Initial revision
authorMisha Brukman <brukman+llvm@gmail.com>
Mon, 21 Jun 2004 16:55:25 +0000 (16:55 +0000)
committerMisha Brukman <brukman+llvm@gmail.com>
Mon, 21 Jun 2004 16:55:25 +0000 (16:55 +0000)
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@14283 91177308-0d34-0410-b5e6-96231b3b80d8

21 files changed:
lib/Target/PowerPC/Makefile [new file with mode: 0644]
lib/Target/PowerPC/PPC.h [new file with mode: 0644]
lib/Target/PowerPC/PPC32AsmPrinter.cpp [new file with mode: 0644]
lib/Target/PowerPC/PPC32ISelSimple.cpp [new file with mode: 0644]
lib/Target/PowerPC/PPCAsmPrinter.cpp [new file with mode: 0644]
lib/Target/PowerPC/PPCCodeEmitter.cpp [new file with mode: 0644]
lib/Target/PowerPC/PPCInstrBuilder.h [new file with mode: 0644]
lib/Target/PowerPC/PPCInstrInfo.td [new file with mode: 0644]
lib/Target/PowerPC/PPCJITInfo.h [new file with mode: 0644]
lib/Target/PowerPC/PPCRegisterInfo.td [new file with mode: 0644]
lib/Target/PowerPC/PPCTargetMachine.cpp [new file with mode: 0644]
lib/Target/PowerPC/PowerPC.td [new file with mode: 0644]
lib/Target/PowerPC/PowerPCAsmPrinter.cpp [new file with mode: 0644]
lib/Target/PowerPC/PowerPCCodeEmitter.cpp [new file with mode: 0644]
lib/Target/PowerPC/PowerPCISelSimple.cpp [new file with mode: 0644]
lib/Target/PowerPC/PowerPCInstrInfo.cpp [new file with mode: 0644]
lib/Target/PowerPC/PowerPCInstrInfo.h [new file with mode: 0644]
lib/Target/PowerPC/PowerPCRegisterInfo.cpp [new file with mode: 0644]
lib/Target/PowerPC/PowerPCRegisterInfo.h [new file with mode: 0644]
lib/Target/PowerPC/PowerPCTargetMachine.h [new file with mode: 0644]
lib/Target/PowerPC/README.txt [new file with mode: 0644]

diff --git a/lib/Target/PowerPC/Makefile b/lib/Target/PowerPC/Makefile
new file mode 100644 (file)
index 0000000..ef9fff7
--- /dev/null
@@ -0,0 +1,55 @@
+##===- lib/Target/PowerPC/Makefile -------------------------*- Makefile -*-===##
+# 
+#                     The LLVM Compiler Infrastructure
+#
+# This file was developed by the LLVM research group and is distributed under
+# the University of Illinois Open Source License. See LICENSE.TXT for details.
+# 
+##===----------------------------------------------------------------------===##
+LEVEL = ../../..
+LIBRARYNAME = powerpc
+include $(LEVEL)/Makefile.common
+
+# Make sure that tblgen is run, first thing.
+$(SourceDepend): PowerPCGenRegisterInfo.h.inc PowerPCGenRegisterNames.inc \
+                 PowerPCGenRegisterInfo.inc PowerPCGenInstrNames.inc \
+                 PowerPCGenInstrInfo.inc PowerPCGenInstrSelector.inc
+
+PowerPCGenRegisterNames.inc:: $(SourceDir)/PowerPC.td \
+                           $(SourceDir)/PowerPCReg.td \
+                           $(SourceDir)/../Target.td $(TBLGEN)
+       @echo "Building PowerPC.td register names with tblgen"
+       $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-register-enums -o $@
+
+PowerPCGenRegisterInfo.h.inc:: $(SourceDir)/PowerPC.td \
+                           $(SourceDir)/PowerPCReg.td \
+                           $(SourceDir)/../Target.td $(TBLGEN)
+       @echo "Building PowerPC.td register information header with tblgen"
+       $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-register-desc-header -o $@
+
+PowerPCGenRegisterInfo.inc:: $(SourceDir)/PowerPC.td \
+                         $(SourceDir)/PowerPCReg.td \
+                         $(SourceDir)/../Target.td $(TBLGEN)
+       @echo "Building PowerPC.td register information implementation with tblgen"
+       $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-register-desc -o $@
+
+PowerPCGenInstrNames.inc:: $(SourceDir)/PowerPC.td \
+                       $(SourceDir)/PowerPCInstrs.td \
+                       $(SourceDir)/../Target.td $(TBLGEN)
+       @echo "Building PowerPC.td instruction names with tblgen"
+       $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-instr-enums -o $@
+
+PowerPCGenInstrInfo.inc:: $(SourceDir)/PowerPC.td \
+                      $(SourceDir)/PowerPCInstrs.td \
+                      $(SourceDir)/../Target.td $(TBLGEN)
+       @echo "Building PowerPC.td instruction information with tblgen"
+       $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-instr-desc -o $@
+
+PowerPCGenInstrSelector.inc:: $(SourceDir)/PowerPC.td \
+                          $(SourceDir)/PowerPCInstrs.td \
+                          $(SourceDir)/../Target.td $(TBLGEN)
+       @echo "Building PowerPC.td instruction selector with tblgen"
+       $(VERB) $(TBLGEN) -I $(BUILD_SRC_DIR) $< -gen-instr-selector -o $@
+
+clean::
+       $(VERB) rm -f *.inc
diff --git a/lib/Target/PowerPC/PPC.h b/lib/Target/PowerPC/PPC.h
new file mode 100644 (file)
index 0000000..2f2b990
--- /dev/null
@@ -0,0 +1,40 @@
+//===-- PowerPC.h - Top-level interface for PowerPC representation -*- C++ -*-//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains the entry points for global functions defined in the LLVM
+// PowerPC back-end.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef TARGET_POWERPC_H
+#define TARGET_POWERPC_H
+
+#include <iosfwd>
+
+namespace llvm {
+
+class FunctionPass;
+class TargetMachine;
+
+// Here is where you would define factory methods for powerpc-specific
+// passes. For example:
+FunctionPass *createPPCSimpleInstructionSelector (TargetMachine &TM);
+FunctionPass *createPPCCodePrinterPass(std::ostream &OS, TargetMachine &TM);
+} // end namespace llvm;
+
+// Defines symbolic names for PowerPC registers.  This defines a mapping from
+// register name to register number.
+//
+#include "PowerPCGenRegisterNames.inc"
+
+// Defines symbolic names for the PowerPC instructions.
+//
+#include "PowerPCGenInstrNames.inc"
+
+#endif
diff --git a/lib/Target/PowerPC/PPC32AsmPrinter.cpp b/lib/Target/PowerPC/PPC32AsmPrinter.cpp
new file mode 100644 (file)
index 0000000..697be09
--- /dev/null
@@ -0,0 +1,694 @@
+//===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal
+// representation of machine-dependent LLVM code to Intel-format
+// assembly language. This printer is the output mechanism used
+// by `llc' and `lli -print-machineinstrs' on X86.
+//
+//===----------------------------------------------------------------------===//
+
+#include <set>
+
+#include "PowerPC.h"
+#include "PowerPCInstrInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Mangler.h"
+#include "Support/Statistic.h"
+#include "Support/StringExtras.h"
+#include "Support/CommandLine.h"
+
+namespace llvm {
+
+namespace {
+  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
+
+  struct Printer : public MachineFunctionPass {
+    /// Output stream on which we're printing assembly code.
+    ///
+    std::ostream &O;
+
+    /// Target machine description which we query for reg. names, data
+    /// layout, etc.
+    ///
+    TargetMachine &TM;
+
+    /// Name-mangler for global names.
+    ///
+    Mangler *Mang;
+    std::set< std::string > Stubs;
+    std::set<std::string> Strings;
+
+    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
+
+    /// We name each basic block in a Function with a unique number, so
+    /// that we can consistently refer to them later. This is cleared
+    /// at the beginning of each call to runOnMachineFunction().
+    ///
+    typedef std::map<const Value *, unsigned> ValueMapTy;
+    ValueMapTy NumberForBB;
+
+    /// Cache of mangled name for current function. This is
+    /// recalculated at the beginning of each call to
+    /// runOnMachineFunction().
+    ///
+    std::string CurrentFnName;
+
+    virtual const char *getPassName() const {
+      return "PowerPC Assembly Printer";
+    }
+
+    void printMachineInstruction(const MachineInstr *MI);
+    void printOp(const MachineOperand &MO,
+                bool elideOffsetKeyword = false);
+    void printConstantPool(MachineConstantPool *MCP);
+    bool runOnMachineFunction(MachineFunction &F);    
+    bool doInitialization(Module &M);
+    bool doFinalization(Module &M);
+    void emitGlobalConstant(const Constant* CV);
+    void emitConstantValueOnly(const Constant *CV);
+  };
+} // end of anonymous namespace
+
+/// createPPCCodePrinterPass - Returns a pass that prints the X86
+/// assembly code for a MachineFunction to the given output stream,
+/// using the given target machine description.  This should work
+/// regardless of whether the function is in SSA form.
+///
+FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm){
+  return new Printer(o, tm);
+}
+
+/// isStringCompatible - Can we treat the specified array as a string?
+/// Only if it is an array of ubytes or non-negative sbytes.
+///
+static bool isStringCompatible(const ConstantArray *CVA) {
+  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
+  if (ETy == Type::UByteTy) return true;
+  if (ETy != Type::SByteTy) return false;
+
+  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
+    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
+      return false;
+
+  return true;
+}
+
+/// toOctal - Convert the low order bits of X into an octal digit.
+///
+static inline char toOctal(int X) {
+  return (X&7)+'0';
+}
+
+/// getAsCString - Return the specified array as a C compatible
+/// string, only if the predicate isStringCompatible is true.
