+++ /dev/null
-//Title: 1-d mixed radix FFT.
-//Version:
-//Copyright: Copyright (c) 1998
-//Author: Dongyan Wang
-//Company: University of Wisconsin-Milwaukee.
-//Description:
-// The number of DFT is factorized.
-//
-// Some short FFTs, such as length 2, 3, 4, 5, 8, 10, are used
-// to improve the speed.
-//
-// Prime factors are processed using DFT. In the future, we can
-// improve this part.
-// Note: there is no limit how large the prime factor can be,
-// because for a set of data of an image, the length can be
-// random, ie. an image can have size 263 x 300, where 263 is
-// a large prime factor.
-//
-// A permute() function is used to make sure FFT can be calculated
-// in place.
-//
-// A triddle() function is used to perform the FFT.
-//
-// This program is for FFT of complex data, if the input is real,
-// the program can be further improved. Because I want to use the
-// same program to do IFFT, whose input is often complex, so I
-// still use this program.
-//
-// To save the memory and improve the speed, double data are used
-// instead of double, but I do have a double version transforms.fft.
-//
-// Factorize() is done in constructor, transforms.fft() is needed to be
-// called to do FFT, this is good for use in fft2d, then
-// factorize() is not needed for each row/column of data, since
-// each row/column of a matrix has the same length.
-//
-
-
-public class FFT1d {
- // Maximum numbers of factors allowed.
- //private static final int MaxFactorsNumber = 30;
- private static final int MaxFactorsNumber = 37;
-
- // cos2to3PI = cos(2*pi/3), using for 3 point FFT.
- // cos(2*PI/3) is not -1.5
- private static final double cos2to3PI = -1.5000f;
- // sin2to3PI = sin(2*pi/3), using for 3 point FFT.
- private static final double sin2to3PI = 8.6602540378444E-01f;
-
- // TwotoFivePI = 2*pi/5.
- // c51, c52, c53, c54, c55 are used in fft5().
- // c51 =(cos(TwotoFivePI)+cos(2*TwotoFivePI))/2-1.
- private static final double c51 = -1.25f;
- // c52 =(cos(TwotoFivePI)-cos(2*TwotoFivePI))/2.
- private static final double c52 = 5.5901699437495E-01f;
- // c53 = -sin(TwotoFivePI).
- private static final double c53 = -9.5105651629515E-01f;
- // c54 =-(sin(TwotoFivePI)+sin(2*TwotoFivePI)).
- private static final double c54 = -1.5388417685876E+00f;
- // c55 =(sin(TwotoFivePI)-sin(2*TwotoFivePI)).
- private static final double c55 = 3.6327126400268E-01f;
-
- // OnetoSqrt2 = 1/sqrt(2), used in fft8().
- private static final double OnetoSqrt2 = 7.0710678118655E-01f;
-
- private static int lastRadix = 0;
-
- int N; // length of N point FFT.
- int NumofFactors; // Number of factors of N.
- static final int maxFactor = 20; // Maximum factor of N.
-
- int factors[]; // Factors of N processed in the current stage.
- int sofar[]; // Finished factors before the current stage.
- int remain[]; // Finished factors after the current stage.
-
- double inputRe[], inputIm[]; // Input of FFT.
- double temRe[], temIm[]; // Intermediate result of FFT.
- double outputRe[], outputIm[]; // Output of FFT.
- //static boolean factorsWerePrinted = false;
- boolean factorsWerePrinted = false;
-
- // Constructor: FFT of Complex data.
- public FFT1d(int N) {
- this.N = N;
- outputRe = new double[N];
- outputIm = new double[N];
-
- factorize();
- //printFactors();
-
- // Allocate memory for intermediate result of FFT.
- temRe = new double[maxFactor];
- temIm = new double[maxFactor];
- }
-
- public void fft(double inputRe[], double inputIm[]) {
- // First make sure inputRe & inputIm are of the same length.
