--- /dev/null
+//===---- llvm/Analysis/ScalarEvolutionExpander.h - SCEV Exprs --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file defines the classes used to generate code from scalar expressions.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
+#define LLVM_ANALYSIS_SCALAREVOLUTION_EXPANDER_H
+
+#include "llvm/BasicBlock.h"
+#include "llvm/Constants.h"
+#include "llvm/Instructions.h"
+#include "llvm/Type.h"
+#include "llvm/Analysis/ScalarEvolution.h"
+#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Support/CFG.h"
+
+namespace llvm {
+ /// SCEVExpander - This class uses information about analyze scalars to
+ /// rewrite expressions in canonical form.
+ ///
+ /// Clients should create an instance of this class when rewriting is needed,
+ /// and destroying it when finished to allow the release of the associated
+ /// memory.
+ struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
+ ScalarEvolution &SE;
+ LoopInfo &LI;
+ std::map<SCEVHandle, Value*> InsertedExpressions;
+ std::set<Instruction*> InsertedInstructions;
+
+ Instruction *InsertPt;
+
+ friend struct SCEVVisitor<SCEVExpander, Value*>;
+ public:
+ SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
+
+ /// clear - Erase the contents of the InsertedExpressions map so that users
+ /// trying to expand the same expression into multiple BasicBlocks or
+ /// different places within the same BasicBlock can do so.
+ void clear() { InsertedExpressions.clear(); }
+
+ /// isInsertedInstruction - Return true if the specified instruction was
+ /// inserted by the code rewriter. If so, the client should not modify the
+ /// instruction.
+ bool isInsertedInstruction(Instruction *I) const {
+ return InsertedInstructions.count(I);
+ }
+
+ /// getOrInsertCanonicalInductionVariable - This method returns the
+ /// canonical induction variable of the specified type for the specified
+ /// loop (inserting one if there is none). A canonical induction variable
+ /// starts at zero and steps by one on each iteration.
+ Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
+ assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
+ "Can only insert integer or floating point induction variables!");
+ SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
+ SCEVUnknown::getIntegerSCEV(1, Ty), L);
+ return expand(H);
+ }
+
+ /// addInsertedValue - Remember the specified instruction as being the
+ /// canonical form for the specified SCEV.
+ void addInsertedValue(Instruction *I, SCEV *S) {
+ InsertedExpressions[S] = (Value*)I;
+ InsertedInstructions.insert(I);
+ }
+
+ /// expandCodeFor - Insert code to directly compute the specified SCEV
+ /// expression into the program. The inserted code is inserted into the
+ /// specified block.
+ ///
+ /// If a particular value sign is required, a type may be specified for the
+ /// result.
+ Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
+ // Expand the code for this SCEV.
+ this->InsertPt = IP;
+ return expandInTy(SH, Ty);
+ }
+
+ protected:
+ Value *expand(SCEV *S) {
+ // Check to see if we already expanded this.
+ std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
+ if (I != InsertedExpressions.end())
+ return I->second;
+
+ Value *V = visit(S);
+ InsertedExpressions[S] = V;
+ return V;
+ }
+
+ Value *expandInTy(SCEV *S, const Type *Ty) {
+ Value *V = expand(S);
+ if (Ty && V->getType() != Ty) {
+ // FIXME: keep track of the cast instruction.
+ if (Constant *C = dyn_cast<Constant>(V))
+ return ConstantExpr::getCast(C, Ty);
+ else if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // Check to see if there is already a cast. If there is, use it.
+ for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+ UI != E; ++UI) {
+ if ((*UI)->getType() == Ty)
+ if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
+ BasicBlock::iterator It = I; ++It;
+ if (isa<InvokeInst>(I))
+ It = cast<InvokeInst>(I)->getNormalDest()->begin();
+ while (isa<PHINode>(It)) ++It;
+ if (It != BasicBlock::iterator(CI)) {
+ // Splice the cast immediately after the operand in question.