+///
+static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
+  assert(isStringCompatible(CVA) && "Array is not string compatible!");
+
+  O << "\"";
+  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
+    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
+
+    if (C == '"') {
+      O << "\\\"";
+    } else if (C == '\\') {
+      O << "\\\\";
+    } else if (isprint(C)) {
+      O << C;
+    } else {
+      switch(C) {
+      case '\b': O << "\\b"; break;
+      case '\f': O << "\\f"; break;
+      case '\n': O << "\\n"; break;
+      case '\r': O << "\\r"; break;
+      case '\t': O << "\\t"; break;
+      default:
+        O << '\\';
+        O << toOctal(C >> 6);
+        O << toOctal(C >> 3);
+        O << toOctal(C >> 0);
+        break;
+      }
+    }
+  }
+  O << "\"";
+}
+
+// Print out the specified constant, without a storage class.  Only the
+// constants valid in constant expressions can occur here.
+void Printer::emitConstantValueOnly(const Constant *CV) {
+  if (CV->isNullValue())
+    O << "0";
+  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+    assert(CB == ConstantBool::True);
+    O << "1";
+  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
+    O << CI->getValue();
+  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
+    O << CI->getValue();
+  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
+    // This is a constant address for a global variable or function.  Use the
+    // name of the variable or function as the address value.
+    O << Mang->getValueName(CPR->getValue());
+  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+    const TargetData &TD = TM.getTargetData();
+    switch(CE->getOpcode()) {
+    case Instruction::GetElementPtr: {
+      // generate a symbolic expression for the byte address
+      const Constant *ptrVal = CE->getOperand(0);
+      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
+      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
+        O << "(";
+        emitConstantValueOnly(ptrVal);
+        O << ") + " << Offset;
+      } else {
+        emitConstantValueOnly(ptrVal);
+      }
+      break;
+    }
+    case Instruction::Cast: {
+      // Support only non-converting or widening casts for now, that is, ones
+      // that do not involve a change in value.  This assertion is really gross,
+      // and may not even be a complete check.
+      Constant *Op = CE->getOperand(0);
+      const Type *OpTy = Op->getType(), *Ty = CE->getType();
+
+      // Remember, kids, pointers on x86 can be losslessly converted back and
+      // forth into 32-bit or wider integers, regardless of signedness. :-P
+      assert(((isa<PointerType>(OpTy)
+               && (Ty == Type::LongTy || Ty == Type::ULongTy
+                   || Ty == Type::IntTy || Ty == Type::UIntTy))
+              || (isa<PointerType>(Ty)
+                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
+                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
+              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
+                   && OpTy->isLosslesslyConvertibleTo(Ty))))
+             && "FIXME: Don't yet support this kind of constant cast expr");
+      O << "(";
+      emitConstantValueOnly(Op);
+      O << ")";
+      break;
+    }
+    case Instruction::Add:
+      O << "(";
+      emitConstantValueOnly(CE->getOperand(0));
+      O << ") + (";
+      emitConstantValueOnly(CE->getOperand(1));
+      O << ")";
+      break;
+    default:
+      assert(0 && "Unsupported operator!");
+    }
+  } else {
+    assert(0 && "Unknown constant value!");
+  }
+}
+
+// Print a constant value or values, with the appropriate storage class as a
+// prefix.
+void Printer::emitGlobalConstant(const Constant *CV) {  
+  const TargetData &TD = TM.getTargetData();
+
+  if (CV->isNullValue()) {
+    O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";      
+    return;
+  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+    if (isStringCompatible(CVA)) {
+      O << ".ascii";
+      printAsCString(O, CVA);
+      O << "\n";
+    } else { // Not a string.  Print the values in successive locations
+      const std::vector<Use> &constValues = CVA->getValues();
+      for (unsigned i=0; i < constValues.size(); i++)
+        emitGlobalConstant(cast<Constant>(constValues[i].get()));
+    }
+    return;
+  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+    // Print the fields in successive locations. Pad to align if needed!
+    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
+    const std::vector<Use>& constValues = CVS->getValues();
+    unsigned sizeSoFar = 0;
+    for (unsigned i=0, N = constValues.size(); i < N; i++) {
+      const Constant* field = cast<Constant>(constValues[i].get());
+
+      // Check if padding is needed and insert one or more 0s.
+      unsigned fieldSize = TD.getTypeSize(field->getType());
+      unsigned padSize = ((i == N-1? cvsLayout->StructSize
+                           : cvsLayout->MemberOffsets[i+1])
+                          - cvsLayout->MemberOffsets[i]) - fieldSize;
+      sizeSoFar += fieldSize + padSize;
+
+      // Now print the actual field value
+      emitGlobalConstant(field);
+
+      // Insert the field padding unless it's zero bytes...
+      if (padSize)
+        O << "\t.space\t " << padSize << "\n";      
+    }
+    assert(sizeSoFar == cvsLayout->StructSize &&
+           "Layout of constant struct may be incorrect!");
+    return;
+  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+    // FP Constants are printed as integer constants to avoid losing
+    // precision...
+    double Val = CFP->getValue();
+    switch (CFP->getType()->getPrimitiveID()) {
+    default: assert(0 && "Unknown floating point type!");
+    case Type::FloatTyID: {
+      union FU {                            // Abide by C TBAA rules
+        float FVal;
+        unsigned UVal;
+      } U;
+      U.FVal = Val;
+      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
+      return;
+    }
+    case Type::DoubleTyID: {
+      union DU {                            // Abide by C TBAA rules
+        double FVal;
+        uint64_t UVal;
+        struct {
+               uint32_t MSWord;
+               uint32_t LSWord;
+        } T;
+      } U;
+      U.FVal = Val;
+      
+      O << ".long\t" << U.T.MSWord << "\t# double most significant word " << Val << "\n";
+      O << ".long\t" << U.T.LSWord << "\t# double least significant word" << Val << "\n";
+      return;
+    }
+    }
+  } else if (CV->getType()->getPrimitiveSize() == 64) {
+    const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
+    if(CI) {
+       union DU {                            // Abide by C TBAA rules
+        int64_t UVal;
+        struct {
+               uint32_t MSWord;
+               uint32_t LSWord;
+        } T;
+      } U;
+      U.UVal = CI->getRawValue();
+        
+      O << ".long\t" << U.T.MSWord << "\t# Double-word most significant word " << U.UVal << "\n";
+      O << ".long\t" << U.T.LSWord << "\t# Double-word least significant word" << U.UVal << "\n";
+      return;    
+    }
+  }
+
+  const Type *type = CV->getType();
+  O << "\t";
+  switch (type->getPrimitiveID()) {
+  case Type::UByteTyID: case Type::SByteTyID:
+    O << ".byte";
+    break;
+  case Type::UShortTyID: case Type::ShortTyID:
+    O << ".short";
+    break;
+  case Type::BoolTyID: 
+  case Type::PointerTyID:
+  case Type::UIntTyID: case Type::IntTyID:
+    O << ".long";
+    break;
+  case Type::ULongTyID: case Type::LongTyID:    
+       assert (0 && "Should have already output double-word constant.");
+  case Type::FloatTyID: case Type::DoubleTyID:
+    assert (0 && "Should have already output floating point constant.");
+  default:
+    assert (0 && "Can't handle printing this type of thing");
+    break;
+  }
+  O << "\t";
+  emitConstantValueOnly(CV);
+  O << "\n";
+}
+
+/// printConstantPool - Print to the current output stream assembly
+/// representations of the constants in the constant pool MCP. This is
+/// used to print out constants which have been "spilled to memory" by
+/// the code generator.
+///
+void Printer::printConstantPool(MachineConstantPool *MCP) {
+  const std::vector<Constant*> &CP = MCP->getConstants();
+  const TargetData &TD = TM.getTargetData();
+  if (CP.empty()) return;
+
+  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+    O << "\t.const\n";
+    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
+      << "\n";
+    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
+      << *CP[i] << "\n";
+    emitGlobalConstant(CP[i]);
+  }
+}
+
+/// runOnMachineFunction - This uses the printMachineInstruction()
+/// method to print assembly for each instruction.
+///
+bool Printer::runOnMachineFunction(MachineFunction &MF) {
+  // BBNumber is used here so that a given Printer will never give two
+  // BBs the same name. (If you have a better way, please let me know!)
+  static unsigned BBNumber = 0;
+
+  O << "\n\n";
+  // What's my mangled name?
+  CurrentFnName = Mang->getValueName(MF.getFunction());
+
+  // Print out constants referenced by the function
+  printConstantPool(MF.getConstantPool());
+
+  // Print out labels for the function.
+  O << "\t.text\n"; 
+  O << "\t.globl\t" << CurrentFnName << "\n";
+  O << "\t.align 5\n";
+  O << CurrentFnName << ":\n";
+
+  // Number each basic block so that we can consistently refer to them
+  // in PC-relative references.
+  NumberForBB.clear();
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+       I != E; ++I) {
+    NumberForBB[I->getBasicBlock()] = BBNumber++;
+  }
+
+  // Print out code for the function.
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+       I != E; ++I) {
+    // Print a label for the basic block.
+    O << "L" << NumberForBB[I->getBasicBlock()] << ":\t# "
+      << I->getBasicBlock()->getName() << "\n";
+    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+        II != E; ++II) {
+      // Print the assembly for the instruction.
+      O << "\t";
+      printMachineInstruction(II);
+    }
+  }
+
+  // We didn't modify anything.