- if (inputRe.length != N || inputIm.length != N) {
- System.out.println("Error: the length of real part & imaginary part " +
- "of the input to 1-d FFT are different");
- return;
- } else {
- this.inputRe = inputRe;
- this.inputIm = inputIm;
-
- permute();
- //System.out.println("ready to twiddle");
-
- for (int factorIndex = 0; factorIndex < NumofFactors; factorIndex++)
- twiddle(factorIndex);
- //System.out.println("ready to copy");
-
- // Copy the output[] data to input[], so the output can be
- // returned in the input array.
- for (int i = 0; i < N; i++) {
- inputRe[i] = outputRe[i];
- inputIm[i] = outputIm[i];
- }
-
- }
- }
-
- public void printFactors() {
- if (factorsWerePrinted) return;
- factorsWerePrinted = true;
- //System.out.println("factors.length = " + factors.length + "\n");
- for (int i = 0; i < factors.length; i++)
- System.out.println("factors[i] = " + factors[i]);
- }
-
- private void factorize() {
- int radices[] = {2, 3, 4, 5, 8, 10};
- int temFactors[] = new int[MaxFactorsNumber];
-
- // 1 - point FFT, no need to factorize N.
- if (N == 1) {
- temFactors[0] = 1;
- NumofFactors = 1;
- }
-
- // N - point FFT, N is needed to be factorized.
- int n = N;
- int index = 0; // index of temFactors.
- int i = radices.length - 1;
-
- while ((n > 1) && (i >= 0)) {
- if ((n % radices[i]) == 0) {
- n /= radices[i];
- temFactors[index++] = radices[i];
- } else
- i--;
- }
-
- // Substitute 2x8 with 4x4.
- // index>0, in the case only one prime factor, such as N=263.
- if ((index > 0) && (temFactors[index - 1] == 2))
- for (i = index - 2; i >= 0; i--)
- if (temFactors[i] == 8) {
- temFactors[index - 1] = temFactors[i] = 4;
- // break out of for loop, because only one '2' will exist in
- // temFactors, so only one substitutation is needed.
- break;
- }
-
- if (n > 1) {
- for (int k = 2; k < Math.sqrt(n) + 1; k++)
- while ((n % k) == 0) {
- n /= k;
- temFactors[index++] = k;
- }
- if (n > 1) {
- temFactors[index++] = n;
- }
- }
- NumofFactors = index;
- /*
- if(temFactors[NumofFactors-1] > 10)
- maxFactor = n;
- else
- maxFactor = 10;
- */
-
- // Inverse temFactors and store factors into factors[].
- factors = new int[NumofFactors];
- for (i = 0; i < NumofFactors; i++) {
- factors[i] = temFactors[NumofFactors - i - 1];
- }
-
- // Calculate sofar[], remain[].
- // sofar[] : finished factors before the current stage.
- // factors[]: factors of N processed in the current stage.
- // remain[] : finished factors after the current stage.
- sofar = new int[NumofFactors];
- remain = new int[NumofFactors];
-
- remain[0] = N / factors[0];
- sofar[0] = 1;
- for (i = 1; i < NumofFactors; i++) {
- sofar[i] = sofar[i - 1] * factors[i - 1];
- remain[i] = remain[i - 1] / factors[i];
- }
- } // End of function factorize().
-
- private void permute() {
- int count[] = new int[MaxFactorsNumber];
- int j;
- int k = 0;
-
- for (int i = 0; i < N - 1; i++) {
- outputRe[i] = inputRe[k];
- outputIm[i] = inputIm[k];
- j = 0;
- k = k + remain[j];
- count[0] = count[0] + 1;
- while (count[j] >= factors[j]) {
- count[j] = 0;
- k = k - (j == 0?N:remain[j - 1]) + remain[j + 1];
- j++;
- count[j] = count[j] + 1;
- }
- }
- outputRe[N - 1] = inputRe[N - 1];
- outputIm[N - 1] = inputIm[N - 1];
- } // End of function permute().
-
- private void twiddle(int factorIndex) {
- // Get factor data.
