--- /dev/null
+//===--- HexagonStoreWidening.cpp------------------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+// Replace sequences of "narrow" stores to adjacent memory locations with
+// a fewer "wide" stores that have the same effect.
+// For example, replace:
+// S4_storeirb_io %vreg100, 0, 0 ; store-immediate-byte
+// S4_storeirb_io %vreg100, 1, 0 ; store-immediate-byte
+// with
+// S4_storeirh_io %vreg100, 0, 0 ; store-immediate-halfword
+// The above is the general idea. The actual cases handled by the code
+// may be a bit more complex.
+// The purpose of this pass is to reduce the number of outstanding stores,
+// or as one could say, "reduce store queue pressure". Also, wide stores
+// mean fewer stores, and since there are only two memory instructions allowed
+// per packet, it also means fewer packets, and ultimately fewer cycles.
+//===---------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "hexagon-widen-stores"
+
+#include "HexagonTargetMachine.h"
+
+#include "llvm/PassSupport.h"
+#include "llvm/Analysis/AliasAnalysis.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineRegisterInfo.h"
+#include "llvm/MC/MCInstrDesc.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetRegisterInfo.h"
+#include "llvm/Target/TargetInstrInfo.h"
+
+#include <algorithm>
+
+
+using namespace llvm;
+
+namespace llvm {
+ FunctionPass *createHexagonStoreWidening();
+ void initializeHexagonStoreWideningPass(PassRegistry&);
+}
+
+namespace {
+ struct HexagonStoreWidening : public MachineFunctionPass {
+ const HexagonInstrInfo *TII;
+ const HexagonRegisterInfo *TRI;
+ const MachineRegisterInfo *MRI;
+ AliasAnalysis *AA;
+ MachineFunction *MF;
+
+ public:
+ static char ID;
+ HexagonStoreWidening() : MachineFunctionPass(ID) {
+ initializeHexagonStoreWideningPass(*PassRegistry::getPassRegistry());
+ }
+
+ bool runOnMachineFunction(MachineFunction &MF) override;
+
+ const char *getPassName() const override {
+ return "Hexagon Store Widening";
+ }
+
+ void getAnalysisUsage(AnalysisUsage &AU) const override {
+ AU.addRequired<AAResultsWrapperPass>();
+ AU.addPreserved<AAResultsWrapperPass>();
+ MachineFunctionPass::getAnalysisUsage(AU);
+ }
+
+ static bool handledStoreType(const MachineInstr *MI);
+
+ private:
+ static const int MaxWideSize = 4;
+
+ typedef std::vector<MachineInstr*> InstrGroup;
+ typedef std::vector<InstrGroup> InstrGroupList;
+
+ bool instrAliased(InstrGroup &Stores, const MachineMemOperand &MMO);
+ bool instrAliased(InstrGroup &Stores, const MachineInstr *MI);
+ void createStoreGroup(MachineInstr *BaseStore, InstrGroup::iterator Begin,
+ InstrGroup::iterator End, InstrGroup &Group);
+ void createStoreGroups(MachineBasicBlock &MBB,
+ InstrGroupList &StoreGroups);
+ bool processBasicBlock(MachineBasicBlock &MBB);
+ bool processStoreGroup(InstrGroup &Group);
+ bool selectStores(InstrGroup::iterator Begin, InstrGroup::iterator End,
+ InstrGroup &OG, unsigned &TotalSize, unsigned MaxSize);
+ bool createWideStores(InstrGroup &OG, InstrGroup &NG, unsigned TotalSize);
+ bool replaceStores(InstrGroup &OG, InstrGroup &NG);
+ bool storesAreAdjacent(const MachineInstr *S1, const MachineInstr *S2);
+ };
+
+} // namespace
+
+
+namespace {
+
+// Some local helper functions...
