[X86] Avoid folding scalar loads into unary sse intrinsics
authorMichael Kuperstein <michael.m.kuperstein@intel.com>
Thu, 31 Dec 2015 09:45:16 +0000 (09:45 +0000)
committerMichael Kuperstein <michael.m.kuperstein@intel.com>
Thu, 31 Dec 2015 09:45:16 +0000 (09:45 +0000)
Not folding these cases tends to avoid partial register updates:
sqrtss (%eax), %xmm0
Has a partial update of %xmm0, while
movss (%eax), %xmm0
sqrtss %xmm0, %xmm0
Has a clobber of the high lanes immediately before the partial update,
avoiding a potential stall.

Given this, we only want to fold when optimizing for size.
This is consistent with the patterns we already have for some of
the fp/int converts, and in X86InstrInfo::foldMemoryOperandImpl()

Differential Revision: http://reviews.llvm.org/D15741

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@256671 91177308-0d34-0410-b5e6-96231b3b80d8

lib/Target/X86/X86InstrSSE.td
test/CodeGen/X86/fold-load-unops.ll

index 7a44212bd829bb530cb92e07a770168e8e99254e..624b9316e6fd95aeb42785dd11fb218449e42445 100644 (file)
@@ -1466,6 +1466,8 @@ def SSE_CVT_SD2SI : OpndItins<
   IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM
 >;
 
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
 multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
                      SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
                      string asm, OpndItins itins> {
@@ -1489,6 +1491,8 @@ let hasSideEffects = 0 in {
 }
 }
 
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
 multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
                           X86MemOperand x86memop, string asm> {
 let hasSideEffects = 0, Predicates = [UseAVX] in {
@@ -1626,6 +1630,8 @@ def : InstAlias<"cvtsi2sd\t{$src, $dst|$dst, $src}",
 // Conversion Instructions Intrinsics - Match intrinsics which expect MM
 // and/or XMM operand(s).
 
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
 multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
                          Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
                          string asm, OpndItins itins> {
@@ -3387,9 +3393,18 @@ multiclass sse_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
   def : Pat<(Intr (load addr:$src)),
             (vt (COPY_TO_REGCLASS(!cast<Instruction>(NAME#Suffix##m)
                                       addr:$src), VR128))>;
-  def : Pat<(Intr mem_cpat:$src),
-             (!cast<Instruction>(NAME#Suffix##m_Int)
-                    (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
+  }
+  // We don't want to fold scalar loads into these instructions unless
+  // optimizing for size. This is because the folded instruction will have a
+  // partial register update, while the unfolded sequence will not, e.g.
+  // movss mem, %xmm0
+  // rcpss %xmm0, %xmm0
+  // which has a clobber before the rcp, vs.
+  // rcpss mem, %xmm0
+  let Predicates = [target, OptForSize] in {
+    def : Pat<(Intr mem_cpat:$src),
+               (!cast<Instruction>(NAME#Suffix##m_Int)
+                      (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
   }
 }
 
@@ -3420,28 +3435,37 @@ multiclass avx_fp_unop_s<bits<8> opc, string OpcodeStr, RegisterClass RC,
   }
   }
 
