--- /dev/null
+/**************************************************************************
+ * *
+ * Java Grande Forum Benchmark Suite - Thread Version 1.0 *
+ * *
+ * produced by *
+ * *
+ * Java Grande Benchmarking Project *
+ * *
+ * at *
+ * *
+ * Edinburgh Parallel Computing Centre *
+ * *
+ * email: epcc-javagrande@epcc.ed.ac.uk *
+ * *
+ * Original version of this code by *
+ * Gabriel Zachmann (zach@igd.fhg.de) *
+ * *
+ * This version copyright (c) The University of Edinburgh, 2001. *
+ * All rights reserved. *
+ * *
+ **************************************************************************/
+
+
+public class IDEARunner {
+
+ int id, key[];
+ byte text1[], text2[];
+ int nthreads;
+ int local_size;
+
+ public IDEARunner(int id, byte[] text1, byte[] text2, int local_size, int[] key, int nthreads) {
+ this.id = id;
+ this.text1 = text1;
+ this.text2 = text2;
+ this.key = key;
+ this.nthreads = nthreads;
+ this.local_size = local_size;
+ }
+
+ //
+ // run()
+ //
+ // IDEA encryption/decryption algorithm. It processes plaintext in
+ // 64-bit blocks, one at a time, breaking the block into four 16-bit
+ // unsigned subblocks. It goes through eight rounds of processing
+ // using 6 new subkeys each time, plus four for last step. The source
+ // text is in array text1, the destination text goes into array text2
+ // The routine represents 16-bit subblocks and subkeys as type int so
+ // that they can be treated more easily as unsigned. Multiplication
+ // modulo 0x10001 interprets a zero sub-block as 0x10000; it must to
+ // fit in 16 bits.
+ //
+
+ public void run() {
+ int ilow, iupper, slice, tslice, ttslice;
+
+ tslice = text1.length / 8;
+ ttslice = (tslice + nthreads - 1) / nthreads;
+ slice = ttslice * 8;
+
+ ilow = id * slice;
+ iupper = (id + 1) * slice;
+ if (iupper > text1.length)
+ iupper = text1.length;
+
+ int i1 = ilow; // Index into first text array.
+ // int i2 = ilow; // Index into second text array.
+ int i2 = 0;
+
+ int ik; // Index into key array.
+ int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps.
+ int r; // Eight rounds of processing.
+
+ for (int i = ilow; i < iupper; i += 8) {
+
+ ik = 0; // Restart key index.
+ r = 8; // Eight rounds of processing.
+
+ // Load eight plain1 bytes as four 16-bit "unsigned" integers.
+ // Masking with 0xff prevents sign extension with cast to int.
+
+ x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes,
+ x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first.
+ x2 = text1[i1++] & 0xff;
+ x2 |= (text1[i1++] & 0xff) << 8;
+ x3 = text1[i1++] & 0xff;
+ x3 |= (text1[i1++] & 0xff) << 8;
+ x4 = text1[i1++] & 0xff;
+ x4 |= (text1[i1++] & 0xff) << 8;
+
+ do {
+ // 1) Multiply (modulo 0x10001), 1st text sub-block
+ // with 1st key sub-block.
+
+ x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 2) Add (modulo 0x10000), 2nd text sub-block
+ // with 2nd key sub-block.
+
+ x2 = x2 + key[ik++] & 0xffff;
+
+ // 3) Add (modulo 0x10000), 3rd text sub-block
+ // with 3rd key sub-block.
+
+ x3 = x3 + key[ik++] & 0xffff;
+
+ // 4) Multiply (modulo 0x10001), 4th text sub-block
+ // with 4th key sub-block.
+
+ x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);
+
+ // 5) XOR results from steps 1 and 3.
+
+ t2 = x1 ^ x3;
+
+ // 6) XOR results from steps 2 and 4.
+ // Included in step 8.
+
+ // 7) Multiply (modulo 0x10001), result of step 5
+ // with 5th key sub-block.
