IIC_SSE_CVT_SD2SI_RR, IIC_SSE_CVT_SD2SI_RM
>;
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
multiclass sse12_cvt_s<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
SDNode OpNode, X86MemOperand x86memop, PatFrag ld_frag,
string asm, OpndItins itins> {
}
}
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
multiclass sse12_vcvt_avx<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
X86MemOperand x86memop, string asm> {
let hasSideEffects = 0, Predicates = [UseAVX] in {
// Conversion Instructions Intrinsics - Match intrinsics which expect MM
// and/or XMM operand(s).
+// FIXME: We probably want to match the rm form only when optimizing for
+// size, to avoid false depenendecies (see sse_fp_unop_s for details)
multiclass sse12_cvt_sint<bits<8> opc, RegisterClass SrcRC, RegisterClass DstRC,
Intrinsic Int, Operand memop, ComplexPattern mem_cpat,
string asm, OpndItins itins> {
def : Pat<(Intr (load addr:$src)),
(vt (COPY_TO_REGCLASS(!cast<Instruction>(NAME#Suffix##m)
addr:$src), VR128))>;
- def : Pat<(Intr mem_cpat:$src),
- (!cast<Instruction>(NAME#Suffix##m_Int)
- (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
+ }
+ // We don't want to fold scalar loads into these instructions unless
+ // optimizing for size. This is because the folded instruction will have a
+ // partial register update, while the unfolded sequence will not, e.g.
+ // movss mem, %xmm0
+ // rcpss %xmm0, %xmm0
+ // which has a clobber before the rcp, vs.
+ // rcpss mem, %xmm0
+ let Predicates = [target, OptForSize] in {
+ def : Pat<(Intr mem_cpat:$src),
+ (!cast<Instruction>(NAME#Suffix##m_Int)
+ (vt (IMPLICIT_DEF)), mem_cpat:$src)>;
}
}
}
}
+ // We don't want to fold scalar loads into these instructions unless
+ // optimizing for size. This is because the folded instruction will have a
+ // partial register update, while the unfolded sequence will not, e.g.
+ // vmovss mem, %xmm0
+ // vrcpss %xmm0, %xmm0, %xmm0
+ // which has a clobber before the rcp, vs.
+ // vrcpss mem, %xmm0, %xmm0
+ // TODO: In theory, we could fold the load, and avoid the stall caused by
+ // the partial register store, either in ExeDepFix or with smarter RA.
let Predicates = [UseAVX] in {
def : Pat<(OpNode RC:$src), (!cast<Instruction>("V"#NAME#Suffix##r)
(ScalarVT (IMPLICIT_DEF)), RC:$src)>;
-
- def : Pat<(vt (OpNode mem_cpat:$src)),
- (!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
- mem_cpat:$src)>;
-
}
let Predicates = [HasAVX] in {
def : Pat<(Intr VR128:$src),
(!cast<Instruction>("V"#NAME#Suffix##r_Int) (vt (IMPLICIT_DEF)),
VR128:$src)>;
-
- def : Pat<(Intr mem_cpat:$src),
- (!cast<Instruction>("V"#NAME#Suffix##m_Int)
+ }
+ let Predicates = [HasAVX, OptForSize] in {
+ def : Pat<(Intr mem_cpat:$src),
+ (!cast<Instruction>("V"#NAME#Suffix##m_Int)
(vt (IMPLICIT_DEF)), mem_cpat:$src)>;
}
- let Predicates = [UseAVX, OptForSize] in
- def : Pat<(ScalarVT (OpNode (load addr:$src))),
- (!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
- addr:$src)>;
+ let Predicates = [UseAVX, OptForSize] in {
+ def : Pat<(ScalarVT (OpNode (load addr:$src))),
+ (!cast<Instruction>("V"#NAME#Suffix##m) (ScalarVT (IMPLICIT_DEF)),
+ addr:$src)>;
+ def : Pat<(vt (OpNode mem_cpat:$src)),
+ (!cast<Instruction>("V"#NAME#Suffix##m_Int) (vt (IMPLICIT_DEF)),
+ mem_cpat:$src)>;
+ }
}
/// sse1_fp_unop_p - SSE1 unops in packed form.
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=+sse2 < %s | FileCheck %s --check-prefix=SSE
; RUN: llc -mtriple=x86_64-unknown-unknown -mattr=+avx < %s | FileCheck %s --check-prefix=AVX
-; Verify that we're folding the load into the math instruction.