- int sofarRadix = sofar[factorIndex];
- int radix = factors[factorIndex];
- int remainRadix = remain[factorIndex];
-
- double tem; // Temporary variable to do data exchange.
-
- double W = 2 * (double) Math.PI / (sofarRadix * radix);
- double cosW = (double) Math.cos(W);
- double sinW = -(double) Math.sin(W);
-
- double twiddleRe[] = new double[radix];
- double twiddleIm[] = new double[radix];
- double twRe = 1.0f, twIm = 0f;
-
- //Initialize twiddle addBk.address variables.
- int dataOffset = 0, groupOffset = 0, address = 0;
-
- for (int dataNo = 0; dataNo < sofarRadix; dataNo++) {
- //System.out.println("datano="+dataNo);
- if (sofarRadix > 1) {
- twiddleRe[0] = 1.0f;
- twiddleIm[0] = 0.0f;
- twiddleRe[1] = twRe;
- twiddleIm[1] = twIm;
- for (int i = 2; i < radix; i++) {
-
-
- twiddleRe[i] = twRe * twiddleRe[i - 1] - twIm * twiddleIm[i - 1];
- twiddleIm[i] = twIm * twiddleRe[i - 1] + twRe * twiddleIm[i - 1];
- }
- tem = cosW * twRe - sinW * twIm;
- twIm = sinW * twRe + cosW * twIm;
- twRe = tem;
- }
- for (int groupNo = 0; groupNo < remainRadix; groupNo++) {
- //System.out.println("groupNo="+groupNo);
- if ((sofarRadix > 1) && (dataNo > 0)) {
- temRe[0] = outputRe[address];
- temIm[0] = outputIm[address];
- int blockIndex = 1;
- do {
- address = address + sofarRadix;
- temRe[blockIndex] = twiddleRe[blockIndex] * outputRe[address] -
- twiddleIm[blockIndex] * outputIm[address];
- temIm[blockIndex] = twiddleRe[blockIndex] * outputIm[address] +
- twiddleIm[blockIndex] * outputRe[address];
- blockIndex++;
- } while (blockIndex < radix);
- } else
- for (int i = 0; i < radix; i++) {
- //System.out.println("temRe.length="+temRe.length);
- //System.out.println("i = "+i);
- temRe[i] = outputRe[address];
- temIm[i] = outputIm[address];
- address += sofarRadix;
- }
- //System.out.println("radix="+radix);
- switch (radix) {
- case 2:
- tem = temRe[0] + temRe[1];
- temRe[1] = temRe[0] - temRe[1];
- temRe[0] = tem;
- tem = temIm[0] + temIm[1];
- temIm[1] = temIm[0] - temIm[1];
- temIm[0] = tem;
- break;
- case 3:
- double t1Re = temRe[1] + temRe[2];
- double t1Im = temIm[1] + temIm[2];
- temRe[0] = temRe[0] + t1Re;
- temIm[0] = temIm[0] + t1Im;
-
- double m1Re = cos2to3PI * t1Re;
- double m1Im = cos2to3PI * t1Im;
- double m2Re = sin2to3PI * (temIm[1] - temIm[2]);
- double m2Im = sin2to3PI * (temRe[2] - temRe[1]);
- double s1Re = temRe[0] + m1Re;
- double s1Im = temIm[0] + m1Im;
-
- temRe[1] = s1Re + m2Re;
- temIm[1] = s1Im + m2Im;
- temRe[2] = s1Re - m2Re;
- temIm[2] = s1Im - m2Im;
- break;
- case 4:
- fft4(temRe, temIm);
- break;
- case 5:
- fft5(temRe, temIm);
- break;
- case 8:
- fft8();
- break;
- case 10:
- fft10();
- break;
- default :
- fftPrime(radix);
- break;
- }
- address = groupOffset;
- for (int i = 0; i < radix; i++) {
- outputRe[address] = temRe[i];
- outputIm[address] = temIm[i];
- address += sofarRadix;
- }
- groupOffset += sofarRadix * radix;
- address = groupOffset;
- }
- groupOffset = ++dataOffset;
- address = groupOffset;
- }
- } // End of function twiddle().
