{ X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
{ X86::PTESTrr, X86::PTESTrm, TB_ALIGN_16 },
{ X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
+ { X86::RCPSSr, X86::RCPSSm, 0 },
+ { X86::RCPSSr_Int, X86::RCPSSm_Int, 0 },
{ X86::ROUNDPDr, X86::ROUNDPDm, TB_ALIGN_16 },
{ X86::ROUNDPSr, X86::ROUNDPSm, TB_ALIGN_16 },
{ X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
{ X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
{ X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
{ X86::VRCPSSr, X86::VRCPSSm, 0 },
+ { X86::VRCPSSr_Int, X86::VRCPSSm_Int, 0 },
{ X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
+ { X86::VRSQRTSSr_Int, X86::VRSQRTSSm_Int, 0 },
{ X86::VSQRTSDr, X86::VSQRTSDm, 0 },
+ { X86::VSQRTSDr_Int, X86::VSQRTSDm_Int, 0 },
{ X86::VSQRTSSr, X86::VSQRTSSm, 0 },
+ { X86::VSQRTSSr_Int, X86::VSQRTSSm_Int, 0 },
{ X86::VADDPDrr, X86::VADDPDrm, 0 },
{ X86::VADDPSrr, X86::VADDPSrm, 0 },
{ X86::VADDSDrr, X86::VADDSDrm, 0 },
def : Pat<(Intr (load addr:$src)),
(vt (COPY_TO_REGCLASS(!cast<Instruction>(NAME#Suffix##m)
addr:$src), VR128))>;
- def : Pat<(Intr mem_cpat:$src),
+ def : Pat<(Intr mem_cpat:$src),
(!cast<Instruction>(NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
}
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
[], itins.rm, d>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
let isCodeGenOnly = 1 in {
- // todo: uncomment when all r_Int forms will be added to X86InstrInfo.cpp
- //def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
- // (ins VR128:$src1, VR128:$src2),
- // !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- // []>, Sched<[itins.Sched.Folded]>;
+ def r_Int : I<opc, MRMSrcReg, (outs VR128:$dst),
+ (ins VR128:$src1, VR128:$src2),
+ !strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
+ []>, Sched<[itins.Sched.Folded]>;
let mayLoad = 1 in
def m_Int : I<opc, MRMSrcMem, (outs VR128:$dst),
(ins VR128:$src1, vec_memop:$src2),
!strconcat(OpcodeStr, "\t{$src2, $src1, $dst|$dst, $src1, $src2}"),
- []>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
+ []>, Sched<[itins.Sched.Folded, ReadAfterLd]>;
}
}
(!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
mem_cpat:$src)>;
- // todo: use r_Int form when it will be ready
- //def : Pat<(Intr VR128:$src), (!cast<Instruction>("V"#NAME#Suffix##r_Int)
- // (VT (IMPLICIT_DEF)), VR128:$src)>;
def : Pat<(Intr VR128:$src),
(vt (COPY_TO_REGCLASS(
!cast<Instruction>("V"#NAME#Suffix##r) (ScalarVT (IMPLICIT_DEF)),
(ScalarVT (COPY_TO_REGCLASS VR128:$src, RC))), VR128))>;
+
def : Pat<(Intr mem_cpat:$src),
(!cast<Instruction>("V"#NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
// There is no f64 version of the reciprocal approximation instructions.
+// TODO: We should add *scalar* op patterns for these just like we have for
+// the binops above. If the binop and unop patterns could all be unified
+// that would be even better.
+
+multiclass scalar_unary_math_patterns<Intrinsic Intr, string OpcPrefix,
+ SDNode Move, ValueType VT,
+ Predicate BasePredicate> {
+ let Predicates = [BasePredicate] in {
+ def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
+ (!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+
+ // With SSE 4.1, blendi is preferred to movs*, so match that too.
+ let Predicates = [UseSSE41] in {
+ def : Pat<(VT (X86Blendi VT:$dst, (Intr VT:$src), (i8 1))),
+ (!cast<I>(OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+
+ // Repeat for AVX versions of the instructions.
