertPoint(getLastInstruction(VL));
- Value *V = vectorizeTree_rec(VL);
+ // No need to handle users of gathered values.
+ if (Entry->NeedToGather)
+ continue;
- DEBUG(dbgs() << "SLP: Placing 'extracts'\n");
- for (SetVector<Instruction*>::iterator it = ExtractedLane.begin(), e =
- ExtractedLane.end(); it != e; ++it) {
- Instruction *Scalar = *it;
- DEBUG(dbgs() << "SLP: Looking at " << *Scalar);
+ Value *Vec = Entry->VectorizedValue;
+ assert(Vec && "Can't find vectorizable value");
- if (!Scalar)
- continue;
+ SmallVector<User*, 16> Users(Scalar->use_begin(), Scalar->use_end());
- Instruction *Loc = 0;
+ for (SmallVector<User*, 16>::iterator User = Users.begin(),
+ UE = Users.end(); User != UE; ++User) {
+ DEBUG(dbgs() << "SLP: \tupdating user " << **User << ".\n");
- assert(MultiUserVals.count(Scalar) && "Can't find the lane to extract");
- Instruction *Leader = MultiUserVals[Scalar].Leader;
+ bool Gathered = MustGather.count(*User);
- // This value is gathered so we don't need to extract from anywhere.
- if (!VectorizedValues.count(Leader))
- continue;
+ // Skip in-tree scalars that become vectors.
+ if (ScalarToTreeEntry.count(*User) && !Gathered) {
+ DEBUG(dbgs() << "SLP: \tUser will be removed soon:" <<
+ **User << ".\n");
+ int Idx = ScalarToTreeEntry[*User]; (void) Idx;
+ assert(!VectorizableTree[Idx].NeedToGather && "bad state ?");
+ continue;
+ }
- Value *Vec = VectorizedValues[Leader];
- if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
- Loc = PN->getParent()->getFirstInsertionPt();
- } else {
- Instruction *I = cast<Instruction>(Vec);
- BasicBlock::iterator L = *I;
- Loc = ++L;
- }
+ if (!isa<Instruction>(*User))
+ continue;
- Builder.SetInsertPoint(Loc);
- assert(LaneMap.count(Scalar) && "Can't find the extracted lane.");
- int Lane = LaneMap[Scalar];
- Value *Idx = Builder.getInt32(Lane);
- Value *Extract = Builder.CreateExtractElement(Vec, Idx);
+ // Generate extracts for out-of-tree users.
+ // Find the insertion point for the extractelement lane.
+ Instruction *Loc = 0;
+ if (PHINode *PN = dyn_cast<PHINode>(Vec)) {
+ Loc = PN->getParent()->getFirstInsertionPt();
+ } else if (Instruction *Iv = dyn_cast<Instruction>(Vec)){
+ Loc = ++((BasicBlock::iterator)*Iv);
+ } else {
+ Loc = F->getEntryBlock().begin();
+ }
- bool Replaced = false;;
- for (Value::use_iterator U = Scalar->use_begin(), UE = Scalar->use_end();
- U != UE; ++U) {
- Instruction *UI = cast<Instruction>(*U);
- // No need to replace instructions that are inside our lane map.
- if (LaneMap.count(UI))
- continue;
+ Builder.SetInsertPoint(Loc);
+ Value *Ex = Builder.CreateExtractElement(Vec, Builder.getInt32(Lane));
+ (*User)->replaceUsesOfWith(Scalar, Ex);
+ DEBUG(dbgs() << "SLP: \tupdated user:" << **User << ".\n");
+ }
- UI->replaceUsesOfWith(Scalar ,Extract);
- Replaced = true;
+ Type *Ty = Scalar->getType();
+ if (!Ty->isVoidTy()) {
+ for (Value::use_iterator User = Scalar->use_begin(), UE = Scalar->use_end();
+ User != UE; ++User) {
+ DEBUG(dbgs() << "SLP: \tvalidating user:" << **User << ".\n");
+ assert(!MustGather.count(*User) &&
+ "Replacing gathered value with undef");
+ assert(ScalarToTreeEntry.count(*User) &&
+ "Replacing out-of-tree value with undef");
+ }
+ Value *Undef = UndefValue::get(Ty);
+ Scalar->replaceAllUsesWith(Undef);
+ }
+ DEBUG(dbgs() << "SLP: \tErasing scalar:" << *Scalar << ".\n");
+ cast<Instruction>(Scalar)->eraseFromParent();
}
- assert(Replaced && "Must replace at least one outside user");
- (void)Replaced;
}
- // We moved some instructions around. We have to number them again
- // before we can do any analysis.
- forgetNumbering();
-
- // Clear the state.
