/// generates run-time checks to prove independence. This is done by
/// AccessAnalysis::canCheckPtrAtRT and the checks are maintained by the
/// RuntimePointerCheck class.
-class LoopAccessAnalysis {
+class LoopAccessInfo {
public:
/// \brief Collection of parameters used from the vectorizer.
struct VectorizerParams {
SmallVector<unsigned, 2> AliasSetId;
};
- LoopAccessAnalysis(Function *F, Loop *L, ScalarEvolution *SE,
- const DataLayout *DL, const TargetLibraryInfo *TLI,
- AliasAnalysis *AA, DominatorTree *DT,
- const VectorizerParams &VectParams) :
+ LoopAccessInfo(Function *F, Loop *L, ScalarEvolution *SE,
+ const DataLayout *DL, const TargetLibraryInfo *TLI,
+ AliasAnalysis *AA, DominatorTree *DT,
+ const VectorizerParams &VectParams) :
TheFunction(F), TheLoop(L), SE(SE), DL(DL), TLI(TLI), AA(AA), DT(DT),
NumLoads(0), NumStores(0), MaxSafeDepDistBytes(-1U),
VectParams(VectParams) {}
return SE->getSCEV(Ptr);
}
-void LoopAccessAnalysis::RuntimePointerCheck::insert(ScalarEvolution *SE,
- Loop *Lp, Value *Ptr,
- bool WritePtr,
- unsigned DepSetId,
- unsigned ASId,
- ValueToValueMap &Strides) {
+void LoopAccessInfo::RuntimePointerCheck::insert(ScalarEvolution *SE, Loop *Lp,
+ Value *Ptr, bool WritePtr,
+ unsigned DepSetId,
+ unsigned ASId,
+ ValueToValueMap &Strides) {
// Get the stride replaced scev.
const SCEV *Sc = replaceSymbolicStrideSCEV(SE, Strides, Ptr);
const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(Sc);
/// \brief Check whether we can check the pointers at runtime for
/// non-intersection.
- bool canCheckPtrAtRT(LoopAccessAnalysis::RuntimePointerCheck &RtCheck,
+ bool canCheckPtrAtRT(LoopAccessInfo::RuntimePointerCheck &RtCheck,
unsigned &NumComparisons,
ScalarEvolution *SE, Loop *TheLoop,
ValueToValueMap &Strides,
const Loop *Lp, ValueToValueMap &StridesMap);
bool AccessAnalysis::canCheckPtrAtRT(
- LoopAccessAnalysis::RuntimePointerCheck &RtCheck,
+ LoopAccessInfo::RuntimePointerCheck &RtCheck,
unsigned &NumComparisons, ScalarEvolution *SE, Loop *TheLoop,
ValueToValueMap &StridesMap, bool ShouldCheckStride) {
// Find pointers with computable bounds. We are going to use this information
typedef SmallPtrSet<MemAccessInfo, 8> MemAccessInfoSet;
MemoryDepChecker(ScalarEvolution *Se, const DataLayout *Dl, const Loop *L,
- const LoopAccessAnalysis::VectorizerParams &VectParams)
+ const LoopAccessInfo::VectorizerParams &VectParams)
: SE(Se), DL(Dl), InnermostLoop(L), AccessIdx(0),
ShouldRetryWithRuntimeCheck(false), VectParams(VectParams) {}
bool ShouldRetryWithRuntimeCheck;
/// \brief Vectorizer parameters used by the analysis.
- LoopAccessAnalysis::VectorizerParams VectParams;
+ LoopAccessInfo::VectorizerParams VectParams;
/// \brief Check whether there is a plausible dependence between the two
/// accesses.
return true;
}
-bool LoopAccessAnalysis::canVectorizeMemory(ValueToValueMap &Strides) {
+bool LoopAccessInfo::canVectorizeMemory(ValueToValueMap &Strides) {
typedef SmallVector<Value*, 16> ValueVector;
typedef SmallPtrSet<Value*, 16> ValueSet;
return CanVecMem;
}
-bool LoopAccessAnalysis::blockNeedsPredication(BasicBlock *BB) {
+bool LoopAccessInfo::blockNeedsPredication(BasicBlock *BB) {
assert(TheLoop->contains(BB) && "Unknown block used");
// Blocks that do not dominate the latch need predication.