+ let Predicates = [HasAVX] in {
+ def : Pat<(VT (Move VT:$dst, (Intr VT:$src))),
+ (!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+
+ def : Pat<(VT (X86Blendi VT:$dst, (Intr VT:$src), (i8 1))),
+ (!cast<I>("V"#OpcPrefix#r_Int) VT:$dst, VT:$src)>;
+ }
+}
+
+defm : scalar_unary_math_patterns<int_x86_sse_rcp_ss, "RCPSS", X86Movss,
+ v4f32, UseSSE1>;
+defm : scalar_unary_math_patterns<int_x86_sse_rsqrt_ss, "RSQRTSS", X86Movss,
+ v4f32, UseSSE1>;
+defm : scalar_unary_math_patterns<int_x86_sse_sqrt_ss, "SQRTSS", X86Movss,
+ v4f32, UseSSE1>;
+defm : scalar_unary_math_patterns<int_x86_sse2_sqrt_sd, "SQRTSD", X86Movsd,
+ v2f64, UseSSE2>;
+
+
//===----------------------------------------------------------------------===//
// SSE 1 & 2 - Non-temporal stores
//===----------------------------------------------------------------------===//
--- /dev/null
+; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse2 < %s | FileCheck --check-prefix=SSE %s
+; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=sse4.1 < %s | FileCheck --check-prefix=SSE %s
+; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=avx < %s | FileCheck --check-prefix=AVX %s
+
+; PR21507 - https://llvm.org/bugs/show_bug.cgi?id=21507
+; Each function should be a single math op; no extra moves.
+
+
+define <4 x float> @recip(<4 x float> %x) {
+; SSE-LABEL: recip:
+; SSE: # BB#0:
+; SSE-NEXT: rcpss %xmm0, %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: recip:
+; AVX: # BB#0:
+; AVX-NEXT: vrcpss %xmm0, %xmm0, %xmm0
+; AVX-NEXT: retq
+ %y = tail call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %x)
+ %shuf = shufflevector <4 x float> %y, <4 x float> %x, <4 x i32> <i32 0, i32 5, i32 6, i32 7>
+ ret <4 x float> %shuf
+}
+
+define <4 x float> @recip_square_root(<4 x float> %x) {
+; SSE-LABEL: recip_square_root:
+; SSE: # BB#0:
+; SSE-NEXT: rsqrtss %xmm0, %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: recip_square_root:
+; AVX: # BB#0:
+; AVX-NEXT: vrsqrtss %xmm0, %xmm0, %xmm0
+; AVX-NEXT: retq
+ %y = tail call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %x)
+ %shuf = shufflevector <4 x float> %y, <4 x float> %x, <4 x i32> <i32 0, i32 5, i32 6, i32 7>
+ ret <4 x float> %shuf
+}
+
+define <4 x float> @square_root(<4 x float> %x) {
+; SSE-LABEL: square_root:
+; SSE: # BB#0:
+; SSE-NEXT: sqrtss %xmm0, %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: square_root:
+; AVX: # BB#0:
+; AVX-NEXT: vsqrtss %xmm0, %xmm0, %xmm0
+; AVX-NEXT: retq
+ %y = tail call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %x)
+ %shuf = shufflevector <4 x float> %y, <4 x float> %x, <4 x i32> <i32 0, i32 5, i32 6, i32 7>
+ ret <4 x float> %shuf
+}
+
+define <2 x double> @square_root_double(<2 x double> %x) {
+; SSE-LABEL: square_root_double:
+; SSE: # BB#0:
+; SSE-NEXT: sqrtsd %xmm0, %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: square_root_double:
+; AVX: # BB#0:
+; AVX-NEXT: vsqrtsd %xmm0, %xmm0, %xmm0
+; AVX-NEXT: retq
+ %y = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %x)
+ %shuf = shufflevector <2 x double> %y, <2 x double> %x, <2 x i32> <i32 0, i32 3>
+ ret <2 x double> %shuf
+}
+
+declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>)
+declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>)
+declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>)
+declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>)
+