+  return false;
+}
+
+
+
+void Printer::printOp(const MachineOperand &MO,
+                     bool elideOffsetKeyword /* = false */) {
+  const MRegisterInfo &RI = *TM.getRegisterInfo();
+  int new_symbol;
+  
+  switch (MO.getType()) {
+  case MachineOperand::MO_VirtualRegister:
+    if (Value *V = MO.getVRegValueOrNull()) {
+      O << "<" << V->getName() << ">";
+      return;
+    }
+    // FALLTHROUGH
+  case MachineOperand::MO_MachineRegister:
+      O << RI.get(MO.getReg()).Name;
+      return;
+
+  case MachineOperand::MO_SignExtendedImmed:
+  case MachineOperand::MO_UnextendedImmed:
+    O << (int)MO.getImmedValue();
+    return;
+  case MachineOperand::MO_MachineBasicBlock: {
+    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
+    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
+      << "_" << MBBOp->getNumber () << "\t# "
+      << MBBOp->getBasicBlock ()->getName ();
+    return;
+  }
+  case MachineOperand::MO_PCRelativeDisp:
+    std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
+    abort ();
+    return;
+  case MachineOperand::MO_GlobalAddress:
+    if (!elideOffsetKeyword) {
+               if(isa<Function>(MO.getGlobal())) {
+                       Stubs.insert(Mang->getValueName(MO.getGlobal()));
+                       O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub";
+               } else {
+                       O << Mang->getValueName(MO.getGlobal());
+               }
+    }
+    return;
+  case MachineOperand::MO_ExternalSymbol:
+    O << MO.getSymbolName();
+    return;
+  default:
+    O << "<unknown operand type>"; return;    
+  }
+}
+
+#if 0
+static inline
+unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) {
+       int i;
+       unsigned int retval = 1;
+       
+       for(i = 0; i<5; i++) {
+               switch(ArgType[i]) {
+                       case none:
+                               break;
+                       case Gpr:
+                       case Gpr0:
+                               Type::UIntTy
+                       case Simm16:
+                       case Zimm16:
+                       case PCRelimm24:
+                       case Imm24:
+                       case Imm5:
+                       case PCRelimm14:
+                       case Imm14:
+                       case Imm2:
+                       case Crf:
+                       case Imm3:
+                       case Imm1:
+                       case Fpr:
+                       case Imm4:
+                       case Imm8:
+                       case Disimm16:
+                       case Spr:
+                       case Sgr:
+       };
+               
+               }
+       }
+}
+#endif
+
+/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
+/// MI in Darwin syntax to the current output stream.
+///
+void Printer::printMachineInstruction(const MachineInstr *MI) {
+  unsigned Opcode = MI->getOpcode();
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  const TargetInstrDescriptor &Desc = TII.get(Opcode);
+  unsigned int i;
+  
+  unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask;
+  unsigned int ArgType[5];
+
+
+  ArgType[0] = (Desc.TSFlags>>PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[1] = (Desc.TSFlags>>PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[2] = (Desc.TSFlags>>PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[3] = (Desc.TSFlags>>PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[4] = (Desc.TSFlags>>PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask;
+  
+  assert ( ((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support");
+  assert ( ((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support");
+  //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs");
+  ++EmittedInsts;
+
+  if(Opcode == PPC32::MovePCtoLR) {
+    O << "mflr r0\n";
+    O << "bcl 20,31,L" << CurrentFnName << "$pb\n";
+    O  << "L" << CurrentFnName << "$pb:\n";
+    return;
+  }
+
+  O << TII.getName(MI->getOpcode()) << " ";
+  std::cout << TII.getName(MI->getOpcode()) << " expects " << ArgCount << " args\n";
+
+  if(Opcode == PPC32::LOADLoAddr) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << ", lo16(";
+    printOp(MI->getOperand(2));
+    O << "-L" << CurrentFnName << "$pb)\n";
+    return;
+  }
+
+  if(Opcode == PPC32::LOADHiAddr) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << ", ha16(" ;
+    printOp(MI->getOperand(2));
+     O << "-L" << CurrentFnName << "$pb)\n";
+    return;
+  }
+  
+  if( (ArgCount == 3) && (ArgType[1] == PPC32II::Disimm16) ) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << "(";
+    if((ArgType[2] == PPC32II::Gpr0) && (MI->getOperand(2).getReg() == PPC32::R0)) {
+       O << "0";
+    } else {
+       printOp(MI->getOperand(2));
+    }
+    O << ")\n";
+  } else {
+    for(i = 0; i< ArgCount; i++) {
+        if( (ArgType[i] == PPC32II::Gpr0) && ((MI->getOperand(i).getReg()) == PPC32::R0)) {
+            O << "0";
+        } else {
+               //std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n";
+            printOp(MI->getOperand(i));
+        }
+        if( ArgCount - 1 == i) {
+            O << "\n";
+        } else {
+            O << ", ";
+        }
+    }
+  }
+  
+  return;  
+}
+
+bool Printer::doInitialization(Module &M) {
+  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
+  //
+  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
+  // instruction as a reference to the register named sp, and if you try to
+  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
+  // before being looked up in the symbol table. This creates spurious
+  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
+  // mode, and decorate all register names with percent signs.
+ // O << "\t.intel_syntax\n";
+  Mang = new Mangler(M, true);
+  return false; // success
+}
+
+// SwitchSection - Switch to the specified section of the executable if we are
+// not already in it!
+//
+static void SwitchSection(std::ostream &OS, std::string &CurSection,
+                          const char *NewSection) {
+  if (CurSection != NewSection) {
+    CurSection = NewSection;
+    if (!CurSection.empty())
+      OS << "\t" << NewSection << "\n";
+  }
+}
+
+bool Printer::doFinalization(Module &M) {
+  const TargetData &TD = TM.getTargetData();
+  std::string CurSection;
+
+  // Print out module-level global variables here.
+  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
+    if (I->hasInitializer()) {   // External global require no code
+      O << "\n\n";
+      std::string name = Mang->getValueName(I);
+      Constant *C = I->getInitializer();
+      unsigned Size = TD.getTypeSize(C->getType());
+      unsigned Align = TD.getTypeAlignment(C->getType());
+
+      if (C->isNullValue() && 
+          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
+           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
+        SwitchSection(O, CurSection, ".data");
+        if (I->hasInternalLinkage())
+          O << "\t.local " << name << "\n";
+        
+        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
+          << "," << (unsigned)TD.getTypeAlignment(C->getType());
+        O << "\t\t# ";
+        WriteAsOperand(O, I, true, true, &M);
+        O << "\n";
+      } else {
+        switch (I->getLinkage()) {
+        case GlobalValue::LinkOnceLinkage:
+        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
+          // Nonnull linkonce -> weak
+          O << "\t.weak " << name << "\n";
+          SwitchSection(O, CurSection, "");
+          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
+          break;
+        
+        case GlobalValue::AppendingLinkage:
+          // FIXME: appending linkage variables should go into a section of
+          // their name or something.  For now, just emit them as external.
+        case GlobalValue::ExternalLinkage:
+          // If external or appending, declare as a global symbol
+          O << "\t.globl " << name << "\n";
+          // FALL THROUGH
+        case GlobalValue::InternalLinkage:
+          if (C->isNullValue())
+            SwitchSection(O, CurSection, ".bss");
+          else
+            SwitchSection(O, CurSection, ".data");
+          break;
+        }
+
+        O << "\t.align " << Align << "\n";
+        O << name << ":\t\t\t\t# ";
+        WriteAsOperand(O, I, true, true, &M);
+        O << " = ";
+        WriteAsOperand(O, C, false, false, &M);
+        O << "\n";
+        emitGlobalConstant(C);
+      }
+    }
+        
+    for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i) {
+       O << ".data\n";     
+               O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
+               O << "\t.align 2\n";
+       O << "L" << *i << "$stub:\n";
+       O << "\t.indirect_symbol " << *i << "\n";
+       O << "\tmflr r0\n";
+       O << "\tbcl 20,31,L0$" << *i << "\n";
+       O << "L0$" << *i << ":\n";
+       O << "\tmflr r11\n";
+       O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
+       O << "\tmtlr r0\n";
+       O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
+       O << "\tmtctr r12\n";
+       O << "\tbctr\n";
+       O << ".data\n";
+               O << ".lazy_symbol_pointer\n";
+               O << "L" << *i << "$lazy_ptr:\n";
+        O << ".indirect_symbol " << *i << "\n";
+        O << ".long dyld_stub_binding_helper\n";
+
+       }
+
+  delete Mang;
+  return false; // success
+}
+
+} // End llvm namespace
diff --git a/lib/Target/PowerPC/PPC32ISelSimple.cpp b/lib/Target/PowerPC/PPC32ISelSimple.cpp
new file mode 100644 (file)
index 0000000..c9c0e2d
--- /dev/null
@@ -0,0 +1,2621 @@
+//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+
+#include "PowerPC.h"
+#include "PowerPCInstrBuilder.h"
+#include "PowerPCInstrInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicLowering.h"
+#include "llvm/Pass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+using namespace llvm;
+
+namespace {
+  /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic PPC
+  /// Representation.
+  ///
+  enum TypeClass {
+    cByte, cShort, cInt, cFP, cLong
+  };
+}
+
+/// getClass - Turn a primitive type into a "class" number which is based on the
+/// size of the type, and whether or not it is floating point.
+///
+static inline TypeClass getClass(const Type *Ty) {
+  switch (Ty->getPrimitiveID()) {
+  case Type::SByteTyID:
+  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
+  case Type::ShortTyID:
+  case Type::UShortTyID:  return cShort;     // Short operands are class #1
+  case Type::IntTyID:
+  case Type::UIntTyID:
+  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
+
+  case Type::FloatTyID:
+  case Type::DoubleTyID:  return cFP;        // Floating Point is #3
+
+  case Type::LongTyID:
+  case Type::ULongTyID:   return cLong;      // Longs are class #4
+  default:
+    assert(0 && "Invalid type to getClass!");
+    return cByte;  // not reached
+  }
+}
+
+// getClassB - Just like getClass, but treat boolean values as ints.
+static inline TypeClass getClassB(const Type *Ty) {
+  if (Ty == Type::BoolTy) return cInt;
+  return getClass(Ty);
+}
+
+namespace {
+  struct ISel : public FunctionPass, InstVisitor<ISel> {
+    TargetMachine &TM;
+    MachineFunction *F;                 // The function we are compiling into
+    MachineBasicBlock *BB;              // The current MBB we are compiling
+    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
+    int ReturnAddressIndex;             // FrameIndex for the return address
+
+    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
+
+    // MBBMap - Mapping between LLVM BB -> Machine BB
+    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
+
+    // AllocaMap - Mapping from fixed sized alloca instructions to the
+    // FrameIndex for the alloca.