+ BasicBlock::InstListType &InstList =
+ It->getParent()->getInstList();
+ InstList.splice(It, CI->getParent()->getInstList(), CI);
+ }
+ return CI;
+ }
+ }
+ BasicBlock::iterator IP = I; ++IP;
+ if (InvokeInst *II = dyn_cast<InvokeInst>(I))
+ IP = II->getNormalDest()->begin();
+ while (isa<PHINode>(IP)) ++IP;
+ return new CastInst(V, Ty, V->getName(), IP);
+ } else {
+ // FIXME: check to see if there is already a cast!
+ return new CastInst(V, Ty, V->getName(), InsertPt);
+ }
+ }
+ return V;
+ }
+
+ Value *visitConstant(SCEVConstant *S) {
+ return S->getValue();
+ }
+
+ Value *visitTruncateExpr(SCEVTruncateExpr *S) {
+ Value *V = expand(S->getOperand());
+ return new CastInst(V, S->getType(), "tmp.", InsertPt);
+ }
+
+ Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
+ Value *V = expandInTy(S->getOperand(),S->getType()->getUnsignedVersion());
+ return new CastInst(V, S->getType(), "tmp.", InsertPt);
+ }
+
+ Value *visitAddExpr(SCEVAddExpr *S) {
+ const Type *Ty = S->getType();
+ Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
+
+ // Emit a bunch of add instructions
+ for (int i = S->getNumOperands()-2; i >= 0; --i)
+ V = BinaryOperator::createAdd(V, expandInTy(S->getOperand(i), Ty),
+ "tmp.", InsertPt);
+ return V;
+ }
+
+ Value *visitMulExpr(SCEVMulExpr *S);
+
+ Value *visitUDivExpr(SCEVUDivExpr *S) {
+ const Type *Ty = S->getType();
+ Value *LHS = expandInTy(S->getLHS(), Ty);
+ Value *RHS = expandInTy(S->getRHS(), Ty);
+ return BinaryOperator::createDiv(LHS, RHS, "tmp.", InsertPt);
+ }
+
+ Value *visitAddRecExpr(SCEVAddRecExpr *S);
+
+ Value *visitUnknown(SCEVUnknown *S) {
+ return S->getValue();
+ }
+ };
+}
+
+#endif
+
--- /dev/null
+//===- ScalarEvolutionExpander.cpp - Scalar Evolution Analysis --*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file contains the implementation of the scalar evolution expander,
+// which is used to generate the code corresponding to a given scalar evolution
+// expression.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
+using namespace llvm;
+
+Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
+ const Type *Ty = S->getType();
+ int FirstOp = 0; // Set if we should emit a subtract.
+ if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
+ if (SC->getValue()->isAllOnesValue())
+ FirstOp = 1;
+
+ int i = S->getNumOperands()-2;
+ Value *V = expandInTy(S->getOperand(i+1), Ty);
+
+ // Emit a bunch of multiply instructions
+ for (; i >= FirstOp; --i)
+ V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
+ "tmp.", InsertPt);
+ // -1 * ... ---> 0 - ...
+ if (FirstOp == 1)
+ V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
+ return V;
+}
+
+Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
+ const Type *Ty = S->getType();
+ const Loop *L = S->getLoop();
+ // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
+ assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
+
+ // {X,+,F} --> X + {0,+,F}
+ if (!isa<SCEVConstant>(S->getStart()) ||
+ !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
+ Value *Start = expandInTy(S->getStart(), Ty);
+ std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
+ NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
+ Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
+
+ // FIXME: look for an existing add to use.
+ return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
+ }
+
+ // {0,+,1} --> Insert a canonical induction variable into the loop!
+ if (S->getNumOperands() == 2 &&
+ S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
+ // Create and insert the PHI node for the induction variable in the
+ // specified loop.