-
- // The two arguments dataRe[], dataIm[] are mainly for using in fft8();
- private void fft4(double dataRe[], double dataIm[]) {
- double t1Re,t1Im, t2Re,t2Im;
- double m2Re,m2Im, m3Re,m3Im;
-
- t1Re = dataRe[0] + dataRe[2];
- t1Im = dataIm[0] + dataIm[2];
- t2Re = dataRe[1] + dataRe[3];
- t2Im = dataIm[1] + dataIm[3];
-
- m2Re = dataRe[0] - dataRe[2];
- m2Im = dataIm[0] - dataIm[2];
- m3Re = dataIm[1] - dataIm[3];
- m3Im = dataRe[3] - dataRe[1];
-
- dataRe[0] = t1Re + t2Re;
- dataIm[0] = t1Im + t2Im;
- dataRe[2] = t1Re - t2Re;
- dataIm[2] = t1Im - t2Im;
- dataRe[1] = m2Re + m3Re;
- dataIm[1] = m2Im + m3Im;
- dataRe[3] = m2Re - m3Re;
- dataIm[3] = m2Im - m3Im;
- } // End of function fft4().
-
- // The two arguments dataRe[], dataIm[] are mainly for using in fft10();
- private void fft5(double dataRe[], double dataIm[]) {
- double t1Re,t1Im, t2Re,t2Im, t3Re,t3Im, t4Re,t4Im, t5Re,t5Im;
- double m1Re,m1Im, m2Re,m2Im, m3Re,m3Im, m4Re,m4Im, m5Re,m5Im;
- double s1Re,s1Im, s2Re,s2Im, s3Re,s3Im, s4Re,s4Im, s5Re,s5Im;
-
- t1Re = dataRe[1] + dataRe[4];
- t1Im = dataIm[1] + dataIm[4];
- t2Re = dataRe[2] + dataRe[3];
- t2Im = dataIm[2] + dataIm[3];
- t3Re = dataRe[1] - dataRe[4];
- t3Im = dataIm[1] - dataIm[4];
- t4Re = dataRe[3] - dataRe[2];
- t4Im = dataIm[3] - dataIm[2];
- t5Re = t1Re + t2Re;
- t5Im = t1Im + t2Im;
-
- dataRe[0] = dataRe[0] + t5Re;
- dataIm[0] = dataIm[0] + t5Im;
-
- m1Re = c51 * t5Re;
- m1Im = c51 * t5Im;
- m2Re = c52 * (t1Re - t2Re);
- m2Im = c52 * (t1Im - t2Im);
- m3Re = -c53 * (t3Im + t4Im);
- m3Im = c53 * (t3Re + t4Re);
- m4Re = -c54 * t4Im;
- m4Im = c54 * t4Re;
- m5Re = -c55 * t3Im;
- m5Im = c55 * t3Re;
-
- s3Re = m3Re - m4Re;
- s3Im = m3Im - m4Im;
- s5Re = m3Re + m5Re;
- s5Im = m3Im + m5Im;
- s1Re = dataRe[0] + m1Re;
- s1Im = dataIm[0] + m1Im;
- s2Re = s1Re + m2Re;
- s2Im = s1Im + m2Im;
- s4Re = s1Re - m2Re;
- s4Im = s1Im - m2Im;
-
- dataRe[1] = s2Re + s3Re;
- dataIm[1] = s2Im + s3Im;
- dataRe[2] = s4Re + s5Re;
- dataIm[2] = s4Im + s5Im;
- dataRe[3] = s4Re - s5Re;
- dataIm[3] = s4Im - s5Im;
- dataRe[4] = s2Re - s3Re;
- dataIm[4] = s2Im - s3Im;
- } // End of function fft5().
-
- private void fft8() {
- double data1Re[] = new double[4];
- double data1Im[] = new double[4];
- double data2Re[] = new double[4];
- double data2Im[] = new double[4];
- double tem;
-
- // To improve the speed, use direct assaignment instead for loop here.