+unsigned getBaseAddressRegister(const MachineInstr *MI) {
+ const MachineOperand &MO = MI->getOperand(0);
+ assert(MO.isReg() && "Expecting register operand");
+ return MO.getReg();
+}
+
+int64_t getStoreOffset(const MachineInstr *MI) {
+ unsigned OpC = MI->getOpcode();
+ assert(HexagonStoreWidening::handledStoreType(MI) && "Unhandled opcode");
+
+ switch (OpC) {
+ case Hexagon::S4_storeirb_io:
+ case Hexagon::S4_storeirh_io:
+ case Hexagon::S4_storeiri_io: {
+ const MachineOperand &MO = MI->getOperand(1);
+ assert(MO.isImm() && "Expecting immediate offset");
+ return MO.getImm();
+ }
+ }
+ dbgs() << *MI;
+ llvm_unreachable("Store offset calculation missing for a handled opcode");
+ return 0;
+}
+
+const MachineMemOperand &getStoreTarget(const MachineInstr *MI) {
+ assert(!MI->memoperands_empty() && "Expecting memory operands");
+ return **MI->memoperands_begin();
+}
+
+} // namespace
+
+
+char HexagonStoreWidening::ID = 0;
+
+INITIALIZE_PASS_BEGIN(HexagonStoreWidening, "hexagon-widen-stores",
+ "Hexason Store Widening", false, false)
+INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
+INITIALIZE_PASS_END(HexagonStoreWidening, "hexagon-widen-stores",
+ "Hexagon Store Widening", false, false)
+
+
+// Filtering function: any stores whose opcodes are not "approved" of by
+// this function will not be subjected to widening.
+inline bool HexagonStoreWidening::handledStoreType(const MachineInstr *MI) {
+ // For now, only handle stores of immediate values.
+ // Also, reject stores to stack slots.
+ unsigned Opc = MI->getOpcode();
+ switch (Opc) {
+ case Hexagon::S4_storeirb_io:
+ case Hexagon::S4_storeirh_io:
+ case Hexagon::S4_storeiri_io:
+ // Base address must be a register. (Implement FI later.)
+ return MI->getOperand(0).isReg();
+ default:
+ return false;
+ }
+}
+
+
+// Check if the machine memory operand MMO is aliased with any of the
+// stores in the store group Stores.
+bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
+ const MachineMemOperand &MMO) {
+ if (!MMO.getValue())
+ return true;
+
+ MemoryLocation L(MMO.getValue(), MMO.getSize(), MMO.getAAInfo());
+
+ for (auto SI : Stores) {
+ const MachineMemOperand &SMO = getStoreTarget(SI);
+ if (!SMO.getValue())
+ return true;
+
+ MemoryLocation SL(SMO.getValue(), SMO.getSize(), SMO.getAAInfo());
+ if (AA->alias(L, SL))
+ return true;
+ }
+
+ return false;
+}
+
+
+// Check if the machine instruction MI accesses any storage aliased with
+// any store in the group Stores.
+bool HexagonStoreWidening::instrAliased(InstrGroup &Stores,
+ const MachineInstr *MI) {
+ for (auto &I : MI->memoperands())
+ if (instrAliased(Stores, *I))
+ return true;
+ return false;
+}
+
+
+// Inspect a machine basic block, and generate store groups out of stores
+// encountered in the block.
+//
+// A store group is a group of stores that use the same base register,
+// and which can be reordered within that group without altering the
+// semantics of the program. A single store group could be widened as
+// a whole, if there existed a single store instruction with the same
+// semantics as the entire group. In many cases, a single store group
+// may need more than one wide store.
+void HexagonStoreWidening::createStoreGroups(MachineBasicBlock &MBB,
+ InstrGroupList &StoreGroups) {
+ InstrGroup AllInsns;
+
+ // Copy all instruction pointers from the basic block to a temporary
+ // list. This will allow operating on the list, and modifying its
+ // elements without affecting the basic block.