+; Verify we fold loads into unary sse intrinsics only when optimizing for size
define float @rcpss(float* %a) {
; SSE-LABEL: rcpss:
; SSE: # BB#0:
-; SSE-NEXT: rcpss (%rdi), %xmm0
+; SSE-NEXT: movss (%rdi), %xmm0
+; SSE-NEXT: rcpss %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: rcpss:
; AVX: # BB#0:
-; AVX-NEXT: vrcpss (%rdi), %xmm0, %xmm0
+; AVX-NEXT: vmovss (%rdi), %xmm0
+; AVX-NEXT: vrcpss %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%ld = load float, float* %a
%ins = insertelement <4 x float> undef, float %ld, i32 0
define float @rsqrtss(float* %a) {
; SSE-LABEL: rsqrtss:
; SSE: # BB#0:
-; SSE-NEXT: rsqrtss (%rdi), %xmm0
+; SSE-NEXT: movss (%rdi), %xmm0
+; SSE-NEXT: rsqrtss %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: rsqrtss:
; AVX: # BB#0:
-; AVX-NEXT: vrsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT: vmovss (%rdi), %xmm0
+; AVX-NEXT: vrsqrtss %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%ld = load float, float* %a
%ins = insertelement <4 x float> undef, float %ld, i32 0
define float @sqrtss(float* %a) {
; SSE-LABEL: sqrtss:
; SSE: # BB#0:
-; SSE-NEXT: sqrtss (%rdi), %xmm0
+; SSE-NEXT: movss (%rdi), %xmm0
+; SSE-NEXT: sqrtss %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: sqrtss:
; AVX: # BB#0:
-; AVX-NEXT: vsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT: vmovss (%rdi), %xmm0
+; AVX-NEXT: vsqrtss %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%ld = load float, float* %a
%ins = insertelement <4 x float> undef, float %ld, i32 0
define double @sqrtsd(double* %a) {
; SSE-LABEL: sqrtsd:
; SSE: # BB#0:
-; SSE-NEXT: sqrtsd (%rdi), %xmm0
+; SSE-NEXT: movsd (%rdi), %xmm0
+; SSE-NEXT: sqrtsd %xmm0, %xmm0
; SSE-NEXT: retq
;
; AVX-LABEL: sqrtsd:
; AVX: # BB#0:
-; AVX-NEXT: vsqrtsd (%rdi), %xmm0, %xmm0
+; AVX-NEXT: vmovsd (%rdi), %xmm0
+; AVX-NEXT: vsqrtsd %xmm0, %xmm0, %xmm0
; AVX-NEXT: retq
%ld = load double, double* %a
%ins = insertelement <2 x double> undef, double %ld, i32 0
ret double %ext
}
+define float @rcpss_size(float* %a) optsize {
+; SSE-LABEL: rcpss_size:
+; SSE: # BB#0:
+; SSE-NEXT: rcpss (%rdi), %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: rcpss_size:
+; AVX: # BB#0:
+; AVX-NEXT: vrcpss (%rdi), %xmm0, %xmm0
+; AVX-NEXT: retq
+ %ld = load float, float* %a
+ %ins = insertelement <4 x float> undef, float %ld, i32 0
+ %res = tail call <4 x float> @llvm.x86.sse.rcp.ss(<4 x float> %ins)
+ %ext = extractelement <4 x float> %res, i32 0
+ ret float %ext
+}
+
+define float @rsqrtss_size(float* %a) optsize {
+; SSE-LABEL: rsqrtss_size:
+; SSE: # BB#0:
+; SSE-NEXT: rsqrtss (%rdi), %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: rsqrtss_size:
+; AVX: # BB#0:
+; AVX-NEXT: vrsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT: retq
+ %ld = load float, float* %a
+ %ins = insertelement <4 x float> undef, float %ld, i32 0
+ %res = tail call <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float> %ins)
+ %ext = extractelement <4 x float> %res, i32 0
+ ret float %ext
+}
+
+define float @sqrtss_size(float* %a) optsize{
+; SSE-LABEL: sqrtss_size:
+; SSE: # BB#0:
+; SSE-NEXT: sqrtss (%rdi), %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: sqrtss_size:
+; AVX: # BB#0:
+; AVX-NEXT: vsqrtss (%rdi), %xmm0, %xmm0
+; AVX-NEXT: retq
+ %ld = load float, float* %a
+ %ins = insertelement <4 x float> undef, float %ld, i32 0
+ %res = tail call <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float> %ins)
+ %ext = extractelement <4 x float> %res, i32 0
+ ret float %ext
+}
+
+define double @sqrtsd_size(double* %a) optsize {
+; SSE-LABEL: sqrtsd_size:
+; SSE: # BB#0:
+; SSE-NEXT: sqrtsd (%rdi), %xmm0
+; SSE-NEXT: retq
+;
+; AVX-LABEL: sqrtsd_size:
+; AVX: # BB#0:
+; AVX-NEXT: vsqrtsd (%rdi), %xmm0, %xmm0
+; AVX-NEXT: retq
+ %ld = load double, double* %a
+ %ins = insertelement <2 x double> undef, double %ld, i32 0
+ %res = tail call <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double> %ins)
+ %ext = extractelement <2 x double> %res, i32 0
+ ret double %ext
+}
declare <4 x float> @llvm.x86.sse.rcp.ss(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.rsqrt.ss(<4 x float>) nounwind readnone
declare <4 x float> @llvm.x86.sse.sqrt.ss(<4 x float>) nounwind readnone
declare <2 x double> @llvm.x86.sse2.sqrt.sd(<2 x double>) nounwind readnone
-