a new simple pass, which will be extended to be more useful in the future.
authorChris Lattner <sabre@nondot.org>
Fri, 15 Apr 2005 19:28:32 +0000 (19:28 +0000)
committerChris Lattner <sabre@nondot.org>
Fri, 15 Apr 2005 19:28:32 +0000 (19:28 +0000)
This pass forward branches through conditions when it can show that the
conditions is either always true or false for a predecessor.  This currently
only handles the most simple cases of this, but is successful at threading
across 2489 branches and 65 switch instructions in 176.gcc, which isn't bad.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@21306 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Transforms/Scalar/CondPropagate.cpp [new file with mode: 0644]

diff --git a/lib/Transforms/Scalar/CondPropagate.cpp b/lib/Transforms/Scalar/CondPropagate.cpp
new file mode 100644 (file)
index 0000000..138be52
--- /dev/null
@@ -0,0 +1,213 @@
+//===-- CondPropagate.cpp - Propagate Conditional Expressions -------------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This pass propagates information about conditional expressions through the
+// program, allowing it to eliminate conditional branches in some cases.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "condprop"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include "llvm/Constants.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/Pass.h"
+#include "llvm/Type.h"
+#include "llvm/ADT/STLExtras.h"
+#include "llvm/ADT/Statistic.h"
+#include <iostream>
+using namespace llvm;
+
+namespace {
+  Statistic<>
+  NumBrThread("condprop", "Number of CFG edges threaded through branches");
+  Statistic<>
+  NumSwThread("condprop", "Number of CFG edges threaded through switches");
+
+  struct CondProp : public FunctionPass {
+    virtual bool runOnFunction(Function &F);
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addRequiredID(BreakCriticalEdgesID);
+      //AU.addRequired<DominanceFrontier>();
+    }
+
+  private:
+    bool MadeChange;
+    void SimplifyBlock(BasicBlock *BB);
+    void SimplifyPredecessors(BranchInst *BI);
+    void SimplifyPredecessors(SwitchInst *SI);
+    void RevectorBlockTo(BasicBlock *FromBB, BasicBlock *ToBB);
+  };
+  RegisterOpt<CondProp> X("condprop", "Conditional Propagation");
+}
+
+FunctionPass *llvm::createCondPropagationPass() {
+  return new CondProp();
+}
+
+bool CondProp::runOnFunction(Function &F) {
+  bool EverMadeChange = false;
+
+  // While we are simplifying blocks, keep iterating.
+  do {
+    MadeChange = false;
+    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+      SimplifyBlock(BB);
+    EverMadeChange = MadeChange;
+  } while (MadeChange);
+  return EverMadeChange;
+}
+
+void CondProp::SimplifyBlock(BasicBlock *BB) {
+  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator())) {
+    // If this is a conditional branch based on a phi node that is defined in
+    // this block, see if we can simplify predecessors of this block.
+    if (BI->isConditional() && isa<PHINode>(BI->getCondition()) &&
+        cast<PHINode>(BI->getCondition())->getParent() == BB)
+      SimplifyPredecessors(BI);
+    
+  } else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB->getTerminator())) {
+    if (isa<PHINode>(SI->getCondition()) &&
+        cast<PHINode>(SI->getCondition())->getParent() == BB)
+      SimplifyPredecessors(SI);
+  }
+
+  // See if we can fold any PHI nodes in this block now.
+  // FIXME: This would not be required if removePredecessor did this for us!!
+  PHINode *PN;
+  for (BasicBlock::iterator I = BB->begin(); PN = dyn_cast<PHINode>(I++); )
+    if (Value *PNV = hasConstantValue(PN))
+      if (!isa<Instruction>(PNV)) {
+        PN->replaceAllUsesWith(PNV);
+        PN->eraseFromParent();
+        MadeChange = true;
+      }
+
+  // If possible, simplify the terminator of this block.
+  if (ConstantFoldTerminator(BB))
+    MadeChange = true;
+
+  // If this block ends with an unconditional branch and the only successor has
+  // only this block as a predecessor, merge the two blocks together.
+  if (BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator()))
+    if (BI->isUnconditional() && BI->getSuccessor(0)->getSinglePredecessor()) {
+      BasicBlock *Succ = BI->getSuccessor(0);
+      // Remove BI.
+      BI->eraseFromParent();
+
+      // Move over all of the instructions.
+      BB->getInstList().splice(BB->end(), Succ->getInstList());
+
+      // Any phi nodes that had entries for Succ now have entries from BB.
+      Succ->replaceAllUsesWith(BB);
+
+      // Succ is now dead, but we cannot delete it without potentially
+      // invalidating iterators elsewhere.  Just insert an unreachable
+      // instruction in it.
