/// return a new machine instruction. If an instruction cannot commute, it
/// can also return null.
///
- virtual MachineInstr *commuteInstruction(MachineInstr *MI) const = 0;
+ /// If NewMI is true, then a new machine instruction must be created.
+ ///
+ virtual MachineInstr *commuteInstruction(MachineInstr *MI,
+ bool NewMI = false) const = 0;
/// CommuteChangesDestination - Return true if commuting the specified
/// instruction will also changes the destination operand. Also return the
TargetInstrInfoImpl(const TargetInstrDesc *desc, unsigned NumOpcodes)
: TargetInstrInfo(desc, NumOpcodes) {}
public:
- virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
+ virtual MachineInstr *commuteInstruction(MachineInstr *MI,
+ bool NewMI = false) const;
virtual bool CommuteChangesDestination(MachineInstr *MI,
unsigned &OpIdx) const;
virtual bool PredicateInstruction(MachineInstr *MI,
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
using namespace llvm;
// commuteInstruction - The default implementation of this method just exchanges
// operand 1 and 2.
-MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI) const {
+MachineInstr *TargetInstrInfoImpl::commuteInstruction(MachineInstr *MI,
+ bool NewMI) const {
assert(MI->getOperand(1).isRegister() && MI->getOperand(2).isRegister() &&
"This only knows how to commute register operands so far");
unsigned Reg1 = MI->getOperand(1).getReg();
unsigned Reg2 = MI->getOperand(2).getReg();
bool Reg1IsKill = MI->getOperand(1).isKill();
bool Reg2IsKill = MI->getOperand(2).isKill();
+ bool ChangeReg0 = false;
if (MI->getOperand(0).getReg() == Reg1) {
// Must be two address instruction!
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
"Expecting a two-address instruction!");
Reg2IsKill = false;
- MI->getOperand(0).setReg(Reg2);
+ ChangeReg0 = true;
+ }
+
+ if (NewMI) {
+ // Create a new instruction.
+ unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
+ bool Reg0IsDead = MI->getOperand(0).isDead();
+ return BuildMI(MI->getDesc()).addReg(Reg0, true, false, false, Reg0IsDead)
+ .addReg(Reg2, false, false, Reg2IsKill)
+ .addReg(Reg1, false, false, Reg1IsKill);
}
+
+ if (ChangeReg0)
+ MI->getOperand(0).setReg(Reg2);
MI->getOperand(2).setReg(Reg1);
MI->getOperand(1).setReg(Reg2);
MI->getOperand(2).setIsKill(Reg1IsKill);
// commuteInstruction - We can commute rlwimi instructions, but only if the
// rotate amt is zero. We also have to munge the immediates a bit.
-MachineInstr *PPCInstrInfo::commuteInstruction(MachineInstr *MI) const {
+MachineInstr *
+PPCInstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
// Normal instructions can be commuted the obvious way.
if (MI->getOpcode() != PPC::RLWIMI)
- return TargetInstrInfoImpl::commuteInstruction(MI);
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
// Cannot commute if it has a non-zero rotate count.
if (MI->getOperand(3).getImm() != 0)
unsigned Reg2 = MI->getOperand(2).getReg();
bool Reg1IsKill = MI->getOperand(1).isKill();
bool Reg2IsKill = MI->getOperand(2).isKill();
+ bool ChangeReg0 = false;
// If machine instrs are no longer in two-address forms, update
// destination register as well.
if (Reg0 == Reg1) {
// Must be two address instruction!
assert(MI->getDesc().getOperandConstraint(0, TOI::TIED_TO) &&
"Expecting a two-address instruction!");
- MI->getOperand(0).setReg(Reg2);
Reg2IsKill = false;
+ ChangeReg0 = true;
+ }
+
+ // Masks.
+ unsigned MB = MI->getOperand(4).getImm();
+ unsigned ME = MI->getOperand(5).getImm();
+
+ if (NewMI) {
+ // Create a new instruction.
+ unsigned Reg0 = ChangeReg0 ? Reg2 : MI->getOperand(0).getReg();
+ bool Reg0IsDead = MI->getOperand(0).isDead();
+ return BuildMI(MI->getDesc()).addReg(Reg0, true, false, false, Reg0IsDead)
+ .addReg(Reg2, false, false, Reg2IsKill)
+ .addReg(Reg1, false, false, Reg1IsKill)
+ .addImm((ME+1) & 31)
+ .addImm((MB-1) & 31);
}
+
+ if (ChangeReg0)
+ MI->getOperand(0).setReg(Reg2);
MI->getOperand(2).setReg(Reg1);
MI->getOperand(1).setReg(Reg2);
MI->getOperand(2).setIsKill(Reg1IsKill);
MI->getOperand(1).setIsKill(Reg2IsKill);
// Swap the mask around.
- unsigned MB = MI->getOperand(4).getImm();
- unsigned ME = MI->getOperand(5).getImm();
MI->getOperand(4).setImm((ME+1) & 31);
MI->getOperand(5).setImm((MB-1) & 31);
return MI;
// commuteInstruction - We can commute rlwimi instructions, but only if the
// rotate amt is zero. We also have to munge the immediates a bit.
- virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
+ virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
virtual void insertNoop(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI) const;
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
-MachineInstr *X86InstrInfo::commuteInstruction(MachineInstr *MI) const {
+MachineInstr *
+X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
switch (MI->getOpcode()) {
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
// Fallthrough intended.
}
default:
- return TargetInstrInfoImpl::commuteInstruction(MI);
+ return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
}
}
/// commuteInstruction - We have a few instructions that must be hacked on to
/// commute them.
///
- virtual MachineInstr *commuteInstruction(MachineInstr *MI) const;
+ virtual MachineInstr *commuteInstruction(MachineInstr *MI, bool NewMI) const;
// Branch analysis.
virtual bool isUnpredicatedTerminator(const MachineInstr* MI) const;