+ BasicBlock *Header = L->getHeader();
+ PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
+ PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
+
+ pred_iterator HPI = pred_begin(Header);
+ assert(HPI != pred_end(Header) && "Loop with zero preds???");
+ if (!L->contains(*HPI)) ++HPI;
+ assert(HPI != pred_end(Header) && L->contains(*HPI) &&
+ "No backedge in loop?");
+
+ // Insert a unit add instruction right before the terminator corresponding
+ // to the back-edge.
+ Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
+ : ConstantInt::get(Ty, 1);
+ Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
+ (*HPI)->getTerminator());
+
+ pred_iterator PI = pred_begin(Header);
+ if (*PI == L->getLoopPreheader())
+ ++PI;
+ PN->addIncoming(Add, *PI);
+ return PN;
+ }
+
+ // Get the canonical induction variable I for this loop.
+ Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
+
+ if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
+ Value *F = expandInTy(S->getOperand(1), Ty);
+ return BinaryOperator::createMul(I, F, "tmp.", InsertPt);
+ }
+
+ // If this is a chain of recurrences, turn it into a closed form, using the
+ // folders, then expandCodeFor the closed form. This allows the folders to
+ // simplify the expression without having to build a bunch of special code
+ // into this folder.
+ SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
+
+ SCEVHandle V = S->evaluateAtIteration(IH);
+ //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
+
+ return expandInTy(V, Ty);
+}
#include "llvm/Constants.h"
#include "llvm/Instructions.h"
#include "llvm/Type.h"
-#include "llvm/Analysis/ScalarEvolutionExpressions.h"
+#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/GetElementPtrTypeIterator.h"
#include "llvm/ADT/Statistic.h"
using namespace llvm;
-namespace {
- /// SCEVExpander - This class uses information about analyze scalars to
- /// rewrite expressions in canonical form.
- ///
- /// Clients should create an instance of this class when rewriting is needed,
- /// and destroying it when finished to allow the release of the associated
- /// memory.
- struct SCEVExpander : public SCEVVisitor<SCEVExpander, Value*> {
- ScalarEvolution &SE;
- LoopInfo &LI;
- std::map<SCEVHandle, Value*> InsertedExpressions;
- std::set<Instruction*> InsertedInstructions;
-
- Instruction *InsertPt;
-
- friend struct SCEVVisitor<SCEVExpander, Value*>;
- public:
- SCEVExpander(ScalarEvolution &se, LoopInfo &li) : SE(se), LI(li) {}
-
- /// isInsertedInstruction - Return true if the specified instruction was
- /// inserted by the code rewriter. If so, the client should not modify the
- /// instruction.
- bool isInsertedInstruction(Instruction *I) const {
- return InsertedInstructions.count(I);
- }
-
- /// getOrInsertCanonicalInductionVariable - This method returns the
- /// canonical induction variable of the specified type for the specified
- /// loop (inserting one if there is none). A canonical induction variable
- /// starts at zero and steps by one on each iteration.
- Value *getOrInsertCanonicalInductionVariable(const Loop *L, const Type *Ty){
- assert((Ty->isInteger() || Ty->isFloatingPoint()) &&
- "Can only insert integer or floating point induction variables!");
- SCEVHandle H = SCEVAddRecExpr::get(SCEVUnknown::getIntegerSCEV(0, Ty),
- SCEVUnknown::getIntegerSCEV(1, Ty), L);
- return expand(H);
- }
-
- /// addInsertedValue - Remember the specified instruction as being the
- /// canonical form for the specified SCEV.
- void addInsertedValue(Instruction *I, SCEV *S) {
- InsertedExpressions[S] = (Value*)I;
- InsertedInstructions.insert(I);
- }
-
- /// expandCodeFor - Insert code to directly compute the specified SCEV
- /// expression into the program. The inserted code is inserted into the
- /// specified block.
- ///
- /// If a particular value sign is required, a type may be specified for the
- /// result.
- Value *expandCodeFor(SCEVHandle SH, Instruction *IP, const Type *Ty = 0) {
- // Expand the code for this SCEV.
- this->InsertPt = IP;
- return expandInTy(SH, Ty);
- }
-
- protected:
- Value *expand(SCEV *S) {
- // Check to see if we already expanded this.