+    std::map<AllocaInst*, unsigned> AllocaMap;
+
+    ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
+
+    /// runOnFunction - Top level implementation of instruction selection for
+    /// the entire function.
+    ///
+    bool runOnFunction(Function &Fn) {
+      // First pass over the function, lower any unknown intrinsic functions
+      // with the IntrinsicLowering class.
+      LowerUnknownIntrinsicFunctionCalls(Fn);
+
+      F = &MachineFunction::construct(&Fn, TM);
+
+      // Create all of the machine basic blocks for the function...
+      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
+
+      BB = &F->front();
+
+      // Set up a frame object for the return address.  This is used by the
+      // llvm.returnaddress & llvm.frameaddress intrinisics.
+      ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
+
+      // Copy incoming arguments off of the stack...
+      LoadArgumentsToVirtualRegs(Fn);
+
+      // Instruction select everything except PHI nodes
+      visit(Fn);
+
+      // Select the PHI nodes
+      SelectPHINodes();
+
+      RegMap.clear();
+      MBBMap.clear();
+      AllocaMap.clear();
+      F = 0;
+      // We always build a machine code representation for the function
+      return true;
+    }
+
+    virtual const char *getPassName() const {
+      return "PowerPC Simple Instruction Selection";
+    }
+
+    /// visitBasicBlock - This method is called when we are visiting a new basic
+    /// block.  This simply creates a new MachineBasicBlock to emit code into
+    /// and adds it to the current MachineFunction.  Subsequent visit* for
+    /// instructions will be invoked for all instructions in the basic block.
+    ///
+    void visitBasicBlock(BasicBlock &LLVM_BB) {
+      BB = MBBMap[&LLVM_BB];
+    }
+
+    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+    /// function, lowering any calls to unknown intrinsic functions into the
+    /// equivalent LLVM code.
+    ///
+    void LowerUnknownIntrinsicFunctionCalls(Function &F);
+
+    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
+    /// from the stack into virtual registers.
+    ///
+    void LoadArgumentsToVirtualRegs(Function &F);
+
+    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
+    /// because we have to generate our sources into the source basic blocks,
+    /// not the current one.
+    ///
+    void SelectPHINodes();
+
+    // Visitation methods for various instructions.  These methods simply emit
+    // fixed PowerPC code for each instruction.
+
+    // Control flow operators
+    void visitReturnInst(ReturnInst &RI);
+    void visitBranchInst(BranchInst &BI);
+
+    struct ValueRecord {
+      Value *Val;
+      unsigned Reg;
+      const Type *Ty;
+      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
+      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
+    };
+    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+                const std::vector<ValueRecord> &Args);
+    void visitCallInst(CallInst &I);
+    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
+
+    // Arithmetic operators
+    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
+    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
+    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
+    void visitMul(BinaryOperator &B);
+
+    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
+    void visitRem(BinaryOperator &B) { visitDivRem(B); }
+    void visitDivRem(BinaryOperator &B);
+
+    // Bitwise operators
+    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
+    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
+    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
+
+    // Comparison operators...
+    void visitSetCondInst(SetCondInst &I);
+    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+                            MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator MBBI);
+    void visitSelectInst(SelectInst &SI);
+    
+    
+    // Memory Instructions
+    void visitLoadInst(LoadInst &I);
+    void visitStoreInst(StoreInst &I);
+    void visitGetElementPtrInst(GetElementPtrInst &I);
+    void visitAllocaInst(AllocaInst &I);
+    void visitMallocInst(MallocInst &I);
+    void visitFreeInst(FreeInst &I);
+    
+    // Other operators
+    void visitShiftInst(ShiftInst &I);
+    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
+    void visitCastInst(CastInst &I);
+    void visitVANextInst(VANextInst &I);
+    void visitVAArgInst(VAArgInst &I);
+
+    void visitInstruction(Instruction &I) {
+      std::cerr << "Cannot instruction select: " << I;
+      abort();
+    }
+
+    /// promote32 - Make a value 32-bits wide, and put it somewhere.
+    ///
+    void promote32(unsigned targetReg, const ValueRecord &VR);
+
+    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+    /// constant expression GEP support.
+    ///
+    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+                          Value *Src, User::op_iterator IdxBegin,
+                          User::op_iterator IdxEnd, unsigned TargetReg);
+
+    /// emitCastOperation - Common code shared between visitCastInst and
+    /// constant expression cast support.
+    ///
+    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
+                           Value *Src, const Type *DestTy, unsigned TargetReg);
+
+    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+    /// and constant expression support.
+    ///
+    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
+                                   MachineBasicBlock::iterator IP,
+                                   Value *Op0, Value *Op1,
+                                   unsigned OperatorClass, unsigned TargetReg);
+
+    /// emitBinaryFPOperation - This method handles emission of floating point
+    /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+    void emitBinaryFPOperation(MachineBasicBlock *BB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Op0, Value *Op1,
+                               unsigned OperatorClass, unsigned TargetReg);
+
+    void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+                      Value *Op0, Value *Op1, unsigned TargetReg);
+
+    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                    unsigned DestReg, const Type *DestTy,
+                    unsigned Op0Reg, unsigned Op1Reg);
+    void doMultiplyConst(MachineBasicBlock *MBB, 
+                         MachineBasicBlock::iterator MBBI,
+                         unsigned DestReg, const Type *DestTy,
+                         unsigned Op0Reg, unsigned Op1Val);
+
+    void emitDivRemOperation(MachineBasicBlock *BB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Op0, Value *Op1, bool isDiv,
+                             unsigned TargetReg);
+
+    /// emitSetCCOperation - Common code shared between visitSetCondInst and
+    /// constant expression support.
+    ///
+    void emitSetCCOperation(MachineBasicBlock *BB,
+                            MachineBasicBlock::iterator IP,
+                            Value *Op0, Value *Op1, unsigned Opcode,
+                            unsigned TargetReg);
+
+    /// emitShiftOperation - Common code shared between visitShiftInst and
+    /// constant expression support.
+    ///
+    void emitShiftOperation(MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator IP,
+                            Value *Op, Value *ShiftAmount, bool isLeftShift,
+                            const Type *ResultTy, unsigned DestReg);
+      
+    /// emitSelectOperation - Common code shared between visitSelectInst and the
+    /// constant expression support.
+    void emitSelectOperation(MachineBasicBlock *MBB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Cond, Value *TrueVal, Value *FalseVal,
+                             unsigned DestReg);
+
+    /// copyConstantToRegister - Output the instructions required to put the
+    /// specified constant into the specified register.
+    ///
+    void copyConstantToRegister(MachineBasicBlock *MBB,
+                                MachineBasicBlock::iterator MBBI,
+                                Constant *C, unsigned Reg);
+
+    void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                   unsigned LHS, unsigned RHS);
+
+    /// makeAnotherReg - This method returns the next register number we haven't
+    /// yet used.
+    ///
+    /// Long values are handled somewhat specially.  They are always allocated
+    /// as pairs of 32 bit integer values.  The register number returned is the
+    /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
+    /// of the long value.
+    ///
+    unsigned makeAnotherReg(const Type *Ty) {
+      assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
+             "Current target doesn't have PPC reg info??");
+      const PowerPCRegisterInfo *MRI =
+        static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
+      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
+        const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
+        // Create the lower part
+        F->getSSARegMap()->createVirtualRegister(RC);
+        // Create the upper part.
+        return F->getSSARegMap()->createVirtualRegister(RC)-1;
+      }
+
+      // Add the mapping of regnumber => reg class to MachineFunction
+      const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
+      return F->getSSARegMap()->createVirtualRegister(RC);
+    }
+
+    /// getReg - This method turns an LLVM value into a register number.
+    ///
+    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
+    unsigned getReg(Value *V) {
+      // Just append to the end of the current bb.
+      MachineBasicBlock::iterator It = BB->end();
+      return getReg(V, BB, It);
+    }
+    unsigned getReg(Value *V, MachineBasicBlock *MBB,
+                    MachineBasicBlock::iterator IPt);
+
+    /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+    /// that is to be statically allocated with the initial stack frame
+    /// adjustment.
+    unsigned getFixedSizedAllocaFI(AllocaInst *AI);
+  };
+}
+
+/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
+/// instruction in the entry block, return it.  Otherwise, return a null
+/// pointer.
+static AllocaInst *dyn_castFixedAlloca(Value *V) {
+  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+    BasicBlock *BB = AI->getParent();
+    if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
+      return AI;
+  }
+  return 0;
+}
+
+/// getReg - This method turns an LLVM value into a register number.
+///
+unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
+                      MachineBasicBlock::iterator IPt) {
+  // If this operand is a constant, emit the code to copy the constant into
+  // the register here...
+  //
+  if (Constant *C = dyn_cast<Constant>(V)) {
+    unsigned Reg = makeAnotherReg(V->getType());
+    copyConstantToRegister(MBB, IPt, C, Reg);
+    return Reg;
+  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    unsigned Reg1 = makeAnotherReg(V->getType());
+       unsigned Reg2 = makeAnotherReg(V->getType());
+    // Move the address of the global into the register
+    BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
+    BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
+    return Reg2;
+  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
+    // Do not emit noop casts at all.
+    if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
+      return getReg(CI->getOperand(0), MBB, IPt);
+  } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
+    unsigned Reg = makeAnotherReg(V->getType());
+    unsigned FI = getFixedSizedAllocaFI(AI);
+    addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
+    return Reg;
+  }
+
+  unsigned &Reg = RegMap[V];
+  if (Reg == 0) {
+    Reg = makeAnotherReg(V->getType());
+    RegMap[V] = Reg;
+  }
+
+  return Reg;
+}
+
+/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+/// that is to be statically allocated with the initial stack frame
+/// adjustment.
+unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
+  // Already computed this?
+  std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
+  if (I != AllocaMap.end() && I->first == AI) return I->second;
+
+  const Type *Ty = AI->getAllocatedType();
+  ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
+  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+  TySize *= CUI->getValue();   // Get total allocated size...