- MustGather.clear();
- VisitedPHIs.clear();
- VectorizedValues.clear();
- MemBarrierIgnoreList.clear();
- return V;
-}
-
-Value *FuncSLP::vectorizeArith(ArrayRef<Value *> Operands) {
- Instruction *LastInst = getLastInstruction(Operands);
- Value *Vec = vectorizeTree(Operands);
- // After vectorizing the operands we need to generate extractelement
- // instructions and replace all of the uses of the scalar values with
- // the values that we extracted from the vectorized tree.
- Builder.SetInsertPoint(LastInst);
- for (unsigned i = 0, e = Operands.size(); i != e; ++i) {
- Value *S = Builder.CreateExtractElement(Vec, Builder.getInt32(i));
- Operands[i]->replaceAllUsesWith(S);
+ for (Function::iterator it = F->begin(), e = F->end(); it != e; ++it) {
+ BlocksNumbers[it].forget();
}
-
- forgetNumbering();
- return Vec;
}
-void FuncSLP::optimizeGatherSequence() {
+void BoUpSLP::optimizeGatherSequence() {
+ DEBUG(dbgs() << "SLP: Optimizing " << GatherSeq.size()
+ << " gather sequences instructions.\n");
// LICM InsertElementInst sequences.
for (SetVector<Instruction *>::iterator it = GatherSeq.begin(),
e = GatherSeq.end(); it != e; ++it) {
assert((*v)->getNumUses() == 0 && "Can't remove instructions with uses");
(*v)->eraseFromParent();
}
-
- forgetNumbering();
}
/// The SLPVectorizer Pass.
// Use the bollom up slp vectorizer to construct chains that start with
// he store instructions.
- FuncSLP R(&F, SE, DL, TTI, AA, LI, DT);
+ BoUpSLP R(&F, SE, DL, TTI, AA, LI, DT);
// Scan the blocks in the function in post order.
for (po_iterator<BasicBlock*> it = po_begin(&F.getEntryBlock()),
/// object. We sort the stores to their base objects to reduce the cost of the
/// quadratic search on the stores. TODO: We can further reduce this cost
/// if we flush the chain creation every time we run into a memory barrier.
- unsigned collectStores(BasicBlock *BB, FuncSLP &R);
+ unsigned collectStores(BasicBlock *BB, BoUpSLP &R);
/// \brief Try to vectorize a chain that starts at two arithmetic instrs.
- bool tryToVectorizePair(Value *A, Value *B, FuncSLP &R);
+ bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
/// \brief Try to vectorize a list of operands. If \p NeedExtracts is true
/// then we calculate the cost of extracting the scalars from the vector.
/// \returns true if a value was vectorized.
- bool tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R, bool NeedExtracts);
+ bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R, bool NeedExtracts);
/// \brief Try to vectorize a chain that may start at the operands of \V;
- bool tryToVectorize(BinaryOperator *V, FuncSLP &R);
+ bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
/// \brief Vectorize the stores that were collected in StoreRefs.
- bool vectorizeStoreChains(FuncSLP &R);
+ bool vectorizeStoreChains(BoUpSLP &R);
/// \brief Scan the basic block and look for patterns that are likely to start
/// a vectorization chain.
- bool vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R);
+ bool vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R);
+
+ bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold,
+ BoUpSLP &R);
+ bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold,
+ BoUpSLP &R);
private:
StoreListMap StoreRefs;
};
-unsigned SLPVectorizer::collectStores(BasicBlock *BB, FuncSLP &R) {
+bool SLPVectorizer::vectorizeStoreChain(ArrayRef<Value *> Chain,
+ int CostThreshold, BoUpSLP &R) {
+ unsigned ChainLen = Chain.size();
+ DEBUG(dbgs() << "SLP: Analyzing a store chain of length " << ChainLen
+ << "\n");
+ Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
+ unsigned Sz = DL->getTypeSizeInBits(StoreTy);
+ unsigned VF = MinVecRegSize / Sz;
+
+ if (!isPowerOf2_32(Sz) || VF < 2)
+ return false;
+
+ bool Changed = false;
+ // Look for profitable vectorizable trees at all offsets, starting at zero.
+ for (unsigned i = 0, e = ChainLen; i < e; ++i) {
+ if (i + VF > e)
+ break;
+ DEBUG(dbgs() << "SLP: Analyzing " << VF << " stores at offset " << i
+ << "\n");
+ ArrayRef<Value *> Operands = Chain.slice(i, VF);
+
+ R.buildTree(Operands);
+
+ int Cost = R.getTreeCost();
+
+ DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
+ if (Cost < CostThreshold) {
+ DEBUG(dbgs() << "SLP: Decided to vectorize cost=" << Cost << "\n");
+ R.vectorizeTree();
+
+ // Move to the next bundle.
+ i += VF - 1;
+ Changed = true;
+ }
+ }
+
+ if (Changed || ChainLen > VF)
+ return Changed;
+
+ // Handle short chains. This helps us catch types such as <3 x float> that
+ // are smaller than vector size.
