// The second operand is the stack size. If it does not fit in the
// immediate field, we have to use a free register to hold the size.
- // We will assume that local register `l0' is unused since the SAVE
- // instruction must be the first instruction in each procedure.
+ // See the comments below for the choice of this register.
//
MachineCodeForMethod& mcInfo = MachineCodeForMethod::get(&F);
unsigned int staticStackSize = mcInfo.getStaticStackSize();
if (staticStackSize < (unsigned) frameInfo.getMinStackFrameSize())
staticStackSize = (unsigned) frameInfo.getMinStackFrameSize();
-
+
if (unsigned padsz = (staticStackSize %
(unsigned) frameInfo.getStackFrameSizeAlignment()))
staticStackSize += frameInfo.getStackFrameSizeAlignment() - padsz;
else
{
// We have to put the stack size value into a register before SAVE.
- // Use register %l0 to since it must be unused at function entry.
+ // Use register %g1 since it is volatile across calls. Note that the
+ // local (%l) and in (%i) registers cannot be used before the SAVE!
// Do this by creating a code sequence equivalent to:
- // SETSW -(stackSize), %l0
+ // SETSW -(stackSize), %g1
int32_t C = - (int) staticStackSize;
int uregNum = Target.getRegInfo().getUnifiedRegNum(
Target.getRegInfo().getRegClassIDOfType(Type::IntTy),
- SparcIntRegClass::l0);
+ SparcIntRegClass::g1);
M = new MachineInstr(SETHI);
M->SetMachineOperandConst(0, MachineOperand::MO_SignExtendedImmed, C);
M->SetMachineOperandReg(2, uregNum);
mvec.push_back(M);
- // Now generate the SAVE using the value in register %l0
+ // Now generate the SAVE using the value in register %g1
M = new MachineInstr(SAVE);
M->SetMachineOperandReg(0, Target.getRegInfo().getStackPointer());
M->SetMachineOperandReg(1, uregNum);