+  unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
+      
+  // Create a new stack object using the frame manager...
+  int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
+  AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
+  return FrameIdx;
+}
+
+
+/// copyConstantToRegister - Output the instructions required to put the
+/// specified constant into the specified register.
+///
+void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
+                                  MachineBasicBlock::iterator IP,
+                                  Constant *C, unsigned R) {
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+    unsigned Class = 0;
+    switch (CE->getOpcode()) {
+    case Instruction::GetElementPtr:
+      emitGEPOperation(MBB, IP, CE->getOperand(0),
+                       CE->op_begin()+1, CE->op_end(), R);
+      return;
+    case Instruction::Cast:
+      emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
+      return;
+
+    case Instruction::Xor: ++Class; // FALL THROUGH
+    case Instruction::Or:  ++Class; // FALL THROUGH
+    case Instruction::And: ++Class; // FALL THROUGH
+    case Instruction::Sub: ++Class; // FALL THROUGH
+    case Instruction::Add:
+      emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                                Class, R);
+      return;
+
+    case Instruction::Mul:
+      emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
+      return;
+
+    case Instruction::Div:
+    case Instruction::Rem:
+      emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                          CE->getOpcode() == Instruction::Div, R);
+      return;
+
+    case Instruction::SetNE:
+    case Instruction::SetEQ:
+    case Instruction::SetLT:
+    case Instruction::SetGT:
+    case Instruction::SetLE:
+    case Instruction::SetGE:
+      emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                         CE->getOpcode(), R);
+      return;
+
+    case Instruction::Shl:
+    case Instruction::Shr:
+      emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                         CE->getOpcode() == Instruction::Shl, CE->getType(), R);
+      return;
+
+    case Instruction::Select:
+      emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                          CE->getOperand(2), R);
+      return;
+
+    default:
+      std::cerr << "Offending expr: " << C << "\n";
+      assert(0 && "Constant expression not yet handled!\n");
+    }
+  }
+
+  if (C->getType()->isIntegral()) {
+    unsigned Class = getClassB(C->getType());
+
+    if (Class == cLong) {
+      // Copy the value into the register pair.
+      uint64_t Val = cast<ConstantInt>(C)->getRawValue();
+         unsigned hiTmp = makeAnotherReg(Type::IntTy);
+         unsigned loTmp = makeAnotherReg(Type::IntTy);
+      BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
+      BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
+      BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
+      BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
+      return;
+    }
+
+    assert(Class <= cInt && "Type not handled yet!");
+
+    if (C->getType() == Type::BoolTy) {
+      BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
+    } else if (Class == cByte || Class == cShort) {
+      ConstantInt *CI = cast<ConstantInt>(C);
+      BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
+    } else {
+      ConstantInt *CI = cast<ConstantInt>(C);
+      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
+      if (TheVal < 32768 && TheVal >= -32768) {
+               BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
+         } else {
+               unsigned TmpReg = makeAnotherReg(Type::IntTy);
+               BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
+               BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
+         }
+    }
+  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+      // We need to spill the constant to memory...
+      MachineConstantPool *CP = F->getConstantPool();
+      unsigned CPI = CP->getConstantPoolIndex(CFP);
+      const Type *Ty = CFP->getType();
+
+      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); 
+      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
+      addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
+  } else if (isa<ConstantPointerNull>(C)) {
+    // Copy zero (null pointer) to the register.
+    BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
+  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
+    BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
+    BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
+  } else {
+    std::cerr << "Offending constant: " << C << "\n";
+    assert(0 && "Type not handled yet!");
+  }
+}
+
+/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
+/// the stack into virtual registers.
+///
+/// FIXME: When we can calculate which args are coming in via registers
+/// source them from there instead.
+void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
+  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
+  unsigned GPR_remaining = 8;
+  unsigned FPR_remaining = 13;
+  unsigned GPR_idx = 3;
+  unsigned FPR_idx = 1;
+       
+  MachineFrameInfo *MFI = F->getFrameInfo();
+
+  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
+    bool ArgLive = !I->use_empty();
+    unsigned Reg = ArgLive ? getReg(*I) : 0;
+    int FI;          // Frame object index
+
+    switch (getClassB(I->getType())) {
+    case cByte:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(1, ArgOffset);
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
+               }
+         }
+      break;
+    case cShort:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(2, ArgOffset);
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
+               }
+         }
+      break;
+    case cInt:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(4, ArgOffset);
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
+               }
+         }
+      break;
+    case cLong:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(8, ArgOffset);
+               if (GPR_remaining > 1) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+                       BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1).addReg(PPC32::R0+GPR_idx+1);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
+                       addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
+               }
+         }
+      ArgOffset += 4;   // longs require 4 additional bytes
+         if (GPR_remaining > 1) {
+               GPR_remaining--;    // uses up 2 GPRs
+               GPR_idx++;
+         }
+      break;
+    case cFP:
+      if (ArgLive) {
+        unsigned Opcode;
+        if (I->getType() == Type::FloatTy) {
+          Opcode = PPC32::LFS;
+          FI = MFI->CreateFixedObject(4, ArgOffset);
+        } else {
+          Opcode = PPC32::LFD;
+          FI = MFI->CreateFixedObject(8, ArgOffset);
+        }
+               if (FPR_remaining > 0) {
+                       BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
+                       FPR_remaining--;
+                       FPR_idx++;
+               } else {
+                       addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
+               }
+         }
+      if (I->getType() == Type::DoubleTy) {
+        ArgOffset += 4;   // doubles require 4 additional bytes
+               if (GPR_remaining > 0) {
+                       GPR_remaining--;    // uses up 2 GPRs
+                       GPR_idx++;
+               }
+         }
+      break;
+    default:
+      assert(0 && "Unhandled argument type!");
+    }
+    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
+       if (GPR_remaining > 0) {
+               GPR_remaining--;    // uses up 2 GPRs
+               GPR_idx++;
+       }
+  }
+
+  // If the function takes variable number of arguments, add a frame offset for
+  // the start of the first vararg value... this is used to expand
+  // llvm.va_start.
+  if (Fn.getFunctionType()->isVarArg())
+    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
+}
+
+
+/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
+/// because we have to generate our sources into the source basic blocks, not
+/// the current one.
+///
+void ISel::SelectPHINodes() {
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  const Function &LF = *F->getFunction();  // The LLVM function...
+  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
+    const BasicBlock *BB = I;
+    MachineBasicBlock &MBB = *MBBMap[I];
+
+    // Loop over all of the PHI nodes in the LLVM basic block...
+    MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
+    for (BasicBlock::const_iterator I = BB->begin();
+         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
+
+      // Create a new machine instr PHI node, and insert it.
+      unsigned PHIReg = getReg(*PN);
+      MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
+                                    PPC32::PHI, PN->getNumOperands(), PHIReg);
+
+      MachineInstr *LongPhiMI = 0;
+      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
+        LongPhiMI = BuildMI(MBB, PHIInsertPoint,
+                            PPC32::PHI, PN->getNumOperands(), PHIReg+1);
+
+      // PHIValues - Map of blocks to incoming virtual registers.  We use this
+      // so that we only initialize one incoming value for a particular block,
+      // even if the block has multiple entries in the PHI node.
+      //
+      std::map<MachineBasicBlock*, unsigned> PHIValues;
+
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
+        unsigned ValReg;
+        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
+          PHIValues.lower_bound(PredMBB);
+
+        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
+          // We already inserted an initialization of the register for this
+          // predecessor.  Recycle it.
+          ValReg = EntryIt->second;
+
+        } else {        
+          // Get the incoming value into a virtual register.
+          //
+          Value *Val = PN->getIncomingValue(i);
+
+          // If this is a constant or GlobalValue, we may have to insert code
+          // into the basic block to compute it into a virtual register.
+          if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
+              isa<GlobalValue>(Val)) {
+            // Simple constants get emitted at the end of the basic block,
+            // before any terminator instructions.  We "know" that the code to
+            // move a constant into a register will never clobber any flags.
+            ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
+          } else {
+            // Because we don't want to clobber any values which might be in
+            // physical registers with the computation of this constant (which
+            // might be arbitrarily complex if it is a constant expression),
+            // just insert the computation at the top of the basic block.
+            MachineBasicBlock::iterator PI = PredMBB->begin();
+            
+            // Skip over any PHI nodes though!
+            while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
+              ++PI;
+            
+            ValReg = getReg(Val, PredMBB, PI);
+          }
+
+          // Remember that we inserted a value for this PHI for this predecessor
+          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
+        }
+
+        PhiMI->addRegOperand(ValReg);
+        PhiMI->addMachineBasicBlockOperand(PredMBB);
+        if (LongPhiMI) {
+          LongPhiMI->addRegOperand(ValReg+1);
+          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
+        }
+      }
+
+      // Now that we emitted all of the incoming values for the PHI node, make
+      // sure to reposition the InsertPoint after the PHI that we just added.
+      // This is needed because we might have inserted a constant into this
+      // block, right after the PHI's which is before the old insert point!
+      PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
+      ++PHIInsertPoint;
+    }
+  }
+}
+
+
+// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
+// it into the conditional branch or select instruction which is the only user
+// of the cc instruction.  This is the case if the conditional branch is the
+// only user of the setcc, and if the setcc is in the same basic block as the
+// conditional branch.  We also don't handle long arguments below, so we reject
+// them here as well.
+//
+static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
+  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
+    if (SCI->hasOneUse()) {
+      Instruction *User = cast<Instruction>(SCI->use_back());
+      if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
+          SCI->getParent() == User->getParent() &&
+          (getClassB(SCI->getOperand(0)->getType()) != cLong ||
+           SCI->getOpcode() == Instruction::SetEQ ||
+           SCI->getOpcode() == Instruction::SetNE))
+        return SCI;
+    }
+  return 0;
+}
+
+// Return a fixed numbering for setcc instructions which does not depend on the
+// order of the opcodes.
