[(X86callseq_end imm:$amt1, imm:$amt2)]>;
def IMPLICIT_USE : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_USE", []>;
def IMPLICIT_DEF : I<0, Pseudo, (ops variable_ops), "#IMPLICIT_DEF", []>;
+def IMPLICIT_DEF_R8 : I<0, Pseudo, (ops R8:$dst),
+ "#IMPLICIT_DEF $dst",
+ [(set R8:$dst, (undef))]>;
+def IMPLICIT_DEF_R16 : I<0, Pseudo, (ops R16:$dst),
+ "#IMPLICIT_DEF $dst",
+ [(set R16:$dst, (undef))]>;
+def IMPLICIT_DEF_R32 : I<0, Pseudo, (ops R32:$dst),
+ "#IMPLICIT_DEF $dst",
+ [(set R32:$dst, (undef))]>;
+
let isTerminator = 1 in
let Defs = [FP0, FP1, FP2, FP3, FP4, FP5, FP6] in
def FP_REG_KILL : I<0, Pseudo, (ops), "#FP_REG_KILL", []>;
[(X86call (loadi32 addr:$dst))]>;
}
-def : Pat<(X86call tglobaladdr:$dst),
- (CALLpcrel32 tglobaladdr:$dst)>;
-def : Pat<(X86call externalsym:$dst),
- (CALLpcrel32 externalsym:$dst)>;
-
// Tail call stuff.
let isCall = 1, isTerminator = 1, isReturn = 1, isBarrier = 1, noResults = 1 in
def TAILJMPd : IBr<0xE9, (ops calltarget:$dst), "jmp $dst # TAIL CALL", []>;
} // end Two Address instructions
-// X86 specific add which produces a flag.
-def : Pat<(X86addflag R32:$src1, R32:$src2),
- (ADD32rr R32:$src1, R32:$src2)>;
-def : Pat<(X86addflag R32:$src1, (load addr:$src2)),
- (ADD32rm R32:$src1, addr:$src2)>;
-def : Pat<(X86addflag R32:$src1, imm:$src2),
- (ADD32ri R32:$src1, imm:$src2)>;
-def : Pat<(X86addflag R32:$src1, i32immSExt8:$src2),
- (ADD32ri8 R32:$src1, i32immSExt8:$src2)>;
-
-def : Pat<(X86subflag R32:$src1, R32:$src2),
- (SUB32rr R32:$src1, R32:$src2)>;
-def : Pat<(X86subflag R32:$src1, (load addr:$src2)),
- (SUB32rm R32:$src1, addr:$src2)>;
-def : Pat<(X86subflag R32:$src1, imm:$src2),
- (SUB32ri R32:$src1, imm:$src2)>;
-def : Pat<(X86subflag R32:$src1, i32immSExt8:$src2),
- (SUB32ri8 R32:$src1, i32immSExt8:$src2)>;
-
// Suprisingly enough, these are not two address instructions!
def IMUL16rri : Ii16<0x69, MRMSrcReg, // R16 = R16*I16
(ops R16:$dst, R16:$src1, i16imm:$src2),
"movz{wl|x} {$src, $dst|$dst, $src}",
[(set R32:$dst, (zextloadi32i16 addr:$src))]>, TB;
-// Handling 1 bit zextload and sextload
-def : Pat<(sextloadi16i1 addr:$src), (MOVSX16rm8 addr:$src)>;
-def : Pat<(sextloadi32i1 addr:$src), (MOVSX32rm8 addr:$src)>;
-def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
-def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
-
-// Handling 1 bit extload
-def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
-
-// Modeling anyext as zext
-def : Pat<(i16 (anyext R8 :$src)), (MOVZX16rr8 R8 :$src)>;
-def : Pat<(i32 (anyext R8 :$src)), (MOVZX32rr8 R8 :$src)>;
-def : Pat<(i32 (anyext R16:$src)), (MOVZX32rr16 R16:$src)>;
-
//===----------------------------------------------------------------------===//
// XMM Floating point support (requires SSE / SSE2)
//===----------------------------------------------------------------------===//
// FPI - Floating Point Instruction template.
class FPI<bits<8> o, Format F, dag ops, string asm> : I<o, F, ops, asm, []> {}
-// FpI - Floating Point Psuedo Instruction template.