- std::map<SCEVHandle, Value*>::iterator I = InsertedExpressions.find(S);
- if (I != InsertedExpressions.end())
- return I->second;
-
- Value *V = visit(S);
- InsertedExpressions[S] = V;
- return V;
- }
-
- Value *expandInTy(SCEV *S, const Type *Ty) {
- Value *V = expand(S);
- if (Ty && V->getType() != Ty) {
- // FIXME: keep track of the cast instruction.
- if (Constant *C = dyn_cast<Constant>(V))
- return ConstantExpr::getCast(C, Ty);
- else if (Instruction *I = dyn_cast<Instruction>(V)) {
- // Check to see if there is already a cast. If there is, use it.
- for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
- UI != E; ++UI) {
- if ((*UI)->getType() == Ty)
- if (CastInst *CI = dyn_cast<CastInst>(cast<Instruction>(*UI))) {
- BasicBlock::iterator It = I; ++It;
- if (isa<InvokeInst>(I))
- It = cast<InvokeInst>(I)->getNormalDest()->begin();
- while (isa<PHINode>(It)) ++It;
- if (It != BasicBlock::iterator(CI)) {
- // Splice the cast immediately after the operand in question.
- BasicBlock::InstListType &InstList =
- It->getParent()->getInstList();
- InstList.splice(It, CI->getParent()->getInstList(), CI);
- }
- return CI;
- }
- }
- BasicBlock::iterator IP = I; ++IP;
- if (InvokeInst *II = dyn_cast<InvokeInst>(I))
- IP = II->getNormalDest()->begin();
- while (isa<PHINode>(IP)) ++IP;
- return new CastInst(V, Ty, V->getName(), IP);
- } else {
- // FIXME: check to see if there is already a cast!
- return new CastInst(V, Ty, V->getName(), InsertPt);
- }
- }
- return V;
- }
-
- Value *visitConstant(SCEVConstant *S) {
- return S->getValue();
- }
-
- Value *visitTruncateExpr(SCEVTruncateExpr *S) {
- Value *V = expand(S->getOperand());
- return new CastInst(V, S->getType(), "tmp.", InsertPt);
- }
-
- Value *visitZeroExtendExpr(SCEVZeroExtendExpr *S) {
- Value *V = expandInTy(S->getOperand(),S->getType()->getUnsignedVersion());
- return new CastInst(V, S->getType(), "tmp.", InsertPt);
- }
-
- Value *visitAddExpr(SCEVAddExpr *S) {
- const Type *Ty = S->getType();
- Value *V = expandInTy(S->getOperand(S->getNumOperands()-1), Ty);
-
- // Emit a bunch of add instructions
- for (int i = S->getNumOperands()-2; i >= 0; --i)
- V = BinaryOperator::createAdd(V, expandInTy(S->getOperand(i), Ty),
- "tmp.", InsertPt);
- return V;
- }
-
- Value *visitMulExpr(SCEVMulExpr *S);
-
- Value *visitUDivExpr(SCEVUDivExpr *S) {
- const Type *Ty = S->getType();
- Value *LHS = expandInTy(S->getLHS(), Ty);
- Value *RHS = expandInTy(S->getRHS(), Ty);
- return BinaryOperator::createDiv(LHS, RHS, "tmp.", InsertPt);
- }
-
- Value *visitAddRecExpr(SCEVAddRecExpr *S);
-
- Value *visitUnknown(SCEVUnknown *S) {
- return S->getValue();
- }
- };
-}
-
-Value *SCEVExpander::visitMulExpr(SCEVMulExpr *S) {
- const Type *Ty = S->getType();
- int FirstOp = 0; // Set if we should emit a subtract.