+
+ t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff);
+
+ // 8) Add (modulo 0x10000), results of steps 6 and 7.
+
+ t1 = t2 + (x2 ^ x4) & 0xffff;
+
+ // 9) Multiply (modulo 0x10001), result of step 8
+ // with 6th key sub-block.
+
+ t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 10) Add (modulo 0x10000), results of steps 7 and 9.
+
+ t2 = t1 + t2 & 0xffff;
+
+ // 11) XOR results from steps 1 and 9.
+
+ x1 ^= t1;
+
+ // 14) XOR results from steps 4 and 10. (Out of order).
+
+ x4 ^= t2;
+
+ // 13) XOR results from steps 2 and 10. (Out of order).
+
+ t2 ^= x2;
+
+ // 12) XOR results from steps 3 and 9. (Out of order).
+
+ x2 = x3 ^ t1;
+
+ x3 = t2; // Results of x2 and x3 now swapped.
+
+ } while (--r != 0); // Repeats seven more rounds.
+
+ // Final output transform (4 steps).
+
+ // 1) Multiply (modulo 0x10001), 1st text-block
+ // with 1st key sub-block.
+
+ x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 2) Add (modulo 0x10000), 2nd text sub-block
+ // with 2nd key sub-block. It says x3, but that is to undo swap
+ // of subblocks 2 and 3 in 8th processing round.
+
+ x3 = x3 + key[ik++] & 0xffff;
+
+ // 3) Add (modulo 0x10000), 3rd text sub-block
+ // with 3rd key sub-block. It says x2, but that is to undo swap
+ // of subblocks 2 and 3 in 8th processing round.
+
+ x2 = x2 + key[ik++] & 0xffff;
+
+ // 4) Multiply (modulo 0x10001), 4th text-block
+ // with 4th key sub-block.
+
+ x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);
+
+ // Repackage from 16-bit sub-blocks to 8-bit byte array text2.
+
+ text2[i2++] = (byte) x1;
+ text2[i2++] = (byte) (x1 >>> 8);
+ text2[i2++] = (byte) x3; // x3 and x2 are switched
+ text2[i2++] = (byte) (x3 >>> 8); // only in name.
+ text2[i2++] = (byte) x2;
+ text2[i2++] = (byte) (x2 >>> 8);
+ text2[i2++] = (byte) x4;
+ text2[i2++] = (byte) (x4 >>> 8);
+ } // End for loop.
+
+ } // End routine.
+
+} // End of class
--- /dev/null
+/**************************************************************************
+ * *
+ * Java Grande Forum Benchmark Suite - Thread Version 1.0 *
+ * *
+ * produced by *
+ * *
+ * Java Grande Benchmarking Project *
+ * *
+ * at *
+ * *
+ * Edinburgh Parallel Computing Centre *
+ * *
+ * email: epcc-javagrande@epcc.ed.ac.uk *
+ * *
+ * Original version of this code by *
+ * Gabriel Zachmann (zach@igd.fhg.de) *
+ * *
+ * This version copyright (c) The University of Edinburgh, 2001. *
+ * All rights reserved. *
+ * *
+ **************************************************************************/
+
+public class JGFCryptBench {
+
+ private int nWorker;
+ private int size;
+ private int datasizes[];
+ int array_rows;
+
+ byte[] plain1; // Buffer for plaintext data.
+
+ short[] userkey; // Key for encryption/decryption.
+ int[] Z; // Encryption subkey (userkey derived).
+ int[] DK; // Decryption subkey (userkey derived).
+
+ // buildTestData
+ // Builds the data used for the test -- each time the test is run.
+ void buildTestData() {
+
+ // Create three byte arrays that will be used (and reused) for
+ // encryption/decryption operations.
+
+ plain1 = new byte[array_rows];
+
+ Random rndnum = new Random(136506717L); // Create random number generator.