+ for (auto &I : MBB)
+ AllInsns.push_back(&I);
+
+ // Traverse all instructions in the AllInsns list, and if we encounter
+ // a store, then try to create a store group starting at that instruction
+ // i.e. a sequence of independent stores that can be widened.
+ for (auto I = AllInsns.begin(), E = AllInsns.end(); I != E; ++I) {
+ MachineInstr *MI = *I;
+ // Skip null pointers (processed instructions).
+ if (!MI || !handledStoreType(MI))
+ continue;
+
+ // Found a store. Try to create a store group.
+ InstrGroup G;
+ createStoreGroup(MI, I+1, E, G);
+ if (G.size() > 1)
+ StoreGroups.push_back(G);
+ }
+}
+
+
+// Create a single store group. The stores need to be independent between
+// themselves, and also there cannot be other instructions between them
+// that could read or modify storage being stored into.
+void HexagonStoreWidening::createStoreGroup(MachineInstr *BaseStore,
+ InstrGroup::iterator Begin, InstrGroup::iterator End, InstrGroup &Group) {
+ assert(handledStoreType(BaseStore) && "Unexpected instruction");
+ unsigned BaseReg = getBaseAddressRegister(BaseStore);
+ InstrGroup Other;
+
+ Group.push_back(BaseStore);
+
+ for (auto I = Begin; I != End; ++I) {
+ MachineInstr *MI = *I;
+ if (!MI)
+ continue;
+
+ if (handledStoreType(MI)) {
+ // If this store instruction is aliased with anything already in the
+ // group, terminate the group now.
+ if (instrAliased(Group, getStoreTarget(MI)))
+ return;
+ // If this store is aliased to any of the memory instructions we have
+ // seen so far (that are not a part of this group), terminate the group.
+ if (instrAliased(Other, getStoreTarget(MI)))
+ return;
+
+ unsigned BR = getBaseAddressRegister(MI);
+ if (BR == BaseReg) {
+ Group.push_back(MI);
+ *I = 0;
+ continue;
+ }
+ }
+
+ // Assume calls are aliased to everything.
+ if (MI->isCall() || MI->hasUnmodeledSideEffects())
+ return;
+
+ if (MI->mayLoad() || MI->mayStore()) {
+ if (MI->hasOrderedMemoryRef() || instrAliased(Group, MI))
+ return;
+ Other.push_back(MI);
+ }
+ } // for
+}
+
+
+// Check if store instructions S1 and S2 are adjacent. More precisely,
+// S2 has to access memory immediately following that accessed by S1.
+bool HexagonStoreWidening::storesAreAdjacent(const MachineInstr *S1,
+ const MachineInstr *S2) {
+ if (!handledStoreType(S1) || !handledStoreType(S2))
+ return false;
+
+ const MachineMemOperand &S1MO = getStoreTarget(S1);
+
+ // Currently only handling immediate stores.
+ int Off1 = S1->getOperand(1).getImm();
+ int Off2 = S2->getOperand(1).getImm();
+
+ return (Off1 >= 0) ? Off1+S1MO.getSize() == unsigned(Off2)
+ : int(Off1+S1MO.getSize()) == Off2;
+}
+
+
+/// Given a sequence of adjacent stores, and a maximum size of a single wide
+/// store, pick a group of stores that can be replaced by a single store
+/// of size not exceeding MaxSize. The selected sequence will be recorded
+/// in OG ("old group" of instructions).
+/// OG should be empty on entry, and should be left empty if the function
+/// fails.
+bool HexagonStoreWidening::selectStores(InstrGroup::iterator Begin,
+ InstrGroup::iterator End, InstrGroup &OG, unsigned &TotalSize,
+ unsigned MaxSize) {
+ assert(Begin != End && "No instructions to analyze");
+ assert(OG.empty() && "Old group not empty on entry");
+
+ if (std::distance(Begin, End) <= 1)
+ return false;
+
+ MachineInstr *FirstMI = *Begin;
+ assert(!FirstMI->memoperands_empty() && "Expecting some memory operands");
+ const MachineMemOperand &FirstMMO = getStoreTarget(FirstMI);
+ unsigned Alignment = FirstMMO.getAlignment();
+ unsigned SizeAccum = FirstMMO.getSize();
+ unsigned FirstOffset = getStoreOffset(FirstMI);
+
+ // The initial value of SizeAccum should always be a power of 2.