+ R.buildTree(Chain);
+
+ int Cost = R.getTreeCost();
+
+ if (Cost < CostThreshold) {
+ DEBUG(dbgs() << "SLP: Found store chain cost = " << Cost
+ << " for size = " << ChainLen << "\n");
+ R.vectorizeTree();
+ return true;
+ }
+
+ return false;
+}
+
+bool SLPVectorizer::vectorizeStores(ArrayRef<StoreInst *> Stores,
+ int costThreshold, BoUpSLP &R) {
+ SetVector<Value *> Heads, Tails;
+ SmallDenseMap<Value *, Value *> ConsecutiveChain;
+
+ // We may run into multiple chains that merge into a single chain. We mark the
+ // stores that we vectorized so that we don't visit the same store twice.
+ BoUpSLP::ValueSet VectorizedStores;
+ bool Changed = false;
+
+ // Do a quadratic search on all of the given stores and find
+ // all of the pairs of loads that follow each other.
+ for (unsigned i = 0, e = Stores.size(); i < e; ++i)
+ for (unsigned j = 0; j < e; ++j) {
+ if (i == j)
+ continue;
+
+ if (R.isConsecutiveAccess(Stores[i], Stores[j])) {
+ Tails.insert(Stores[j]);
+ Heads.insert(Stores[i]);
+ ConsecutiveChain[Stores[i]] = Stores[j];
+ }
+ }
+
+ // For stores that start but don't end a link in the chain:
+ for (SetVector<Value *>::iterator it = Heads.begin(), e = Heads.end();
+ it != e; ++it) {
+ if (Tails.count(*it))
+ continue;
+
+ // We found a store instr that starts a chain. Now follow the chain and try
+ // to vectorize it.
+ BoUpSLP::ValueList Operands;
+ Value *I = *it;
+ // Collect the chain into a list.
+ while (Tails.count(I) || Heads.count(I)) {
+ if (VectorizedStores.count(I))
+ break;
+ Operands.push_back(I);
+ // Move to the next value in the chain.
+ I = ConsecutiveChain[I];
+ }
+
+ bool Vectorized = vectorizeStoreChain(Operands, costThreshold, R);
+
+ // Mark the vectorized stores so that we don't vectorize them again.
+ if (Vectorized)
+ VectorizedStores.insert(Operands.begin(), Operands.end());
+ Changed |= Vectorized;
+ }
+
+ return Changed;
+}
+
+
+unsigned SLPVectorizer::collectStores(BasicBlock *BB, BoUpSLP &R) {
unsigned count = 0;
StoreRefs.clear();
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
return count;
}
-bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, FuncSLP &R) {
+bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B)
return false;
Value *VL[] = { A, B };
return tryToVectorizeList(VL, R, true);
}
-bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, FuncSLP &R,
+bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R,
bool NeedExtracts) {
if (VL.size() < 2)
return false;
return 0;
}
- int Cost = R.getTreeCost(VL);
- if (Cost == FuncSLP::MAX_COST)
- return false;
+ R.buildTree(VL);
+ int Cost = R.getTreeCost();
int ExtrCost = NeedExtracts ? R.getGatherCost(VL) : 0;
DEBUG(dbgs() << "SLP: Cost of pair:" << Cost
if ((Cost + ExtrCost) >= -SLPCostThreshold)
return false;
DEBUG(dbgs() << "SLP: Vectorizing pair.\n");
- R.vectorizeArith(VL);
+ R.vectorizeTree();
return true;
}
-bool SLPVectorizer::tryToVectorize(BinaryOperator *V, FuncSLP &R) {
+bool SLPVectorizer::tryToVectorize(BinaryOperator *V, BoUpSLP &R) {
if (!V)
return false;
return 0;
}
-bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, FuncSLP &R) {
+bool SLPVectorizer::vectorizeChainsInBlock(BasicBlock *BB, BoUpSLP &R) {
bool Changed = false;
for (BasicBlock::iterator it = BB->begin(), e = BB->end(); it != e; ++it) {
if (isa<DbgInfoIntrinsic>(it))
return Changed;
}
-bool SLPVectorizer::vectorizeStoreChains(FuncSLP &R) {
+bool SLPVectorizer::vectorizeStoreChains(BoUpSLP &R) {
bool Changed = false;
// Attempt to sort and vectorize each of the store-groups.
for (StoreListMap::iterator it = StoreRefs.begin(), e = StoreRefs.end();
DEBUG(dbgs() << "SLP: Analyzing a store chain of length "
<< it->second.size() << ".\n");
- Changed |= R.vectorizeStores(it->second, -SLPCostThreshold);
+ Changed |= vectorizeStores(it->second, -SLPCostThreshold, R);
}
return Changed;
}