-class FpI<dag ops, FPFormat fp, list<dag> pattern>
- : X86Inst<0, Pseudo, NoImm, ops, "">, Requires<[FPStack]> {
+// FpI_ - Floating Point Psuedo Instruction template. Not Predicated.
+class FpI_<dag ops, FPFormat fp, list<dag> pattern>
+ : X86Inst<0, Pseudo, NoImm, ops, ""> {
let FPForm = fp; let FPFormBits = FPForm.Value;
let Pattern = pattern;
}
// Random Pseudo Instructions.
-def FpGETRESULT : FpI<(ops RFP:$dst), SpecialFP, []>; // FPR = ST(0)
-
-// Do not inline into instruction def. since it isn't predicated on FPStack.
-def : Pat<(X86fpget), (FpGETRESULT)>;
+def FpGETRESULT : FpI_<(ops RFP:$dst), SpecialFP,
+ [(set RFP:$dst, X86fpget)]>; // FPR = ST(0)
let noResults = 1 in
- def FpSETRESULT : FpI<(ops RFP:$src), SpecialFP,
- []>, Imp<[], [ST0]>; // ST(0) = FPR
+ def FpSETRESULT : FpI_<(ops RFP:$src), SpecialFP,
+ [(X86fpset RFP:$src)]>, Imp<[], [ST0]>; // ST(0) = FPR
+
+// FpI - Floating Point Psuedo Instruction template. Predicated on FPStack.
+class FpI<dag ops, FPFormat fp, list<dag> pattern> :
+ FpI_<ops, fp, pattern>, Requires<[FPStack]>;
-// Do not inline into instruction def. since it isn't predicated on FPStack.
-def : Pat<(X86fpset RFP:$src), (FpSETRESULT RFP:$src)>;
def FpMOV : FpI<(ops RFP:$dst, RFP:$src), SpecialFP, []>; // f1 = fmov f2
def FpILD64m : FpI<(ops RFP:$dst, i64mem:$src), ZeroArgFP,
[]>;
-// Required for RET of f32 / f64 values.
-def : Pat<(X86fld addr:$src, f32), (FpLD32m addr:$src)>;
-def : Pat<(X86fld addr:$src, f64), (FpLD64m addr:$src)>;
-
def FpST32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP,
[(truncstore RFP:$src, addr:$op, f32)]>;
def FpST64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP,
[(store RFP:$src, addr:$op)]>;
-def : Pat<(X86fst RFP:$src, addr:$op, f32), (FpST32m addr:$op, RFP:$src)>;
-def : Pat<(X86fst RFP:$src, addr:$op, f64), (FpST64m addr:$op, RFP:$src)>;
-
def FpSTP32m : FpI<(ops f32mem:$op, RFP:$src), OneArgFP, []>;
def FpSTP64m : FpI<(ops f64mem:$op, RFP:$src), OneArgFP, []>;
def FpIST16m : FpI<(ops i16mem:$op, RFP:$src), OneArgFP, []>;
def FpLD1 : FpI<(ops RFP:$dst), ZeroArgFP,
[(set RFP:$dst, fp64imm1)]>;
-def : Pat<(f64 fp64immneg0), (FpCHS (FpLD0))>, Requires<[FPStack]>;
-def : Pat<(f64 fp64immneg1), (FpCHS (FpLD1))>, Requires<[FPStack]>;
-
def FLD0 : FPI<0xEE, RawFrm, (ops), "fldz">, D9;
def FLD1 : FPI<0xE8, RawFrm, (ops), "fld1">, D9;
def RDTSC : I<0x31, RawFrm, (ops), "rdtsc", [(X86rdtsc)]>,
TB, Imp<[],[EAX,EDX]>;
+
+//===----------------------------------------------------------------------===//
+// Non-Instruction Patterns
+//===----------------------------------------------------------------------===//
+
+// Calls
+def : Pat<(X86call tglobaladdr:$dst),
+ (CALLpcrel32 tglobaladdr:$dst)>;
+def : Pat<(X86call externalsym:$dst),
+ (CALLpcrel32 externalsym:$dst)>;
+
+// X86 specific add which produces a flag.
