different register allocators:</p>
<ul>
- <li><i>Linear Scan</i> — <i>The default allocator</i>. This is the
- well-know linear scan register allocator. Whereas the
- <i>Simple</i> and <i>Local</i> algorithms use a direct mapping
- implementation technique, the <i>Linear Scan</i> implementation
- uses a spiller in order to place load and stores.</li>
-
<li><i>Fast</i> — This register allocator is the default for debug
builds. It allocates registers on a basic block level, attempting to keep
values in registers and reusing registers as appropriate.</li>
+ <li><i>Basic</i> — This is an incremental approach to register
+ allocation. Live ranges are assigned to registers one at a time in
+ an order that is driven by heuristics. Since code can be rewritten
+ on-the-fly during allocation, this framework allows interesting
+ allocators to be developed as extensions. It is not itself a
+ production register allocator but is a potentially useful
+ stand-alone mode for triaging bugs and as a performance baseline.
+
+ <li><i>Greedy</i> — <i>The default allocator</i>. This is a
+ highly tuned implementation of the <i>Basic</i> allocator that
+ incorporates global live range splitting. This allocator works hard
+ to minimize the cost of spill code.
+
<li><i>PBQP</i> — A Partitioned Boolean Quadratic Programming (PBQP)
based register allocator. This allocator works by constructing a PBQP
problem representing the register allocation problem under consideration,
solving this using a PBQP solver, and mapping the solution back to a
register assignment.</li>
-
</ul>
<p>The type of register allocator used in <tt>llc</tt> can be chosen with the