+ assert(isPowerOf2_32(SizeAccum) && "First store size not a power of 2");
+
+ // If the size of the first store equals to or exceeds the limit, do nothing.
+ if (SizeAccum >= MaxSize)
+ return false;
+
+ // If the size of the first store is greater than or equal to the address
+ // stored to, then the store cannot be made any wider.
+ if (SizeAccum >= Alignment)
+ return false;
+
+ // The offset of a store will put restrictions on how wide the store can be.
+ // Offsets in stores of size 2^n bytes need to have the n lowest bits be 0.
+ // If the first store already exhausts the offset limits, quit. Test this
+ // by checking if the next wider size would exceed the limit.
+ if ((2*SizeAccum-1) & FirstOffset)
+ return false;
+
+ OG.push_back(FirstMI);
+ MachineInstr *S1 = FirstMI, *S2 = *(Begin+1);
+ InstrGroup::iterator I = Begin+1;
+
+ // Pow2Num will be the largest number of elements in OG such that the sum
+ // of sizes of stores 0...Pow2Num-1 will be a power of 2.
+ unsigned Pow2Num = 1;
+ unsigned Pow2Size = SizeAccum;
+
+ // Be greedy: keep accumulating stores as long as they are to adjacent
+ // memory locations, and as long as the total number of bytes stored
+ // does not exceed the limit (MaxSize).
+ // Keep track of when the total size covered is a power of 2, since
+ // this is a size a single store can cover.
+ while (I != End) {
+ S2 = *I;
+ // Stores are sorted, so if S1 and S2 are not adjacent, there won't be
+ // any other store to fill the "hole".
+ if (!storesAreAdjacent(S1, S2))
+ break;
+
+ unsigned S2Size = getStoreTarget(S2).getSize();
+ if (SizeAccum + S2Size > std::min(MaxSize, Alignment))
+ break;
+
+ OG.push_back(S2);
+ SizeAccum += S2Size;
+ if (isPowerOf2_32(SizeAccum)) {
+ Pow2Num = OG.size();
+ Pow2Size = SizeAccum;
+ }
+ if ((2*Pow2Size-1) & FirstOffset)
+ break;
+
+ S1 = S2;
+ ++I;
+ }
+
+ // The stores don't add up to anything that can be widened. Clean up.
+ if (Pow2Num <= 1) {
+ OG.clear();
+ return false;
+ }
+
+ // Only leave the stored being widened.
+ OG.resize(Pow2Num);
+ TotalSize = Pow2Size;
+ return true;
+}
+
+
+/// Given an "old group" OG of stores, create a "new group" NG of instructions
+/// to replace them. Ideally, NG would only have a single instruction in it,
+/// but that may only be possible for store-immediate.
+bool HexagonStoreWidening::createWideStores(InstrGroup &OG, InstrGroup &NG,
+ unsigned TotalSize) {
+ // XXX Current limitations:
+ // - only expect stores of immediate values in OG,
+ // - only handle a TotalSize of up to 4.
+
+ if (TotalSize > 4)
+ return false;
+
+ unsigned Acc = 0; // Value accumulator.
+ unsigned Shift = 0;
+
+ for (InstrGroup::iterator I = OG.begin(), E = OG.end(); I != E; ++I) {
+ MachineInstr *MI = *I;
+ const MachineMemOperand &MMO = getStoreTarget(MI);
+ MachineOperand &SO = MI->getOperand(2); // Source.