+
+ // Allocate three arrays to hold keys: userkey is the 128-bit key.
+ // Z is the set of 16-bit encryption subkeys derived from userkey,
+ // while DK is the set of 16-bit decryption subkeys also derived
+ // from userkey. NOTE: The 16-bit values are stored here in
+ // 32-bit int arrays so that the values may be used in calculations
+ // as if they are unsigned. Each 64-bit block of plaintext goes
+ // through eight processing rounds involving six of the subkeys
+ // then a final output transform with four of the keys; (8 * 6)
+ // + 4 = 52 subkeys.
+
+ userkey = new short[8]; // User key has 8 16-bit shorts.
+ Z = new int[52]; // Encryption subkey (user key derived).
+ DK = new int[52]; // Decryption subkey (user key derived).
+
+ // Generate user key randomly; eight 16-bit values in an array.
+
+ for (int i = 0; i < 8; i++) {
+ // Again, the random number function returns int. Converting
+ // to a short type preserves the bit pattern in the lower 16
+ // bits of the int and discards the rest.
+
+ userkey[i] = (short) rndnum.nextInt();
+ }
+
+ // Compute encryption and decryption subkeys.
+
+ calcEncryptKey();
+ calcDecryptKey();
+
+ // Fill plain1 with "text."
+ for (int i = 0; i < array_rows; i++) {
+ plain1[i] = (byte) i;
+
+ // Converting to a byte
+ // type preserves the bit pattern in the lower 8 bits of the
+ // int and discards the rest.
+ }
+ }
+
+ // calcEncryptKey
+
+ // Builds the 52 16-bit encryption subkeys Z[] from the user key and
+ // stores in 32-bit int array. The routing corrects an error in the
+ // source code in the Schnier book. Basically, the sense of the 7-
+ // and 9-bit shifts are reversed. It still works reversed, but would
+ // encrypted code would not decrypt with someone else's IDEA code.
+ //
+
+ private void calcEncryptKey() {
+ int j; // Utility variable.
+
+ for (int i = 0; i < 52; i++)
+ // Zero out the 52-int Z array.
+ Z[i] = 0;
+
+ for (int i = 0; i < 8; i++) // First 8 subkeys are userkey itself.
+ {
+ Z[i] = userkey[i] & 0xffff; // Convert "unsigned"
+ // short to int.
+ }
+
+ // Each set of 8 subkeys thereafter is derived from left rotating
+ // the whole 128-bit key 25 bits to left (once between each set of
+ // eight keys and then before the last four). Instead of actually
+ // rotating the whole key, this routine just grabs the 16 bits
+ // that are 25 bits to the right of the corresponding subkey
+ // eight positions below the current subkey. That 16-bit extent
+ // straddles two array members, so bits are shifted left in one
+ // member and right (with zero fill) in the other. For the last
+ // two subkeys in any group of eight, those 16 bits start to
+ // wrap around to the first two members of the previous eight.
+
+ for (int i = 8; i < 52; i++) {
+ int flag1 = 0;
+ j = i % 8;
+ if (j < 6) {
+ Z[i] = ((Z[i - 7] >>> 9) | (Z[i - 6] << 7)) // Shift and combine.
+ & 0xFFFF; // Just 16 bits.
+ // continue; // Next iteration.
+ flag1 = 1;
+ }
+
+ if (flag1 == 0) {
+ int flag2 = 0;
+
+ if (j == 6) // Wrap to beginning for second chunk.
+ {
+ Z[i] = ((Z[i - 7] >>> 9) | (Z[i - 14] << 7)) & 0xFFFF;
+ // continue;
+ flag2 = 1;
+ }
+
+ if (flag2 == 0) {
+ // j == 7 so wrap to beginning for both chunks.
+ Z[i] = ((Z[i - 15] >>> 9) | (Z[i - 14] << 7)) & 0xFFFF;
+ }
+ }
+ }
+ }
+
+ //
+ // calcDecryptKey
+ //
+ // Builds the 52 16-bit encryption subkeys DK[] from the encryption-
+ // subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as
+ // unsigned.