+def : Pat<(X86addflag R32:$src1, R32:$src2),
+ (ADD32rr R32:$src1, R32:$src2)>;
+def : Pat<(X86addflag R32:$src1, (load addr:$src2)),
+ (ADD32rm R32:$src1, addr:$src2)>;
+def : Pat<(X86addflag R32:$src1, imm:$src2),
+ (ADD32ri R32:$src1, imm:$src2)>;
+def : Pat<(X86addflag R32:$src1, i32immSExt8:$src2),
+ (ADD32ri8 R32:$src1, i32immSExt8:$src2)>;
+
+def : Pat<(X86subflag R32:$src1, R32:$src2),
+ (SUB32rr R32:$src1, R32:$src2)>;
+def : Pat<(X86subflag R32:$src1, (load addr:$src2)),
+ (SUB32rm R32:$src1, addr:$src2)>;
+def : Pat<(X86subflag R32:$src1, imm:$src2),
+ (SUB32ri R32:$src1, imm:$src2)>;
+def : Pat<(X86subflag R32:$src1, i32immSExt8:$src2),
+ (SUB32ri8 R32:$src1, i32immSExt8:$src2)>;
+
+// {s|z}extload bool -> {s|z}extload byte
+def : Pat<(sextloadi16i1 addr:$src), (MOVSX16rm8 addr:$src)>;
+def : Pat<(sextloadi32i1 addr:$src), (MOVSX32rm8 addr:$src)>;
+def : Pat<(zextloadi16i1 addr:$src), (MOVZX16rm8 addr:$src)>;
+def : Pat<(zextloadi32i1 addr:$src), (MOVZX32rm8 addr:$src)>;
+
+// extload bool -> extload byte
+def : Pat<(extloadi8i1 addr:$src), (MOV8rm addr:$src)>;
+
+// anyext -> zext
+def : Pat<(i16 (anyext R8 :$src)), (MOVZX16rr8 R8 :$src)>;
+def : Pat<(i32 (anyext R8 :$src)), (MOVZX32rr8 R8 :$src)>;
+def : Pat<(i32 (anyext R16:$src)), (MOVZX32rr16 R16:$src)>;
+
+// Required for RET of f32 / f64 values.
+def : Pat<(X86fld addr:$src, f32), (FpLD32m addr:$src)>;
+def : Pat<(X86fld addr:$src, f64), (FpLD64m addr:$src)>;
+
+// Required for CALL which return f32 / f64 values.
+def : Pat<(X86fst RFP:$src, addr:$op, f32), (FpST32m addr:$op, RFP:$src)>;
+def : Pat<(X86fst RFP:$src, addr:$op, f64), (FpST64m addr:$op, RFP:$src)>;
+
+// Floatin point constant -0.0 and -1.0
+def : Pat<(f64 fp64immneg0), (FpCHS (FpLD0))>, Requires<[FPStack]>;
+def : Pat<(f64 fp64immneg1), (FpCHS (FpLD1))>, Requires<[FPStack]>;
+
+// FR64 undef
+def : Pat<(f64 (undef)), (FLD0SD)>, Requires<[HasSSE2]>;
+// RFP undef
+def : Pat<(f64 (undef)), (FpLD0)>, Requires<[FPStack]>;
+
+
//===----------------------------------------------------------------------===//
// Some peepholes
//===----------------------------------------------------------------------===//