--- /dev/null
+//===- Reassociate.cpp - Reassociate binary expressions -------------------===//
+//
+// This pass reassociates commutative expressions in an order that is designed
+// to promote better constant propogation, GCSE, LICM, PRE...
+//
+// For example: 4 + (x + 5) -> x + (4 + 5)
+//
+// Note that this pass works best if left shifts have been promoted to explicit
+// multiplies before this pass executes.
+//
+// In the implementation of this algorithm, constants are assigned rank = 0,
+// function arguments are rank = 1, and other values are assigned ranks
+// corresponding to the reverse post order traversal of current function
+// (starting at 2), which effectively gives values in deep loops higher rank
+// than values not in loops.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Function.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/iOperators.h"
+#include "llvm/Type.h"
+#include "llvm/Pass.h"
+#include "llvm/Constant.h"
+#include "llvm/Support/CFG.h"
+#include "Support/PostOrderIterator.h"
+
+namespace {
+ class Reassociate : public FunctionPass {
+ map<BasicBlock*, unsigned> RankMap;
+ public:
+ const char *getPassName() const {
+ return "Expression Reassociation";
+ }
+
+ bool runOnFunction(Function *F);
+
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.preservesCFG();
+ }
+ private:
+ void BuildRankMap(Function *F);
+ unsigned getRank(Value *V);
+ bool ReassociateExpr(BinaryOperator *I);
+ bool ReassociateBB(BasicBlock *BB);
+ };
+}
+
+Pass *createReassociatePass() { return new Reassociate(); }
+
+void Reassociate::BuildRankMap(Function *F) {
+ unsigned i = 1;
+ ReversePostOrderTraversal<Function*> RPOT(F);
+ for (ReversePostOrderTraversal<Function*>::rpo_iterator I = RPOT.begin(),
+ E = RPOT.end(); I != E; ++I)
+ RankMap[*I] = ++i;
+}
+
+unsigned Reassociate::getRank(Value *V) {
+ if (isa<Argument>(V)) return 1; // Function argument...
+ if (Instruction *I = dyn_cast<Instruction>(V)) {
+ // If this is an expression, return the MAX(rank(LHS), rank(RHS)) so that we
+ // can reassociate expressions for code motion! Since we do not recurse for
+ // PHI nodes, we cannot have infinite recursion here, because there cannot
+ // be loops in the value graph (except for PHI nodes).
+ //
+ if (I->getOpcode() == Instruction::PHINode ||
+ I->getOpcode() == Instruction::Alloca ||
+ I->getOpcode() == Instruction::Malloc || isa<TerminatorInst>(I) ||
+ I->hasSideEffects())
+ return RankMap[I->getParent()];
+
+ unsigned Rank = 0;
+ for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
+ Rank = std::max(Rank, getRank(I->getOperand(i)));
+
+ return Rank;
+ }
+
+ // Otherwise it's a global or constant, rank 0.
+ return 0;
+}
+
+
+// isCommutativeOperator - Return true if the specified instruction is
+// commutative and associative. If the instruction is not commutative and
+// associative, we can not reorder its operands!
+//
+static inline BinaryOperator *isCommutativeOperator(Instruction *I) {
+ // Floating point operations do not commute!
+ if (I->getType()->isFloatingPoint()) return 0;
+
+ if (I->getOpcode() == Instruction::Add ||
+ I->getOpcode() == Instruction::Mul ||
+ I->getOpcode() == Instruction::And ||
+ I->getOpcode() == Instruction::Or ||
+ I->getOpcode() == Instruction::Xor)
+ return cast<BinaryOperator>(I);
+ return 0;
+}
+
+
+bool Reassociate::ReassociateExpr(BinaryOperator *I) {
+ Value *LHS = I->getOperand(0);
+ Value *RHS = I->getOperand(1);
+ unsigned LHSRank = getRank(LHS);
+ unsigned RHSRank = getRank(RHS);
+
+ bool Changed = false;
+
+ // Make sure the LHS of the operand always has the greater rank...
+ if (LHSRank < RHSRank) {
+ I->swapOperands();
+ std::swap(LHS, RHS);
+ std::swap(LHSRank, RHSRank);
+ Changed = true;
+ //cerr << "Transposed: " << I << " Result BB: " << I->getParent();
+ }
+
+ // If the LHS is the same operator as the current one is, and if we are the
+ // only expression using it...
+ //
+ if (BinaryOperator *LHSI = dyn_cast<BinaryOperator>(LHS))
+ if (LHSI->getOpcode() == I->getOpcode() && LHSI->use_size() == 1) {
+ // If the rank of our current RHS is less than the rank of the LHS's LHS,
+ // then we reassociate the two instructions...
+ if (RHSRank < getRank(LHSI->getOperand(0))) {
+ unsigned TakeOp = 0;
+ if (BinaryOperator *IOp = dyn_cast<BinaryOperator>(LHSI->getOperand(0)))
+ if (IOp->getOpcode() == LHSI->getOpcode())
+ TakeOp = 1; // Hoist out non-tree portion
+
+ // Convert ((a + 12) + 10) into (a + (12 + 10))
+ I->setOperand(0, LHSI->getOperand(TakeOp));
+ LHSI->setOperand(TakeOp, RHS);
+ I->setOperand(1, LHSI);
+
+ //cerr << "Reassociated: " << I << " Result BB: " << I->getParent();
+
+ // Since we modified the RHS instruction, make sure that we recheck it.
+ ReassociateExpr(LHSI);
+ return true;
+ }
+ }
+
+ return Changed;
+}
+
+
+bool Reassociate::ReassociateBB(BasicBlock *BB) {
+ bool Changed = false;
+ for (BasicBlock::iterator BI = BB->begin(); BI != BB->end(); ++BI) {
+ Instruction *Inst = *BI;
+
+ // If this instruction is a commutative binary operator, and the ranks of
+ // the two operands are sorted incorrectly, fix it now.
+ //
+ if (BinaryOperator *I = isCommutativeOperator(Inst)) {
+ // Make sure that this expression is correctly reassociated with respect
+ // to it's used values...
+ //
+ Changed |= ReassociateExpr(I);
+
+ } else if (Inst->getOpcode() == Instruction::Sub &&
+ Inst->getOperand(0) != Constant::getNullValue(Inst->getType())) {
+ // Convert a subtract into an add and a neg instruction... so that sub
+ // instructions can be commuted with other add instructions...
+ //
+ Instruction *New = BinaryOperator::create(Instruction::Add,
+ Inst->getOperand(0), Inst,
+ Inst->getName()+".add");
+ // Everyone now refers to the add instruction...
+ Inst->replaceAllUsesWith(New);
+ New->setOperand(1, Inst); // Except for the add inst itself!
+
+ BI = BB->getInstList().insert(BI+1, New)-1; // Add to the basic block...
+ Inst->setOperand(0, Constant::getNullValue(Inst->getType()));
+ Changed = true;
+ }
+ }
+
+ return Changed;
+}
+
+
+bool Reassociate::runOnFunction(Function *F) {
+ // Recalculate the rank map for F
+ BuildRankMap(F);
+
+ bool Changed = false;
+ for (Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
+ Changed |= ReassociateBB(*FI);
+
+ // We are done with the rank map...
+ RankMap.clear();
+ return Changed;
+}