+ //
+
+ private void calcDecryptKey() {
+ int j, k; // Index counters.
+ int t1, t2, t3; // Temps to hold decrypt subkeys.
+
+ t1 = inv(Z[0]); // Multiplicative inverse (mod x10001).
+ t2 = -Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey.
+ t3 = -Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey.
+
+ DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001).
+ DK[50] = t3;
+ DK[49] = t2;
+ DK[48] = t1;
+
+ j = 47; // Indices into temp and encrypt arrays.
+ k = 4;
+ for (int i = 0; i < 7; i++) {
+ t1 = Z[k++];
+ DK[j--] = Z[k++];
+ DK[j--] = t1;
+ t1 = inv(Z[k++]);
+ t2 = -Z[k++] & 0xffff;
+ t3 = -Z[k++] & 0xffff;
+ DK[j--] = inv(Z[k++]);
+ DK[j--] = t2;
+ DK[j--] = t3;
+ DK[j--] = t1;
+ }
+
+ t1 = Z[k++];
+ DK[j--] = Z[k++];
+ DK[j--] = t1;
+ t1 = inv(Z[k++]);
+ t2 = -Z[k++] & 0xffff;
+ t3 = -Z[k++] & 0xffff;
+ DK[j--] = inv(Z[k++]);
+ DK[j--] = t3;
+ DK[j--] = t2;
+ DK[j--] = t1;
+ }
+
+ //
+ // mul
+ //
+ // Performs multiplication, modulo (2**16)+1. This code is structured
+ // on the assumption that untaken branches are cheaper than taken
+ // branches, and that the compiler doesn't schedule branches.
+ // Java: Must work with 32-bit int and one 64-bit long to keep
+ // 16-bit values and their products "unsigned." The routine assumes
+ // that both a and b could fit in 16 bits even though they come in
+ // as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit.
+ // Also, because the routine stores mod (2**16)+1 results in a 2**16
+ // space, the result is truncated to zero whenever the result would
+ // zero, be 2**16. And if one of the multiplicands is 0, the result
+ // is not zero, but (2**16) + 1 minus the other multiplicand (sort
+ // of an additive inverse mod 0x10001).
+
+ // NOTE: The java conversion of this routine works correctly, but
+ // is half the speed of using Java's modulus division function (%)
+ // on the multiplication with a 16-bit masking of the result--running
+ // in the Symantec Caje IDE. So it's not called for now; the test
+ // uses Java % instead.
+ //
+
+ private int mul(int a, int b) {
+ int ret;
+ long p; // Large enough to catch 16-bit multiply
+ // without hitting sign bit.
+ if (a != 0) {
+ if (b != 0) {
+ p = (long) a * b;
+ b = (int) p & 0xFFFF; // Lower 16 bits.
+ a = (int) p >>> 16; // Upper 16 bits.
+ if (b < a)
+ return (b - a + 1) & 0xFFFF;
+ else
+ return (b - a) & 0xFFFF;
+ } else
+ return ((1 - a) & 0xFFFF); // If b = 0, then same as
+ // 0x10001 - a.
+ } else
+ // If a = 0, then return
+ return ((1 - b) & 0xFFFF); // same as 0x10001 - b.
+ }
+
+ //
+ // inv
+ //
+ // Compute multiplicative inverse of x, modulo (2**16)+1 using
+ // extended Euclid's GCD (greatest common divisor) algorithm.
+ // It is unrolled twice to avoid swapping the meaning of
+ // the registers. And some subtracts are changed to adds.
+ // Java: Though it uses signed 32-bit ints, the interpretation
+ // of the bits within is strictly unsigned 16-bit.
+ //
+
+ private int inv(int x) {
+ int t0, t1;
+ int q, y;
+
+ if (x <= 1) // Assumes positive x.
