return nullptr;
}
+/// Return true if B is known to be implied by A. A & B must be i1 (boolean)
+/// values. Note that the truth table for implication is the same as <=u on i1
+/// values (but not <=s!). The truth table for both is:
+/// | T | F (B)
+/// T | T | F
+/// F | T | T
+/// (A)
+static bool implies(Value *A, Value *B) {
+ // TODO: Consider extending this to vector of i1?
+ assert(A->getType()->isIntegerTy(1) && B->getType()->isIntegerTy(1));
+
+ // A ==> A by definition
+ if (A == B) return true;
+
+ ICmpInst::Predicate APred, BPred;
+ Value *I;
+ Value *L;
+ ConstantInt *CI;
+ // i +_{nsw} C_{>0} <s L ==> i <s L
+ if (match(A, m_ICmp(APred,
+ m_NSWAdd(m_Value(I), m_ConstantInt(CI)),
+ m_Value(L))) &&
+ APred == ICmpInst::ICMP_SLT &&
+ !CI->isNegative() &&
+ match(B, m_ICmp(BPred, m_Specific(I), m_Specific(L))) &&
+ BPred == ICmpInst::ICMP_SLT)
+ return true;
+
+ // i +_{nuw} C_{>0} <u L ==> i <u L
+ if (match(A, m_ICmp(APred,
+ m_NUWAdd(m_Value(I), m_ConstantInt(CI)),
+ m_Value(L))) &&
+ APred == ICmpInst::ICMP_ULT &&
+ !CI->isNegative() &&
+ match(B, m_ICmp(BPred, m_Specific(I), m_Specific(L))) &&
+ BPred == ICmpInst::ICMP_ULT)
+ return true;
+
+ return false;
+}
+
static ConstantRange GetConstantRangeFromMetadata(MDNode *Ranges, uint32_t BitWidth) {
const unsigned NumRanges = Ranges->getNumOperands() / 2;
assert(NumRanges >= 1);
// X >=u 1 -> X
if (match(RHS, m_One()))
return LHS;
+ if (implies(RHS, LHS))
+ return getTrue(ITy);
break;
case ICmpInst::ICMP_SLT:
// X <s 0 -> X
if (match(RHS, m_One()))
return LHS;
break;
+ case ICmpInst::ICMP_ULE:
+ if (implies(LHS, RHS))
+ return getTrue(ITy);
+ break;
}
}
--- /dev/null
+; RUN: opt -S %s -instsimplify | FileCheck %s
+
+; A ==> A -> true
+define i1 @test(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test
+; CHECK: ret i1 true
+ %var29 = icmp slt i32 %i, %length.i
+ %res = icmp uge i1 %var29, %var29
+ ret i1 %res
+}
+
+; i +_{nsw} C_{>0} <s L ==> i <s L -> true
+define i1 @test2(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test2
+; CHECK: ret i1 true
+ %iplus1 = add nsw i32 %i, 1
+ %var29 = icmp slt i32 %i, %length.i
+ %var30 = icmp slt i32 %iplus1, %length.i
+ %res = icmp ule i1 %var30, %var29
+ ret i1 %res
+}
+
+; i + C_{>0} <s L ==> i <s L -> unknown without the nsw
+define i1 @test2_neg(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test2_neg
+; CHECK: ret i1 %res
+ %iplus1 = add i32 %i, 1
+ %var29 = icmp slt i32 %i, %length.i
+ %var30 = icmp slt i32 %iplus1, %length.i
+ %res = icmp ule i1 %var30, %var29
+ ret i1 %res
+}
+
+; sle is not implication
+define i1 @test2_neg2(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test2_neg2
+; CHECK: ret i1 %res
+ %iplus1 = add i32 %i, 1
+ %var29 = icmp slt i32 %i, %length.i
+ %var30 = icmp slt i32 %iplus1, %length.i
+ %res = icmp sle i1 %var30, %var29
+ ret i1 %res
+}
+
+; The binary operator has to be an add
+define i1 @test2_neg3(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test2_neg3
+; CHECK: ret i1 %res
+ %iplus1 = sub nsw i32 %i, 1
+ %var29 = icmp slt i32 %i, %length.i
+ %var30 = icmp slt i32 %iplus1, %length.i
+ %res = icmp ule i1 %var30, %var29
+ ret i1 %res
+}
+
+; i +_{nsw} C_{>0} <s L ==> i <s L -> true
+; With an inverted conditional (ule B A rather than canonical ugt A B
+define i1 @test3(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test3
+; CHECK: ret i1 true
+ %iplus1 = add nsw i32 %i, 1
+ %var29 = icmp slt i32 %i, %length.i
+ %var30 = icmp slt i32 %iplus1, %length.i
+ %res = icmp uge i1 %var29, %var30
+ ret i1 %res
+}
+
+; i +_{nuw} C_{>0} <u L ==> i <u L
+define i1 @test4(i32 %length.i, i32 %i) {
+; CHECK-LABEL: @test4
+; CHECK: ret i1 true
+ %iplus1 = add nuw i32 %i, 1
+ %var29 = icmp ult i32 %i, %length.i
+ %var30 = icmp ult i32 %iplus1, %length.i
+ %res = icmp ule i1 %var30, %var29
+ ret i1 %res
+}