+  // We don't want to fold scalar loads into these instructions unless
+  // optimizing for size. This is because the folded instruction will have a
+  // partial register update, while the unfolded sequence will not, e.g.
+  // vmovss mem, %xmm0
+  // vrcpss %xmm0, %xmm0, %xmm0
+  // which has a clobber before the rcp, vs.
+  // vrcpss mem, %xmm0, %xmm0
+  // TODO: In theory, we could fold the load, and avoid the stall caused by
+  // the partial register store, either in ExeDepFix or with smarter RA.
   let Predicates = [UseAVX] in {
    def : Pat<(OpNode RC:$src),  (!cast<Instruction>("V"#NAME#Suffix##r)
                                 (ScalarVT (IMPLICIT_DEF)), RC:$src)>;
-
-   def : Pat<(vt (OpNode mem_cpat:$src)),
-             (!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
-                                  mem_cpat:$src)>;
-
   }
   let Predicates = [HasAVX] in {
    def : Pat<(Intr VR128:$src),
              (!cast<Instruction>("V"#NAME#Suffix##r_Int) (vt (IMPLICIT_DEF)),
                                  VR128:$src)>;
-
-   def : Pat<(Intr mem_cpat:$src),
-             (!cast<Instruction>("V"#NAME#Suffix##m_Int)
+  }
+  let Predicates = [HasAVX, OptForSize] in {
+    def : Pat<(Intr mem_cpat:$src),
+              (!cast<Instruction>("V"#NAME#Suffix##m_Int)
                     (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
   }
-  let Predicates = [UseAVX, OptForSize] in
-  def : Pat<(ScalarVT (OpNode (load addr:$src))),
-            (!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
-             addr:$src)>;
+  let Predicates = [UseAVX, OptForSize] in {
+    def : Pat<(ScalarVT (OpNode (load addr:$src))),
+              (!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
+            addr:$src)>;
+    def : Pat<(vt (OpNode mem_cpat:$src)),
+              (!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
+                                  mem_cpat:$src)>;
+  }
 }
 
 /// sse1_fp_unop_p - SSE1 unops in packed form.
index bedda3f297da8bc28d85616cd3aadac294e176ff..d2b03dde8319d456f8342260ef17b36644ccde89 100644 (file)
@@ -2,17 +2,19 @@
 ; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=+sse2 < %s | FileCheck %s --check-prefix=SSE
 ; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=+avx < %s | FileCheck %s --check-prefix=AVX
 
-; Verify that we're folding the load into the math instruction.
+; Verify we fold loads into unary sse intrinsics only when optimizing for size
 
 define float @rcpss(float* %a) {
 ; SSE-LABEL: rcpss:
 ; SSE:       # BB#0:
-; SSE-NEXT:    rcpss (%rdi), %xmm0
+; SSE-NEXT:    movss (%rdi), %xmm0
+; SSE-NEXT:    rcpss %xmm0, %xmm0
 ; SSE-NEXT:    retq
 ;
 ; AVX-LABEL: rcpss:
 ; AVX:       # BB#0:
-; AVX-NEXT:    vrcpss (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    vmovss (%rdi), %xmm0
+; AVX-NEXT:    vrcpss %xmm0, %xmm0, %xmm0
 ; AVX-NEXT:    retq
     %ld = load float, float* %a
     %ins = insertelement <4 x float> undef, float %ld, i32 0
@@ -24,12 +26,14 @@ define float @rcpss(float* %a) {
 define float @rsqrtss(float* %a) {
 ; SSE-LABEL: rsqrtss:
 ; SSE:       # BB#0:
-; SSE-NEXT:    rsqrtss (%rdi), %xmm0
+; SSE-NEXT:    movss (%rdi), %xmm0
+; SSE-NEXT:    rsqrtss %xmm0, %xmm0
 ; SSE-NEXT:    retq
 ;
 ; AVX-LABEL: rsqrtss:
 ; AVX:       # BB#0:
-; AVX-NEXT:    vrsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    vmovss (%rdi), %xmm0
+; AVX-NEXT:    vrsqrtss %xmm0, %xmm0, %xmm0
 ; AVX-NEXT:    retq
     %ld = load float, float* %a
     %ins = insertelement <4 x float> undef, float %ld, i32 0
@@ -41,12 +45,14 @@ define float @rsqrtss(float* %a) {
 define float @sqrtss(float* %a) {
 ; SSE-LABEL: sqrtss:
 ; SSE:       # BB#0:
-; SSE-NEXT:    sqrtss (%rdi), %xmm0
+; SSE-NEXT:    movss (%rdi), %xmm0
+; SSE-NEXT:    sqrtss %xmm0, %xmm0
 ; SSE-NEXT:    retq
 ;
 ; AVX-LABEL: sqrtss:
 ; AVX:       # BB#0:
-; AVX-NEXT:    vsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    vmovss (%rdi), %xmm0
+; AVX-NEXT:    vsqrtss %xmm0, %xmm0, %xmm0
 ; AVX-NEXT:    retq
     %ld = load float, float* %a
     %ins = insertelement <4 x float> undef, float %ld, i32 0
@@ -58,12 +64,14 @@ define float @sqrtss(float* %a) {
 define double @sqrtsd(double* %a) {
 ; SSE-LABEL: sqrtsd:
 ; SSE:       # BB#0:
-; SSE-NEXT:    sqrtsd (%rdi), %xmm0
+; SSE-NEXT:    movsd (%rdi), %xmm0
+; SSE-NEXT:    sqrtsd %xmm0, %xmm0
 ; SSE-NEXT:    retq
 ;
 ; AVX-LABEL: sqrtsd:
 ; AVX:       # BB#0:
-; AVX-NEXT:    vsqrtsd (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    vmovsd (%rdi), %xmm0
+; AVX-NEXT:    vsqrtsd %xmm0, %xmm0, %xmm0
 ; AVX-NEXT:    retq
     %ld = load double, double* %a
     %ins = insertelement <2 x double> undef, double %ld, i32 0
@@ -72,9 +80,75 @@ define double @sqrtsd(double* %a) {
     ret double %ext
 }
 