- data1Re[0] = temRe[0];
- data2Re[0] = temRe[1];
- data1Re[1] = temRe[2];
- data2Re[1] = temRe[3];
- data1Re[2] = temRe[4];
- data2Re[2] = temRe[5];
- data1Re[3] = temRe[6];
- data2Re[3] = temRe[7];
-
- data1Im[0] = temIm[0];
- data2Im[0] = temIm[1];
- data1Im[1] = temIm[2];
- data2Im[1] = temIm[3];
- data1Im[2] = temIm[4];
- data2Im[2] = temIm[5];
- data1Im[3] = temIm[6];
- data2Im[3] = temIm[7];
-
- fft4(data1Re, data1Im);
- fft4(data2Re, data2Im);
-
- tem = OnetoSqrt2 * (data2Re[1] + data2Im[1]);
- data2Im[1] = OnetoSqrt2 * (data2Im[1] - data2Re[1]);
- data2Re[1] = tem;
- tem = data2Im[2];
- data2Im[2] = -data2Re[2];
- data2Re[2] = tem;
- tem = OnetoSqrt2 * (data2Im[3] - data2Re[3]);
- data2Im[3] = -OnetoSqrt2 * (data2Re[3] + data2Im[3]);
- data2Re[3] = tem;
-
- temRe[0] = data1Re[0] + data2Re[0];
- temRe[4] = data1Re[0] - data2Re[0];
- temRe[1] = data1Re[1] + data2Re[1];
- temRe[5] = data1Re[1] - data2Re[1];
- temRe[2] = data1Re[2] + data2Re[2];
- temRe[6] = data1Re[2] - data2Re[2];
- temRe[3] = data1Re[3] + data2Re[3];
- temRe[7] = data1Re[3] - data2Re[3];
-
- temIm[0] = data1Im[0] + data2Im[0];
- temIm[4] = data1Im[0] - data2Im[0];
- temIm[1] = data1Im[1] + data2Im[1];
- temIm[5] = data1Im[1] - data2Im[1];
- temIm[2] = data1Im[2] + data2Im[2];
- temIm[6] = data1Im[2] - data2Im[2];
- temIm[3] = data1Im[3] + data2Im[3];
- temIm[7] = data1Im[3] - data2Im[3];
- } // End of function fft8().
-
- private void fft10() {
- double data1Re[] = new double[5];
- double data1Im[] = new double[5];
- double data2Re[] = new double[5];
- double data2Im[] = new double[5];
-
- // To improve the speed, use direct assaignment instead for loop here.
- data1Re[0] = temRe[0];
- data2Re[0] = temRe[5];
- data1Re[1] = temRe[2];
- data2Re[1] = temRe[7];
- data1Re[2] = temRe[4];
- data2Re[2] = temRe[9];
- data1Re[3] = temRe[6];
- data2Re[3] = temRe[1];
- data1Re[4] = temRe[8];
- data2Re[4] = temRe[3];
- data1Im[0] = temIm[0];
- data2Im[0] = temIm[5];
- data1Im[1] = temIm[2];
- data2Im[1] = temIm[7];
- data1Im[2] = temIm[4];
- data2Im[2] = temIm[9];
- data1Im[3] = temIm[6];
- data2Im[3] = temIm[1];
- data1Im[4] = temIm[8];
- data2Im[4] = temIm[3];
-
- fft5(data1Re, data1Im);
- fft5(data2Re, data2Im);
-
- temRe[0] = data1Re[0] + data2Re[0];
- temRe[5] = data1Re[0] - data2Re[0];
- temRe[6] = data1Re[1] + data2Re[1];
- temRe[1] = data1Re[1] - data2Re[1];
- temRe[2] = data1Re[2] + data2Re[2];
- temRe[7] = data1Re[2] - data2Re[2];
- temRe[8] = data1Re[3] + data2Re[3];
- temRe[3] = data1Re[3] - data2Re[3];
- temRe[4] = data1Re[4] + data2Re[4];
- temRe[9] = data1Re[4] - data2Re[4];
-
- temIm[0] = data1Im[0] + data2Im[0];
- temIm[5] = data1Im[0] - data2Im[0];
- temIm[6] = data1Im[1] + data2Im[1];
- temIm[1] = data1Im[1] - data2Im[1];
- temIm[2] = data1Im[2] + data2Im[2];
- temIm[7] = data1Im[2] - data2Im[2];
- temIm[8] = data1Im[3] + data2Im[3];
- temIm[3] = data1Im[3] - data2Im[3];
- temIm[4] = data1Im[4] + data2Im[4];
- temIm[9] = data1Im[4] - data2Im[4];
- } // End of function fft10().