+ assert(SO.isImm() && "Expecting an immediate operand");
+
+ unsigned NBits = MMO.getSize()*8;
+ unsigned Mask = (0xFFFFFFFFU >> (32-NBits));
+ unsigned Val = (SO.getImm() & Mask) << Shift;
+ Acc |= Val;
+ Shift += NBits;
+ }
+
+
+ MachineInstr *FirstSt = OG.front();
+ DebugLoc DL = OG.back()->getDebugLoc();
+ const MachineMemOperand &OldM = getStoreTarget(FirstSt);
+ MachineMemOperand *NewM =
+ MF->getMachineMemOperand(OldM.getPointerInfo(), OldM.getFlags(),
+ TotalSize, OldM.getAlignment(),
+ OldM.getAAInfo());
+
+ if (Acc < 0x10000) {
+ // Create mem[hw] = #Acc
+ unsigned WOpc = (TotalSize == 2) ? Hexagon::S4_storeirh_io :
+ (TotalSize == 4) ? Hexagon::S4_storeiri_io : 0;
+ assert(WOpc && "Unexpected size");
+
+ int Val = (TotalSize == 2) ? int16_t(Acc) : int(Acc);
+ const MCInstrDesc &StD = TII->get(WOpc);
+ MachineOperand &MR = FirstSt->getOperand(0);
+ int64_t Off = FirstSt->getOperand(1).getImm();
+ MachineInstr *StI = BuildMI(*MF, DL, StD)
+ .addReg(MR.getReg(), getKillRegState(MR.isKill()))
+ .addImm(Off)
+ .addImm(Val);
+ StI->addMemOperand(*MF, NewM);
+ NG.push_back(StI);
+ } else {
+ // Create vreg = A2_tfrsi #Acc; mem[hw] = vreg
+ const MCInstrDesc &TfrD = TII->get(Hexagon::A2_tfrsi);
+ const TargetRegisterClass *RC = TII->getRegClass(TfrD, 0, TRI, *MF);
+ unsigned VReg = MF->getRegInfo().createVirtualRegister(RC);
+ MachineInstr *TfrI = BuildMI(*MF, DL, TfrD, VReg)
+ .addImm(int(Acc));
+ NG.push_back(TfrI);
+
+ unsigned WOpc = (TotalSize == 2) ? Hexagon::S2_storerh_io :
+ (TotalSize == 4) ? Hexagon::S2_storeri_io : 0;
+ assert(WOpc && "Unexpected size");
+
+ const MCInstrDesc &StD = TII->get(WOpc);
+ MachineOperand &MR = FirstSt->getOperand(0);
+ int64_t Off = FirstSt->getOperand(1).getImm();
+ MachineInstr *StI = BuildMI(*MF, DL, StD)
+ .addReg(MR.getReg(), getKillRegState(MR.isKill()))
+ .addImm(Off)
+ .addReg(VReg, RegState::Kill);
+ StI->addMemOperand(*MF, NewM);
+ NG.push_back(StI);
+ }
+
+ return true;
+}
+
+
+// Replace instructions from the old group OG with instructions from the
+// new group NG. Conceptually, remove all instructions in OG, and then
+// insert all instructions in NG, starting at where the first instruction
+// from OG was (in the order in which they appeared in the basic block).
+// (The ordering in OG does not have to match the order in the basic block.)
+bool HexagonStoreWidening::replaceStores(InstrGroup &OG, InstrGroup &NG) {
+ DEBUG({
+ dbgs() << "Replacing:\n";
+ for (auto I : OG)
+ dbgs() << " " << *I;
+ dbgs() << "with\n";
+ for (auto I : NG)
+ dbgs() << " " << *I;
+ });
+
+ MachineBasicBlock *MBB = OG.back()->getParent();
+ MachineBasicBlock::iterator InsertAt = MBB->end();
+
+ // Need to establish the insertion point. The best one is right before
+ // the first store in the OG, but in the order in which the stores occur
+ // in the program list. Since the ordering in OG does not correspond
+ // to the order in the program list, we need to do some work to find
+ // the insertion point.