+//
+static unsigned getSetCCNumber(unsigned Opcode) {
+  switch(Opcode) {
+  default: assert(0 && "Unknown setcc instruction!");
+  case Instruction::SetEQ: return 0;
+  case Instruction::SetNE: return 1;
+  case Instruction::SetLT: return 2;
+  case Instruction::SetGE: return 3;
+  case Instruction::SetGT: return 4;
+  case Instruction::SetLE: return 5;
+  }
+}
+
+/// emitUCOM - emits an unordered FP compare.
+void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+                     unsigned LHS, unsigned RHS) {
+       BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
+}
+
+// EmitComparison - This function emits a comparison of the two operands,
+// returning the extended setcc code to use.
+unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+                              MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP) {
+  // The arguments are already supposed to be of the same type.
+  const Type *CompTy = Op0->getType();
+  unsigned Class = getClassB(CompTy);
+  unsigned Op0r = getReg(Op0, MBB, IP);
+
+  // Special case handling of: cmp R, i
+  if (isa<ConstantPointerNull>(Op1)) {
+      BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
+  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    if (Class == cByte || Class == cShort || Class == cInt) {
+      unsigned Op1v = CI->getRawValue();
+
+      // Mask off any upper bits of the constant, if there are any...
+      Op1v &= (1ULL << (8 << Class)) - 1;
+
+         // Compare immediate or promote to reg?
+         if (Op1v <= 32767) {
+               BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
+         } else {
+               unsigned Op1r = getReg(Op1, MBB, IP);
+               BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
+         }
+      return OpNum;
+    } else {
+      assert(Class == cLong && "Unknown integer class!");
+      unsigned LowCst = CI->getRawValue();
+      unsigned HiCst = CI->getRawValue() >> 32;
+      if (OpNum < 2) {    // seteq, setne
+        unsigned LoTmp = Op0r;
+        if (LowCst != 0) {
+                 unsigned LoLow = makeAnotherReg(Type::IntTy);
+          unsigned LoTmp = makeAnotherReg(Type::IntTy);
+          BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
+          BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow).addImm(LowCst >> 16);
+        }
+        unsigned HiTmp = Op0r+1;
+        if (HiCst != 0) {
+                 unsigned HiLow = makeAnotherReg(Type::IntTy);
+          unsigned HiTmp = makeAnotherReg(Type::IntTy);
+          BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
+          BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow).addImm(HiCst >> 16);
+        }
+        unsigned FinalTmp = makeAnotherReg(Type::IntTy);
+        BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
+        //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
+        return OpNum;
+      } else {
+        // Emit a sequence of code which compares the high and low parts once
+        // each, then uses a conditional move to handle the overflow case.  For
+        // example, a setlt for long would generate code like this:
+        //
+        // AL = lo(op1) < lo(op2)   // Always unsigned comparison
+        // BL = hi(op1) < hi(op2)   // Signedness depends on operands
+        // dest = hi(op1) == hi(op2) ? BL : AL;
+        //
+
+        // FIXME: Not Yet Implemented
+               return OpNum;
+      }
+    }
+  }
+
+  unsigned Op1r = getReg(Op1, MBB, IP);
+  switch (Class) {
+  default: assert(0 && "Unknown type class!");
+  case cByte:
+  case cShort:
+  case cInt:
+       BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
+    break;
+  case cFP:
+    emitUCOM(MBB, IP, Op0r, Op1r);
+    break;
+
+  case cLong:
+    if (OpNum < 2) {    // seteq, setne
+      unsigned LoTmp = makeAnotherReg(Type::IntTy);
+      unsigned HiTmp = makeAnotherReg(Type::IntTy);
+      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
+      BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
+      BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
+      BuildMI(*MBB, IP, PPC32::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
+      //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
+      break;  // Allow the sete or setne to be generated from flags set by OR
+    } else {
+      // Emit a sequence of code which compares the high and low parts once
+      // each, then uses a conditional move to handle the overflow case.  For
+      // example, a setlt for long would generate code like this:
+      //
+      // AL = lo(op1) < lo(op2)   // Signedness depends on operands
+      // BL = hi(op1) < hi(op2)   // Always unsigned comparison
+      // dest = hi(op1) == hi(op2) ? BL : AL;
+      //
+
+      // FIXME: Not Yet Implemented
+      return OpNum;
+    }
+  }
+  return OpNum;
+}
+
+/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
+/// register, then move it to wherever the result should be. 
+///
+void ISel::visitSetCondInst(SetCondInst &I) {
+  if (canFoldSetCCIntoBranchOrSelect(&I))
+    return;  // Fold this into a branch or select.
+
+  unsigned DestReg = getReg(I);
+  MachineBasicBlock::iterator MII = BB->end();
+  emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),DestReg);
+}
+
+/// emitSetCCOperation - Common code shared between visitSetCondInst and
+/// constant expression support.
+///
+/// FIXME: this is wrong.  we should figure out a way to guarantee
+/// TargetReg is a CR and then make it a no-op
+void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Op0, Value *Op1, unsigned Opcode,
+                              unsigned TargetReg) {
+  unsigned OpNum = getSetCCNumber(Opcode);
+  OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
+
+  // The value is already in CR0 at this point, do nothing.
+}
+
+
+void ISel::visitSelectInst(SelectInst &SI) {
+  unsigned DestReg = getReg(SI);
+  MachineBasicBlock::iterator MII = BB->end();
+  emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),SI.getFalseValue(), DestReg);
+}
+/// emitSelect - Common code shared between visitSelectInst and the constant
+/// expression support.
+/// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
+/// no select instruction.  FSEL only works for comparisons against zero.
+void ISel::emitSelectOperation(MachineBasicBlock *MBB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Cond, Value *TrueVal, Value *FalseVal,
+                               unsigned DestReg) {
+  unsigned SelectClass = getClassB(TrueVal->getType());
+
+  unsigned TrueReg  = getReg(TrueVal, MBB, IP);
+  unsigned FalseReg = getReg(FalseVal, MBB, IP);
+
+  if (TrueReg == FalseReg) {
+       if (SelectClass == cFP) {
+               BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
+       } else {
+               BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
+       }
+       
+    if (SelectClass == cLong)
+               BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1).addReg(TrueReg+1);
+    return;
+  }
+
+  unsigned CondReg = getReg(Cond, MBB, IP);
+  unsigned numZeros = makeAnotherReg(Type::IntTy);
+  unsigned falseHi = makeAnotherReg(Type::IntTy);
+  unsigned falseAll = makeAnotherReg(Type::IntTy);
+  unsigned trueAll = makeAnotherReg(Type::IntTy);
+  unsigned Temp1 = makeAnotherReg(Type::IntTy);
+  unsigned Temp2 = makeAnotherReg(Type::IntTy);
+
+  BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
+  BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26).addImm(0).addImm(0);
+  BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
+  BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
+  BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
+  BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
+  BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
+  
+  if (SelectClass == cLong) {
+       unsigned Temp3 = makeAnotherReg(Type::IntTy);
+       unsigned Temp4 = makeAnotherReg(Type::IntTy);
+       BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
+       BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
+       BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
+  }
+  
+  return;
+}
+
+
+
+/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
+/// operand, in the specified target register.
+///
+void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
+  bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
+
+  Value *Val = VR.Val;
+  const Type *Ty = VR.Ty;
+  if (Val) {
+    if (Constant *C = dyn_cast<Constant>(Val)) {
+      Val = ConstantExpr::getCast(C, Type::IntTy);
+      Ty = Type::IntTy;
+    }
+
+    // If this is a simple constant, just emit a load directly to avoid the copy.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
+
+      if (TheVal < 32768 && TheVal >= -32768) {
+               BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
+         } else {
+               unsigned TmpReg = makeAnotherReg(Type::IntTy);
+               BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(TheVal >> 16);
+               BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg).addImm(TheVal & 0xFFFF);
+         }
+      return;
+    }
+  }
+
+  // Make sure we have the register number for this value...
+  unsigned Reg = Val ? getReg(Val) : VR.Reg;
+
+  switch (getClassB(Ty)) {
+  case cByte:
+    // Extend value into target register (8->32)
+    if (isUnsigned)
+      BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(24).addZImm(31);
+    else
+      BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
+    break;
+  case cShort:
+    // Extend value into target register (16->32)
+    if (isUnsigned)
+      BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(16).addZImm(31);
+    else
+      BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
+    break;
+  case cInt:
+    // Move value into target register (32->32)
+    BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
+    break;
+  default:
+    assert(0 && "Unpromotable operand class in promote32");
+  }
+}
+
+// just emit blr.
+void ISel::visitReturnInst(ReturnInst &I) {
+  Value *RetVal = I.getOperand(0);
+
+  switch (getClassB(RetVal->getType())) {
+  case cByte:   // integral return values: extend or move into r3 and return
+  case cShort:
+  case cInt:
+    promote32(PPC32::R3, ValueRecord(RetVal));
+    break;
+  case cFP: {   // Floats & Doubles: Return in f1
+    unsigned RetReg = getReg(RetVal);
+    BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
+    break;
+  }
+  case cLong: {
+    unsigned RetReg = getReg(RetVal);
+    BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
+    BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
+    break;
+  }
+  default:
+    visitInstruction(I);
+  }
+  BuildMI(BB, PPC32::BLR, 1).addImm(0);
+}
+
+// getBlockAfter - Return the basic block which occurs lexically after the
+// specified one.
+static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
+  Function::iterator I = BB; ++I;  // Get iterator to next block
+  return I != BB->getParent()->end() ? &*I : 0;
+}
+
+/// visitBranchInst - Handle conditional and unconditional branches here.  Note
+/// that since code layout is frozen at this point, that if we are trying to
+/// jump to a block that is the immediate successor of the current block, we can
+/// just make a fall-through (but we don't currently).
+///
+void ISel::visitBranchInst(BranchInst &BI) {
+       // Update machine-CFG edges
+       BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
+       if (BI.isConditional())
+               BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
+       
+       BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
+       
+       if (!BI.isConditional()) {  // Unconditional branch?
+               if (BI.getSuccessor(0) != NextBB)
+                       BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+               return;
+       }
+       
+  // See if we can fold the setcc into the branch itself...