return !DT->dominates(BB, Latch);
}
-void LoopAccessAnalysis::emitAnalysis(VectorizationReport &Message) {
+void LoopAccessInfo::emitAnalysis(VectorizationReport &Message) {
VectorizationReport::emitAnalysis(Message, TheFunction, TheLoop);
}
-bool LoopAccessAnalysis::isUniform(Value *V) {
+bool LoopAccessInfo::isUniform(Value *V) {
return (SE->isLoopInvariant(SE->getSCEV(V), TheLoop));
}
}
std::pair<Instruction *, Instruction *>
-LoopAccessAnalysis::addRuntimeCheck(Instruction *Loc) {
+LoopAccessInfo::addRuntimeCheck(Instruction *Loc) {
Instruction *tnullptr = nullptr;
if (!PtrRtCheck.Need)
return std::pair<Instruction *, Instruction *>(tnullptr, tnullptr);
: NumPredStores(0), TheLoop(L), SE(SE), DL(DL),
TLI(TLI), TheFunction(F), TTI(TTI), Induction(nullptr),
WidestIndTy(nullptr),
- LAA(F, L, SE, DL, TLI, AA, DT,
- LoopAccessAnalysis::VectorizerParams(
+ LAI(F, L, SE, DL, TLI, AA, DT,
+ LoopAccessInfo::VectorizerParams(
MaxVectorWidth, VectorizationFactor, VectorizationInterleave,
RuntimeMemoryCheckThreshold)),
HasFunNoNaNAttr(false) {}
bool isUniformAfterVectorization(Instruction* I) { return Uniforms.count(I); }
/// Returns the information that we collected about runtime memory check.
- LoopAccessAnalysis::RuntimePointerCheck *getRuntimePointerCheck() {
- return LAA.getRuntimePointerCheck();
+ LoopAccessInfo::RuntimePointerCheck *getRuntimePointerCheck() {
+ return LAI.getRuntimePointerCheck();
}
- LoopAccessAnalysis *getLAA() {
- return &LAA;
+ LoopAccessInfo *getLAI() {
+ return &LAI;
}
/// This function returns the identity element (or neutral element) for
/// the operation K.
static Constant *getReductionIdentity(ReductionKind K, Type *Tp);
- unsigned getMaxSafeDepDistBytes() { return LAA.getMaxSafeDepDistBytes(); }
+ unsigned getMaxSafeDepDistBytes() { return LAI.getMaxSafeDepDistBytes(); }
bool hasStride(Value *V) { return StrideSet.count(V); }
bool mustCheckStrides() { return !StrideSet.empty(); }
return (MaskedOp.count(I) != 0);
}
unsigned getNumStores() const {
- return LAA.getNumStores();
+ return LAI.getNumStores();
}
unsigned getNumLoads() const {
- return LAA.getNumLoads();
+ return LAI.getNumLoads();
}
unsigned getNumPredStores() const {
return NumPredStores;
/// This set holds the variables which are known to be uniform after
/// vectorization.
SmallPtrSet<Instruction*, 4> Uniforms;
- LoopAccessAnalysis LAA;
+ LoopAccessInfo LAI;
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
}
bool LoopVectorizationLegality::isUniform(Value *V) {
- return LAA.isUniform(V);
+ return LAI.isUniform(V);
}
InnerLoopVectorizer::VectorParts&
// faster.
Instruction *MemRuntimeCheck;
std::tie(FirstCheckInst, MemRuntimeCheck) =
- Legal->getLAA()->addRuntimeCheck(LastBypassBlock->getTerminator());
+ Legal->getLAI()->addRuntimeCheck(LastBypassBlock->getTerminator());
if (MemRuntimeCheck) {
// Create a new block containing the memory check.
BasicBlock *CheckBlock =
collectLoopUniforms();
DEBUG(dbgs() << "LV: We can vectorize this loop" <<
- (LAA.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
+ (LAI.getRuntimePointerCheck()->Need ? " (with a runtime bound check)" :
"")
<<"!\n");
}
bool LoopVectorizationLegality::canVectorizeMemory() {
- return LAA.canVectorizeMemory(Strides);
+ return LAI.canVectorizeMemory(Strides);
}
static bool hasMultipleUsesOf(Instruction *I,
}
bool LoopVectorizationLegality::blockNeedsPredication(BasicBlock *BB) {
- return LAA.blockNeedsPredication(BB);
+ return LAI.blockNeedsPredication(BB);
}
bool LoopVectorizationLegality::blockCanBePredicated(BasicBlock *BB,