+
+ // Create a set of all instructions in OG (for quick lookup).
+ SmallPtrSet<MachineInstr*, 4> InstrSet;
+ for (auto I : OG)
+ InstrSet.insert(I);
+
+ // Traverse the block, until we hit an instruction from OG.
+ for (auto &I : *MBB) {
+ if (InstrSet.count(&I)) {
+ InsertAt = I;
+ break;
+ }
+ }
+
+ assert((InsertAt != MBB->end()) && "Cannot locate any store from the group");
+
+ bool AtBBStart = false;
+
+ // InsertAt points at the first instruction that will be removed. We need
+ // to move it out of the way, so it remains valid after removing all the
+ // old stores, and so we are able to recover it back to the proper insertion
+ // position.
+ if (InsertAt != MBB->begin())
+ --InsertAt;
+ else
+ AtBBStart = true;
+
+ for (auto I : OG)
+ I->eraseFromParent();
+
+ if (!AtBBStart)
+ ++InsertAt;
+ else
+ InsertAt = MBB->begin();
+
+ for (auto I : NG)
+ MBB->insert(InsertAt, I);
+
+ return true;
+}
+
+
+// Break up the group into smaller groups, each of which can be replaced by
+// a single wide store. Widen each such smaller group and replace the old
+// instructions with the widened ones.
+bool HexagonStoreWidening::processStoreGroup(InstrGroup &Group) {
+ bool Changed = false;
+ InstrGroup::iterator I = Group.begin(), E = Group.end();
+ InstrGroup OG, NG; // Old and new groups.
+ unsigned CollectedSize;
+
+ while (I != E) {
+ OG.clear();
+ NG.clear();
+
+ bool Succ = selectStores(I++, E, OG, CollectedSize, MaxWideSize) &&
+ createWideStores(OG, NG, CollectedSize) &&
+ replaceStores(OG, NG);
+ if (!Succ)
+ continue;
+
+ assert(OG.size() > 1 && "Created invalid group");
+ assert(distance(I, E)+1 >= int(OG.size()) && "Too many elements");
+ I += OG.size()-1;
+
+ Changed = true;
+ }
+
+ return Changed;
+}
+
+
+// Process a single basic block: create the store groups, and replace them
+// with the widened stores, if possible. Processing of each basic block
+// is independent from processing of any other basic block. This transfor-
+// mation could be stopped after having processed any basic block without
+// any ill effects (other than not having performed widening in the unpro-
+// cessed blocks). Also, the basic blocks can be processed in any order.
+bool HexagonStoreWidening::processBasicBlock(MachineBasicBlock &MBB) {
+ InstrGroupList SGs;
+ bool Changed = false;
+
+ createStoreGroups(MBB, SGs);
+
+ auto Less = [] (const MachineInstr *A, const MachineInstr *B) -> bool {
+ return getStoreOffset(A) < getStoreOffset(B);
+ };
+ for (auto &G : SGs) {
+ assert(G.size() > 1 && "Store group with fewer than 2 elements");
+ std::sort(G.begin(), G.end(), Less);
+
+ Changed |= processStoreGroup(G);
+ }
+
+ return Changed;
+}
+
+
+bool HexagonStoreWidening::runOnMachineFunction(MachineFunction &MFn) {
+ MF = &MFn;
+ auto &ST = MFn.getSubtarget<HexagonSubtarget>();
+ TII = ST.getInstrInfo();
+ TRI = ST.getRegisterInfo();
+ MRI = &MFn.getRegInfo();
+ AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
+
+ bool Changed = false;
+
+ for (auto &B : MFn)
+ Changed |= processBasicBlock(B);
+
+ return Changed;
+}
+
+
+FunctionPass *llvm::createHexagonStoreWidening() {
+ return new HexagonStoreWidening();
+}
+