-
- public double sqrt(double d) {
- return Math.sqrt(d);
- }
-
- private void fftPrime(int radix) {
- // Initial WRe, WIm.
- double W = 2 * (double) Math.PI / radix;
- double cosW = (double) Math.cos(W);
- double sinW = -(double) Math.sin(W);
- double WRe[] = new double[radix];
- double WIm[] = new double[radix];
-
- WRe[0] = 1;
- WIm[0] = 0;
- WRe[1] = cosW;
- WIm[1] = sinW;
-
- for (int i = 2; i < radix; i++) {
- WRe[i] = cosW * WRe[i - 1] - sinW * WIm[i - 1];
- WIm[i] = sinW * WRe[i - 1] + cosW * WIm[i - 1];
- }
-
- // FFT of prime length data, using DFT, can be improved in the future.
- double rere, reim, imre, imim;
- int j, k;
- int max = (radix + 1) / 2;
-
- double tem1Re[] = new double[max];
- double tem1Im[] = new double[max];
- double tem2Re[] = new double[max];
- double tem2Im[] = new double[max];
-
- for (j = 1; j < max; j++) {
- tem1Re[j] = temRe[j] + temRe[radix - j];
- tem1Im[j] = temIm[j] - temIm[radix - j];
- tem2Re[j] = temRe[j] - temRe[radix - j];
- tem2Im[j] = temIm[j] + temIm[radix - j];
- }
-
- for (j = 1; j < max; j++) {
- temRe[j] = temRe[0];
- temIm[j] = temIm[0];
- temRe[radix - j] = temRe[0];
- temIm[radix - j] = temIm[0];
- k = j;
- for (int i = 1; i < max; i++) {
- rere = WRe[k] * tem1Re[i];
- imim = WIm[k] * tem1Im[i];
- reim = WRe[k] * tem2Im[i];
- imre = WIm[k] * tem2Re[i];
-
- temRe[radix - j] += rere + imim;
- temIm[radix - j] += reim - imre;
- temRe[j] += rere - imim;
- temIm[j] += reim + imre;
-
- k = k + j;
- if (k >= radix)
- k = k - radix;
- }
- }
- for (j = 1; j < max; j++) {
- temRe[0] = temRe[0] + tem1Re[j];
- temIm[0] = temIm[0] + tem2Im[j];
- }
- } // End of function fftPrime().
-
-} // End of class FFT2d
+++ /dev/null
-//Title: 2-d mixed radix FFT.
-//Version:
-//Copyright: Copyright (c) 1998
-//Author: Dongyan Wang
-//Company: University of Wisconsin-Milwaukee.
-//Description:
-// . Use FFT1d to perform FFT2d.
-//
-
-public class FFT2d {
- //
- // Input of FFT, 2-d matrix.
- double dataRe[][], dataIm[][];
-
- // Width and height of 2-d matrix inputRe or inputIm.
- int width, height;
-
- // Constructor: 2-d FFT of Complex data.
- public FFT2d(double inputRe[], double inputIm[], int inputWidth) {
- // First make sure inputRe & inputIm are of the same length.