+  SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
+  if (SCI == 0) {
+    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
+    // computed some other way...
+    unsigned condReg = getReg(BI.getCondition());
+       BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg).addImm(0);
+    if (BI.getSuccessor(1) == NextBB) {
+      if (BI.getSuccessor(0) != NextBB)
+        BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2).addMBB(MBBMap[BI.getSuccessor(0)]);
+    } else {
+         BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2).addMBB(MBBMap[BI.getSuccessor(1)]);
+      
+      if (BI.getSuccessor(0) != NextBB)
+        BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+    }
+    return;
+  }
+
+
+  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
+  MachineBasicBlock::iterator MII = BB->end();
+  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
+
+  const Type *CompTy = SCI->getOperand(0)->getType();
+  bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
+  
+  // LLVM  -> X86 signed  X86 unsigned
+  // -----    ----------  ------------
+  // seteq -> je          je
+  // setne -> jne         jne
+  // setlt -> jl          jb
+  // setge -> jge         jae
+  // setgt -> jg          ja
+  // setle -> jle         jbe
+
+  static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
+  unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
+  unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
+  unsigned BIval = BITab[0];
+
+  if (BI.getSuccessor(0) != NextBB) {
+               BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(0)]);
+    if (BI.getSuccessor(1) != NextBB)
+               BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
+  } else {
+    // Change to the inverse condition...
+    if (BI.getSuccessor(1) != NextBB) {
+         BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(1)]);
+    }
+  }
+}
+
+
+/// doCall - This emits an abstract call instruction, setting up the arguments
+/// and the return value as appropriate.  For the actual function call itself,
+/// it inserts the specified CallMI instruction into the stream.
+///
+/// FIXME: See Documentation at the following URL for "correct" behavior
+/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
+void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+                  const std::vector<ValueRecord> &Args) {
+  // Count how many bytes are to be pushed on the stack...
+  unsigned NumBytes = 0;
+
+  if (!Args.empty()) {
+    for (unsigned i = 0, e = Args.size(); i != e; ++i)
+      switch (getClassB(Args[i].Ty)) {
+      case cByte: case cShort: case cInt:
+        NumBytes += 4; break;
+      case cLong:
+        NumBytes += 8; break;
+      case cFP:
+        NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
+        break;
+      default: assert(0 && "Unknown class!");
+      }
+
+    // Adjust the stack pointer for the new arguments...
+    BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
+
+    // Arguments go on the stack in reverse order, as specified by the ABI.
+    unsigned ArgOffset = 0;
+       unsigned GPR_remaining = 8;
+       unsigned FPR_remaining = 13;
+       unsigned GPR_idx = 3;
+       unsigned FPR_idx = 1;
+       
+    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+      unsigned ArgReg;
+      switch (getClassB(Args[i].Ty)) {
+      case cByte:
+      case cShort:
+        // Promote arg to 32 bits wide into a temporary register...
+        ArgReg = makeAnotherReg(Type::UIntTy);
+        promote32(ArgReg, Args[i]);
+                 
+               // Reg or stack?
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
+               } else {
+                       BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+               }
+               break;
+      case cInt:
+        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+
+               // Reg or stack?
+               if (GPR_remaining > 0) {
+                   BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
+               } else {
+                   BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+               }
+               break;
+      case cLong:
+               ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+
+               // Reg or stack?
+               if (GPR_remaining > 1) {
+                   BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
+                   BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1).addReg(ArgReg+1);
+               } else {
+                   BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+                   BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4).addReg(PPC32::R1);
+               }
+
+        ArgOffset += 4;        // 8 byte entry, not 4.
+               if (GPR_remaining > 0) {
+                       GPR_remaining -= 1;    // uses up 2 GPRs
+                       GPR_idx += 1;
+               }
+        break;
+      case cFP:
+        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+        if (Args[i].Ty == Type::FloatTy) {
+                       // Reg or stack?
+                       if (FPR_remaining > 0) {
+                               BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
+                               FPR_remaining--;
+                               FPR_idx++;
+                       } else {
+                               BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+                       }
+        } else {
+          assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
+                       // Reg or stack?
+                       if (FPR_remaining > 0) {
+                               BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
+                               FPR_remaining--;
+                               FPR_idx++;
+                       } else {
+                               BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+                       }
+
+                       ArgOffset += 4;       // 8 byte entry, not 4.
+                       if (GPR_remaining > 0) {
+                               GPR_remaining--;    // uses up 2 GPRs
+                               GPR_idx++;
+                       }
+        }
+        break;
+
+      default: assert(0 && "Unknown class!");
+      }
+      ArgOffset += 4;
+         if (GPR_remaining > 0) {
+               GPR_remaining--;    // uses up 2 GPRs
+               GPR_idx++;
+         }
+    }
+  } else {
+    BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
+  }
+
+  BB->push_back(CallMI);
+
+  BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
+
+  // If there is a return value, scavenge the result from the location the call
+  // leaves it in...
+  //
+  if (Ret.Ty != Type::VoidTy) {
+    unsigned DestClass = getClassB(Ret.Ty);
+    switch (DestClass) {
+    case cByte:
+    case cShort:
+    case cInt:
+      // Integral results are in r3
+         BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
+    case cFP:     // Floating-point return values live in f1
+      BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
+      break;
+    case cLong:   // Long values are in r3:r4
+         BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
+         BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
+      break;
+    default: assert(0 && "Unknown class!");
+    }
+  }
+}
+
+
+/// visitCallInst - Push args on stack and do a procedure call instruction.
+void ISel::visitCallInst(CallInst &CI) {
+  MachineInstr *TheCall;
+  if (Function *F = CI.getCalledFunction()) {
+    // Is it an intrinsic function call?
+    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
+      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
+      return;
+    }
+
+    // Emit a CALL instruction with PC-relative displacement.
+    TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
+  } else {  // Emit an indirect call through the CTR
+    unsigned Reg = getReg(CI.getCalledValue());
+    BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
+    TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
+  }
+
+  std::vector<ValueRecord> Args;
+  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
+    Args.push_back(ValueRecord(CI.getOperand(i)));
+
+  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
+  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
+}         
+
+
+/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
+///
+static Value *dyncastIsNan(Value *V) {
+  if (CallInst *CI = dyn_cast<CallInst>(V))
+    if (Function *F = CI->getCalledFunction())
+      if (F->getIntrinsicID() == Intrinsic::isnan)
+        return CI->getOperand(1);
+  return 0;
+}
+
+/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
+/// or's whos operands are all calls to the isnan predicate.
+static bool isOnlyUsedByUnorderedComparisons(Value *V) {
+  assert(dyncastIsNan(V) && "The value isn't an isnan call!");
+
+  // Check all uses, which will be or's of isnans if this predicate is true.
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+    Instruction *I = cast<Instruction>(*UI);
+    if (I->getOpcode() != Instruction::Or) return false;
+    if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
+    if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
+  }
+
+  return true;
+}
+
+/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+/// function, lowering any calls to unknown intrinsic functions into the
+/// equivalent LLVM code.
+///
+void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
+  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+      if (CallInst *CI = dyn_cast<CallInst>(I++))
+        if (Function *F = CI->getCalledFunction())
+          switch (F->getIntrinsicID()) {
+          case Intrinsic::not_intrinsic:
+          case Intrinsic::vastart:
+          case Intrinsic::vacopy:
+          case Intrinsic::vaend:
+          case Intrinsic::returnaddress:
+          case Intrinsic::frameaddress:
+          case Intrinsic::isnan:
+            // We directly implement these intrinsics
+            break;
+          case Intrinsic::readio: {
+            // On PPC, memory operations are in-order.  Lower this intrinsic
+            // into a volatile load.
+            Instruction *Before = CI->getPrev();
+            LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
+            CI->replaceAllUsesWith(LI);
+            BB->getInstList().erase(CI);
+            break;
+          }
+          case Intrinsic::writeio: {
+            // On PPC, memory operations are in-order.  Lower this intrinsic
+            // into a volatile store.
+            Instruction *Before = CI->getPrev();
+            StoreInst *LI = new StoreInst(CI->getOperand(1),
+                                          CI->getOperand(2), true, CI);
+            CI->replaceAllUsesWith(LI);
+            BB->getInstList().erase(CI);
+            break;
+          }
+          default:
+            // All other intrinsic calls we must lower.
+            Instruction *Before = CI->getPrev();
+            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
+            if (Before) {        // Move iterator to instruction after call
+              I = Before; ++I;
+            } else {
+              I = BB->begin();
+            }
+          }
+}
+
+void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
+  unsigned TmpReg1, TmpReg2, TmpReg3;
+  switch (ID) {
+  case Intrinsic::vastart:
+    // Get the address of the first vararg value...
+    TmpReg1 = getReg(CI);
+    addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
+    return;
+
+  case Intrinsic::vacopy:
+    TmpReg1 = getReg(CI);
+    TmpReg2 = getReg(CI.getOperand(1));
+    BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
+    return;
+  case Intrinsic::vaend: return;
+
+  case Intrinsic::returnaddress:
+  case Intrinsic::frameaddress:
+    TmpReg1 = getReg(CI);
+    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
+      if (ID == Intrinsic::returnaddress) {
+        // Just load the return address
+        addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
+                          ReturnAddressIndex);
+      } else {
+        addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
+                          ReturnAddressIndex, -4, false);
+      }
+    } else {
+      // Values other than zero are not implemented yet.
+      BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
+    }
+    return;
+
+  case Intrinsic::isnan:
+    // If this is only used by 'isunordered' style comparisons, don't emit it.
+    if (isOnlyUsedByUnorderedComparisons(&CI)) return;
+    TmpReg1 = getReg(CI.getOperand(1));
+    emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
+       TmpReg2 = makeAnotherReg(Type::IntTy);
+       BuildMI(BB, PPC32::MFCR, TmpReg2);
+    TmpReg3 = getReg(CI);
+    BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
+    return;
+
+  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
+  }
+}
+
+/// visitSimpleBinary - Implement simple binary operators for integral types...