+ return (x); // 0 and 1 are self-inverse.
+
+ t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits.
+ y = 0x10001 % x;
+ if (y == 1)
+ return ((1 - t1) & 0xFFFF);
+
+ t0 = 1;
+ do {
+ q = x / y;
+ x = x % y;
+ t0 += q * t1;
+ if (x == 1)
+ return (t0);
+ q = y / x;
+ y = y % x;
+ t1 += q * t0;
+ } while (y != 1);
+
+ return ((1 - t1) & 0xFFFF);
+ }
+
+ public JGFCryptBench() {
+ datasizes = new int[3];
+ datasizes[0] = 3000000;
+ datasizes[1] = 20000000;
+ datasizes[2] = 50000000;
+ }
+
+ public void JGFsetsize(int size, int nWorker) {
+ this.size = size;
+ this.nWorker = nWorker;
+ }
+
+ public void JGFinitialise() {
+ array_rows = datasizes[size];
+ buildTestData();
+ }
+
+ public void JGFkernel(){
+
+ byte [] crypt1 = new byte [array_rows];
+ byte [] plain2 = new byte [array_rows];
+
+ int nW=nWorker;
+ // Encrypt plain1.
+ int ilow, iupper, slice, tslice, ttslice;
+ tslice = plain1.length / 8;
+ ttslice = (tslice + nWorker-1) / nWorker;
+ slice = ttslice*8;
+
+ for(int i=0;i<nW;i++) {
+ // setup worker
+ ilow = i*slice;
+ iupper = (i+1)*slice;
+ if(iupper > plain1.length) iupper = plain1.length;
+ int localSize=iupper-ilow;
+ byte local_crypt1[] = new byte [localSize];
+
+ sese parallel_e{
+ IDEARunner runner=new IDEARunner(i,plain1,local_crypt1,localSize,Z,nWorker);
+ runner.run();
+ }
+
+ sese serial_e{
+ for(int idx=0;idx<runner.local_size;idx++){
+ crypt1[ilow+idx]=runner.text2[idx];
+ }
+ }
+
+ }
+
+ // Decrypt.
+ for(int i=0;i<nW;i++) {
+ ilow = i*slice;
+ iupper = (i+1)*slice;
+ if(iupper > crypt1.length) iupper = crypt1.length;
+ int localSize=iupper-ilow;
+ byte local_plain2[] = new byte [localSize];
+
+ IDEARunner runner=new IDEARunner(i,crypt1,local_plain2,localSize,DK,nWorker);
+
+ sese parallel_d{
+ runner.run();
+ }
+ sese serial_d{
+ for(int idx=0;idx<runner.local_size;idx++){
+ plain2[ilow+idx]=runner.text2[idx];
+ }
+ }
+ }
+
+
+ boolean error = false;
+ for (int i = 0; i < array_rows; i++){
+ error = (plain1 [i] != plain2 [i]);
+ if (error){
+ System.out.println("Validation failed");
+ System.out.println("Original Byte " + i + " = " + plain1[i]);
+ System.out.println("Encrypted Byte " + i + " = " + crypt1[i]);
+ System.out.println("Decrypted Byte " + i + " = " + plain2[i]);
+ return;
+ }
+ }
+ System.out.println("Validation Success");
+
+ }
+
+ public void JGFrun(int size, int nWorker) {
+
+ JGFsetsize(size, nWorker);
+ JGFinitialise();
+ JGFkernel();
+
+ }
+
+ public static void main(String argv[]) {
+
+ JGFCryptBench cb = new JGFCryptBench();
+
+ int problem_size = 2;
+ int nWorker = 30;
+ if (argv.length > 0) {
+ problem_size = Integer.parseInt(argv[0]);
+ }
+
+ if (argv.length > 1) {
+ nWorker = Integer.parseInt(argv[1]);
+ }
+
+ cb.JGFrun(problem_size, nWorker);
+
+ }
+
+}