+      new UnreachableInst(Succ);
+      MadeChange = true;
+    }
+}
+
+// SimplifyPredecessors(branches) - We know that BI is a conditional branch
+// based on a PHI node defined in this block.  If the phi node contains constant
+// operands, then the blocks corresponding to those operands can be modified to
+// jump directly to the destination instead of going through this block.
+void CondProp::SimplifyPredecessors(BranchInst *BI) {
+  // TODO: We currently only handle the most trival case, where the PHI node has
+  // one use (the branch), and is the only instruction besides the branch in the
+  // block.
+  PHINode *PN = cast<PHINode>(BI->getCondition());
+  if (!PN->hasOneUse()) return;
+
+  BasicBlock *BB = BI->getParent();
+  if (&*BB->begin() != PN || &*next(BB->begin()) != BI)
+    return;
+
+  // Ok, we have this really simple case, walk the PHI operands, looking for
+  // constants.  Walk from the end to remove operands from the end when
+  // possible, and to avoid invalidating "i".
+  for (unsigned i = PN->getNumIncomingValues(); i != 0; --i)
+    if (ConstantBool *CB = dyn_cast<ConstantBool>(PN->getIncomingValue(i-1))) {
+      // If we have a constant, forward the edge from its current to its
+      // ultimate destination.
+      bool PHIGone = PN->getNumIncomingValues() == 2;
+      RevectorBlockTo(PN->getIncomingBlock(i-1),
+                      BI->getSuccessor(CB->getValue() == 0));
+      ++NumBrThread;
+
+      // If there were two predecessors before this simplification, the PHI node
+      // will be deleted.  Don't iterate through it the last time.
+      if (PHIGone) return;
+    }
+}
+
+// SimplifyPredecessors(switch) - We know that SI is switch based on a PHI node
+// defined in this block.  If the phi node contains constant operands, then the
+// blocks corresponding to those operands can be modified to jump directly to
+// the destination instead of going through this block.
+void CondProp::SimplifyPredecessors(SwitchInst *SI) {
+  // TODO: We currently only handle the most trival case, where the PHI node has
+  // one use (the branch), and is the only instruction besides the branch in the
+  // block.
+  PHINode *PN = cast<PHINode>(SI->getCondition());
+  if (!PN->hasOneUse()) return;
+
+  BasicBlock *BB = SI->getParent();
+  if (&*BB->begin() != PN || &*next(BB->begin()) != SI)
+    return;
+
+  bool RemovedPreds = false;
+
+  // Ok, we have this really simple case, walk the PHI operands, looking for
+  // constants.  Walk from the end to remove operands from the end when
+  // possible, and to avoid invalidating "i".
+  for (unsigned i = PN->getNumIncomingValues(); i != 0; --i)
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(PN->getIncomingValue(i-1))) {
+      // If we have a constant, forward the edge from its current to its
+      // ultimate destination.
+      bool PHIGone = PN->getNumIncomingValues() == 2;
+      unsigned DestCase = SI->findCaseValue(CI);
+      RevectorBlockTo(PN->getIncomingBlock(i-1),
+                      SI->getSuccessor(DestCase));
+      ++NumSwThread;
+      RemovedPreds = true;
+
+      // If there were two predecessors before this simplification, the PHI node
+      // will be deleted.  Don't iterate through it the last time.
+      if (PHIGone) return;
+    }
+}
+
+
+// RevectorBlockTo - Revector the unconditional branch at the end of FromBB to
+// the ToBB block, which is one of the successors of its current successor.
+void CondProp::RevectorBlockTo(BasicBlock *FromBB, BasicBlock *ToBB) {
+  BranchInst *FromBr = cast<BranchInst>(FromBB->getTerminator());
+  assert(FromBr->isUnconditional() && "FromBB should end with uncond br!");
+
+  // Get the old block we are threading through.
+  BasicBlock *OldSucc = FromBr->getSuccessor(0);
+
+  // ToBB should not have any PHI nodes in it to update, because OldSucc had
+  // multiple successors.  If OldSucc had multiple successor and ToBB had
+  // multiple predecessors, the edge between them would be critical, which we
+  // already took care of.
+  assert(!isa<PHINode>(ToBB->begin()) && "Critical Edge Found!");
+
+  // Update PHI nodes in OldSucc to know that FromBB no longer branches to it.
+  OldSucc->removePredecessor(FromBB);
+
+  // Change FromBr to branch to the new destination.
+  FromBr->setSuccessor(0, ToBB);
+
+  MadeChange = true;
+}