- if (SCEVConstant *SC = dyn_cast<SCEVConstant>(S->getOperand(0)))
- if (SC->getValue()->isAllOnesValue())
- FirstOp = 1;
-
- int i = S->getNumOperands()-2;
- Value *V = expandInTy(S->getOperand(i+1), Ty);
-
- // Emit a bunch of multiply instructions
- for (; i >= FirstOp; --i)
- V = BinaryOperator::createMul(V, expandInTy(S->getOperand(i), Ty),
- "tmp.", InsertPt);
- // -1 * ... ---> 0 - ...
- if (FirstOp == 1)
- V = BinaryOperator::createNeg(V, "tmp.", InsertPt);
- return V;
-}
-
-Value *SCEVExpander::visitAddRecExpr(SCEVAddRecExpr *S) {
- const Type *Ty = S->getType();
- const Loop *L = S->getLoop();
- // We cannot yet do fp recurrences, e.g. the xform of {X,+,F} --> X+{0,+,F}
- assert(Ty->isIntegral() && "Cannot expand fp recurrences yet!");
-
- // {X,+,F} --> X + {0,+,F}
- if (!isa<SCEVConstant>(S->getStart()) ||
- !cast<SCEVConstant>(S->getStart())->getValue()->isNullValue()) {
- Value *Start = expandInTy(S->getStart(), Ty);
- std::vector<SCEVHandle> NewOps(S->op_begin(), S->op_end());
- NewOps[0] = SCEVUnknown::getIntegerSCEV(0, Ty);
- Value *Rest = expandInTy(SCEVAddRecExpr::get(NewOps, L), Ty);
-
- // FIXME: look for an existing add to use.
- return BinaryOperator::createAdd(Rest, Start, "tmp.", InsertPt);
- }
-
- // {0,+,1} --> Insert a canonical induction variable into the loop!
- if (S->getNumOperands() == 2 &&
- S->getOperand(1) == SCEVUnknown::getIntegerSCEV(1, Ty)) {
- // Create and insert the PHI node for the induction variable in the
- // specified loop.
- BasicBlock *Header = L->getHeader();
- PHINode *PN = new PHINode(Ty, "indvar", Header->begin());
- PN->addIncoming(Constant::getNullValue(Ty), L->getLoopPreheader());
-
- pred_iterator HPI = pred_begin(Header);
- assert(HPI != pred_end(Header) && "Loop with zero preds???");
- if (!L->contains(*HPI)) ++HPI;
- assert(HPI != pred_end(Header) && L->contains(*HPI) &&
- "No backedge in loop?");
-
- // Insert a unit add instruction right before the terminator corresponding
- // to the back-edge.
- Constant *One = Ty->isFloatingPoint() ? (Constant*)ConstantFP::get(Ty, 1.0)
- : ConstantInt::get(Ty, 1);
- Instruction *Add = BinaryOperator::createAdd(PN, One, "indvar.next",
- (*HPI)->getTerminator());
-
- pred_iterator PI = pred_begin(Header);
- if (*PI == L->getLoopPreheader())
- ++PI;
- PN->addIncoming(Add, *PI);
- return PN;
- }
-
- // Get the canonical induction variable I for this loop.
- Value *I = getOrInsertCanonicalInductionVariable(L, Ty);
-
- if (S->getNumOperands() == 2) { // {0,+,F} --> i*F
- Value *F = expandInTy(S->getOperand(1), Ty);
- return BinaryOperator::createMul(I, F, "tmp.", InsertPt);
- }
-
- // If this is a chain of recurrences, turn it into a closed form, using the
- // folders, then expandCodeFor the closed form. This allows the folders to
- // simplify the expression without having to build a bunch of special code
- // into this folder.
- SCEVHandle IH = SCEVUnknown::get(I); // Get I as a "symbolic" SCEV.
-
- SCEVHandle V = S->evaluateAtIteration(IH);
- //std::cerr << "Evaluated: " << *this << "\n to: " << *V << "\n";
-
- return expandInTy(V, Ty);
-}
-
-
namespace {
Statistic<> NumRemoved ("indvars", "Number of aux indvars removed");
Statistic<> NumPointer ("indvars", "Number of pointer indvars promoted");