+define float @rcpss_size(float* %a) optsize {
+; SSE-LABEL: rcpss_size:
+; SSE:       # BB#0:
+; SSE-NEXT:    rcpss (%rdi), %xmm0
+; SSE-NEXT:    retq
+;
+; AVX-LABEL: rcpss_size:
+; AVX:       # BB#0:
+; AVX-NEXT:    vrcpss (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    retq
+    %ld = load float, float* %a
+    %ins = insertelement <4 x float> undef, float %ld, i32 0
+    %res = tail call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %ins)
+    %ext = extractelement <4 x float> %res, i32 0
+    ret float %ext
+}
+
+define float @rsqrtss_size(float* %a) optsize {
+; SSE-LABEL: rsqrtss_size:
+; SSE:       # BB#0:
+; SSE-NEXT:    rsqrtss (%rdi), %xmm0
+; SSE-NEXT:    retq
+;
+; AVX-LABEL: rsqrtss_size:
+; AVX:       # BB#0:
+; AVX-NEXT:    vrsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    retq
+    %ld = load float, float* %a
+    %ins = insertelement <4 x float> undef, float %ld, i32 0
+    %res = tail call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %ins)
+    %ext = extractelement <4 x float> %res, i32 0
+    ret float %ext
+}
+
+define float @sqrtss_size(float* %a) optsize{
+; SSE-LABEL: sqrtss_size:
+; SSE:       # BB#0:
+; SSE-NEXT:    sqrtss (%rdi), %xmm0
+; SSE-NEXT:    retq
+;
+; AVX-LABEL: sqrtss_size:
+; AVX:       # BB#0:
+; AVX-NEXT:    vsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    retq
+    %ld = load float, float* %a
+    %ins = insertelement <4 x float> undef, float %ld, i32 0
+    %res = tail call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %ins)
+    %ext = extractelement <4 x float> %res, i32 0
+    ret float %ext
+}
+
+define double @sqrtsd_size(double* %a) optsize {
+; SSE-LABEL: sqrtsd_size:
+; SSE:       # BB#0:
+; SSE-NEXT:    sqrtsd (%rdi), %xmm0
+; SSE-NEXT:    retq
+;
+; AVX-LABEL: sqrtsd_size:
+; AVX:       # BB#0:
+; AVX-NEXT:    vsqrtsd (%rdi), %xmm0, %xmm0
+; AVX-NEXT:    retq
+    %ld = load double, double* %a
+    %ins = insertelement <2 x double> undef, double %ld, i32 0
+    %res = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %ins)
+    %ext = extractelement <2 x double> %res, i32 0
+    ret double %ext
+}
 
 declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
 declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
 declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
 declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
-