- if (inputRe.length != inputIm.length) {
- System.out.println("Error: the length of real part & imaginary part " +
- "of the input to 2-d FFT are different");
- return;
- } else {
- width = inputWidth;
- height = inputRe.length / width;
- dataRe = new double[height][width];
- dataIm = new double[height][width];
- //System.out.println("width = "+ width + " height = " + height + "\n");
-
- for (int i = 0; i < height; i++)
- for (int j = 0; j < width; j++) {
- dataRe[i][j] = inputRe[i * width + j];
- dataIm[i][j] = inputIm[i * width + j];
- }
-
- //System.out.println("Initially dataRe[100][8] = "+ dataRe[100][8] + "\n");
- //System.out.println("copy to Input[] inputRe[1008] = "+ inputRe[1008] + "\n");
-
- // Calculate FFT for each row of the data.
- FFT1d fft1 = new FFT1d(width);
- for (int i = 0; i < height; i++)
- fft1.fft(dataRe[i], dataIm[i]);
-
- //System.out.println("After row fft dataRe[100][8] = "+ dataRe[100][8] + "\n");
- //System.out.println("Element 100 is " + (int)inputRe[100]+ "\n");
- //System.out.println("Element 405 is " + (int)inputIm[405]+ "\n");
- // Tranpose data.
- // Calculate FFT for each column of the data.
- double temRe[][] = transpose(dataRe);
- double temIm[][] = transpose(dataIm);
-
- //System.out.println("before column fft dataRe[100][8] = "+ dataRe[100][8] + " temRe[8][100]= " + temRe[8][100] + "\n");
- FFT1d fft2 = new FFT1d(height);
- for (int j = 0; j < width; j++)
- fft2.fft(temRe[j], temIm[j]);
- //System.out.println("after column fft dataRe[100][8] = "+ dataRe[100][8] + " temRe[8][100]= " + temRe[8][100] + "\n");
-
- //System.out.println("Element 100 is " + (int)inputRe[100]+ "\n");
- //System.out.println("Element 405 is " + (int)inputIm[405]+ "\n");
- // Tranpose data.
- // Copy the result to input[], so the output can be
- // returned in the input array.
- for (int i = 0; i < height; i++)
- for (int j = 0; j < width; j++) {
- inputRe[i * width + j] = temRe[j][i];
- inputIm[i * width + j] = temIm[j][i];
- }
- //System.out.println("copy to Input[] inputRe[1008] = "+ inputRe[1008] + "\n");
- }
- }
-
- // Transpose matrix input.
- private double[][] transpose(double[][] input) {
- double[][] output = new double[width][height];
-
- for (int j = 0; j < width; j++)
- for (int i = 0; i < height; i++)
- output[j][i] = input[i][j];
-
- return output;
- } // End of function transpose().
-
-
- public static void main(String[] args) {
- int NUM_THREADS = 1;
- int SIZE = 800;
- int inputWidth = 10;
- if(args.length>0) {
- NUM_THREADS=Integer.parseInt(args[0]);
- if(args.length > 1)
- SIZE = Integer.parseInt(args[1]);
- }
-
- System.out.println("Num threads = " + NUM_THREADS + " SIZE= " + SIZE + "\n");
-
- // Initialize Matrix
- // Matrix inputRe, inputIm;
-
- double[] inputRe;
- double[] inputIm;
- inputRe = new double[SIZE];
- inputIm = new double[SIZE];
-
- for(int i = 0; i<SIZE; i++){
- inputRe[i] = i;
- inputIm[i] = i;
- }
-
- //System.out.println("Element 231567 is " + (int)inputRe[231567]+ "\n");
- //System.out.println("Element 10 is " + (int)inputIm[10]+ "\n");
- // Start Barrier Server
-
- // Width and height of 2-d matrix inputRe or inputIm.
- int width, height;
- width = inputWidth;
- int Relength, Imlength;
- height = inputRe.length / width;
- Relength = inputRe.length;
- Imlength = inputIm.length;
-
- // Create threads to do FFT
- FFT2d myfft2d = new FFT2d(inputRe, inputIm, inputWidth);
-
- System.out.println("2DFFT done! \n");
- //System.out.println("Element 23157 is " + (int)inputRe[23157]+ "\n");
- //System.out.println("Element 10 is " + (int)inputIm[10]+ "\n");
- }
-}