+/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
+/// Xor.
+///
+void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
+  unsigned DestReg = getReg(B);
+  MachineBasicBlock::iterator MI = BB->end();
+  Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
+  unsigned Class = getClassB(B.getType());
+
+  emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
+}
+
+/// emitBinaryFPOperation - This method handles emission of floating point
+/// Add (0), Sub (1), Mul (2), and Div (3) operations.
+void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
+                                 MachineBasicBlock::iterator IP,
+                                 Value *Op0, Value *Op1,
+                                 unsigned OperatorClass, unsigned DestReg) {
+
+  // Special case: op Reg, <const fp>
+  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+      // Create a constant pool entry for this constant.
+      MachineConstantPool *CP = F->getConstantPool();
+      unsigned CPI = CP->getConstantPoolIndex(Op1C);
+      const Type *Ty = Op1->getType();
+
+      static const unsigned OpcodeTab[][4] = {
+        { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },   // Float
+        { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV },   // Double
+      };
+
+      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+         unsigned TempReg = makeAnotherReg(Ty);
+      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
+      addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
+
+      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+      unsigned Op0r = getReg(Op0, BB, IP);
+         BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
+      return;
+    }
+  
+  // Special case: R1 = op <const fp>, R2
+  if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
+    if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
+      // -0.0 - X === -X
+      unsigned op1Reg = getReg(Op1, BB, IP);
+      BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
+      return;
+    } else {
+      // R1 = op CST, R2  -->  R1 = opr R2, CST
+
+      // Create a constant pool entry for this constant.
+      MachineConstantPool *CP = F->getConstantPool();
+      unsigned CPI = CP->getConstantPoolIndex(CFP);
+      const Type *Ty = CFP->getType();
+
+      static const unsigned OpcodeTab[][4] = {
+        { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },   // Float
+        { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV },   // Double
+      };
+
+      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+         unsigned TempReg = makeAnotherReg(Ty);
+      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
+      addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
+
+      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+      unsigned Op1r = getReg(Op1, BB, IP);
+         BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
+      return;
+    }
+
+  // General case.
+  static const unsigned OpcodeTab[4] = {
+    PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
+  };
+
+  unsigned Opcode = OpcodeTab[OperatorClass];
+  unsigned Op0r = getReg(Op0, BB, IP);
+  unsigned Op1r = getReg(Op1, BB, IP);
+  BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+}
+
+/// emitSimpleBinaryOperation - Implement simple binary operators for integral
+/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
+/// Or, 4 for Xor.
+///
+/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+/// and constant expression support.
+///
+void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
+                                     MachineBasicBlock::iterator IP,
+                                     Value *Op0, Value *Op1,
+                                     unsigned OperatorClass, unsigned DestReg) {
+  unsigned Class = getClassB(Op0->getType());
+
+    // Arithmetic and Bitwise operators
+    static const unsigned OpcodeTab[5] = {
+         PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
+       };
+    // Otherwise, code generate the full operation with a constant.
+    static const unsigned BottomTab[] = {
+      PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
+    };
+    static const unsigned TopTab[] = {
+      PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
+    };
+  
+  if (Class == cFP) {
+    assert(OperatorClass < 2 && "No logical ops for FP!");
+    emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
+    return;
+  }
+
+  if (Op0->getType() == Type::BoolTy) {
+    if (OperatorClass == 3)
+      // If this is an or of two isnan's, emit an FP comparison directly instead
+      // of or'ing two isnan's together.
+      if (Value *LHS = dyncastIsNan(Op0))
+        if (Value *RHS = dyncastIsNan(Op1)) {
+          unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
+                 unsigned TmpReg = makeAnotherReg(Type::IntTy);
+          emitUCOM(MBB, IP, Op0Reg, Op1Reg);
+                 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
+                 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4).addImm(31).addImm(31);
+          return;
+        }
+  }
+
+  // sub 0, X -> neg X
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
+    if (OperatorClass == 1 && CI->isNullValue()) {
+      unsigned op1Reg = getReg(Op1, MBB, IP);
+      BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
+      
+      if (Class == cLong) {
+               unsigned zeroes = makeAnotherReg(Type::IntTy);
+               unsigned overflow = makeAnotherReg(Type::IntTy);
+        unsigned T = makeAnotherReg(Type::IntTy);
+               BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
+               BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27).addImm(5).addImm(31);
+               BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
+               BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
+      }
+      return;
+    }
+
+  // Special case: op Reg, <const int>
+  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+    unsigned Op0r = getReg(Op0, MBB, IP);
+
+    // xor X, -1 -> not X
+    if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
+      BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+      if (Class == cLong)  // Invert the top part too
+        BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
+      return;
+    }
+
+    unsigned Opcode = OpcodeTab[OperatorClass];
+    unsigned Op1r = getReg(Op1, MBB, IP);
+
+    if (Class != cLong) {
+      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+      return;
+    }
+    
+    // If the constant is zero in the low 32-bits, just copy the low part
+    // across and apply the normal 32-bit operation to the high parts.  There
+    // will be no carry or borrow into the top.
+    if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
+      if (OperatorClass != 2) // All but and...
+        BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+      else
+        BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+         BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
+      return;
+    }
+    
+    // If this is a long value and the high or low bits have a special
+    // property, emit some special cases.
+    unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
+    
+    // If this is a logical operation and the top 32-bits are zero, just
+    // operate on the lower 32.
+    if (Op1h == 0 && OperatorClass > 1) {
+      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+      if (OperatorClass != 2)  // All but and
+        BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
+      else
+        BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
+      return;
+    }
+    
+    // TODO: We could handle lots of other special cases here, such as AND'ing
+    // with 0xFFFFFFFF00000000 -> noop, etc.
+    
+    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
+    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
+    return;
+  }
+
+  unsigned Op0r = getReg(Op0, MBB, IP);
+  unsigned Op1r = getReg(Op1, MBB, IP);
+
+  if (Class != cLong) {
+       unsigned Opcode = OpcodeTab[OperatorClass];
+       BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+  } else {
+    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
+    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
+  }
+  return;
+}
+
+/// doMultiply - Emit appropriate instructions to multiply together the
+/// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
+/// result should be given as DestTy.
+///
+void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                      unsigned DestReg, const Type *DestTy,
+                      unsigned op0Reg, unsigned op1Reg) {
+  unsigned Class = getClass(DestTy);
+  switch (Class) {
+  case cLong:
+    BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1).addReg(op1Reg+1);
+  case cInt:
+  case cShort:
+  case cByte:
+    BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
+    return;
+  default:
+       assert(0 && "doMultiply cannot operate on unknown type!");
+  }
+}
+
+// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
+// returns zero when the input is not exactly a power of two.
+static unsigned ExactLog2(unsigned Val) {
+  if (Val == 0 || (Val & (Val-1))) return 0;
+  unsigned Count = 0;
+  while (Val != 1) {
+    Val >>= 1;
+    ++Count;
+  }
+  return Count+1;
+}
+
+
+/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
+/// 16, or 32-bit integer multiply by a constant.
+void ISel::doMultiplyConst(MachineBasicBlock *MBB,
+                           MachineBasicBlock::iterator IP,
+                           unsigned DestReg, const Type *DestTy,
+                           unsigned op0Reg, unsigned ConstRHS) {
+  unsigned Class = getClass(DestTy);
+  // Handle special cases here.
+  switch (ConstRHS) {
+  case 0:
+    BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+    return;
+  case 1:
+    BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
+    return;
+  case 2:
+    BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
+    return;
+  }
+
+  // If the element size is exactly a power of 2, use a shift to get it.
+  if (unsigned Shift = ExactLog2(ConstRHS)) {
+    switch (Class) {
+    default: assert(0 && "Unknown class for this function!");
+    case cByte:
+    case cShort:
+    case cInt:
+      BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg).addImm(Shift-1).addImm(0).addImm(31-Shift-1);
+      return;
+    }
+  }
+  
+  // Most general case, emit a normal multiply...
+  unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
+  unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
+  BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0).addImm(ConstRHS >> 16);
+  BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
+  
+  // Emit a MUL to multiply the register holding the index by
+  // elementSize, putting the result in OffsetReg.
+  doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
+}
+
+void ISel::visitMul(BinaryOperator &I) {
+  unsigned ResultReg = getReg(I);
+
+  Value *Op0 = I.getOperand(0);
+  Value *Op1 = I.getOperand(1);
+
+  MachineBasicBlock::iterator IP = BB->end();
+  emitMultiply(BB, IP, Op0, Op1, ResultReg);
+}
+
+void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+                        Value *Op0, Value *Op1, unsigned DestReg) {
+  MachineBasicBlock &BB = *MBB;
+  TypeClass Class = getClass(Op0->getType());
+
+  // Simple scalar multiply?
+  unsigned Op0Reg  = getReg(Op0, &BB, IP);
+  switch (Class) {
+  case cByte:
+  case cShort:
+  case cInt:
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+      unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
+      doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
+    } else {
+      unsigned Op1Reg  = getReg(Op1, &BB, IP);
+      doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
+    }
+    return;
+  case cFP:
+    emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
+    return;
+  case cLong:
+    break;
+  }
+
+  // Long value.  We have to do things the hard way...
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    unsigned CLow = CI->getRawValue();
+    unsigned CHi  = CI->getRawValue() >> 32;
+    
+    if (CLow == 0) {
+      // If the low part of the constant is all zeros, things are simple.
+      BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+      doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
+      return;
+    }
+    
+    // Multiply the two low parts
+    unsigned OverflowReg = 0;
+    if (CLow == 1) {
+      BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
+    } else {
+         unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
+      unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
+      OverflowReg = makeAnotherReg(Type::UIntTy);
+         BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0).addImm(CLow >> 16);
+         BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
+         BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
+         BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1RegL);
+    }
+    
+    unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
+    doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
+    
+    unsigned AHBLplusOverflowReg;
+    if (OverflowReg) {
+      AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
+      BuildMI(BB, IP, PPC32::ADD, 2,                // AH*BL+(AL*BL >> 32)
+              AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
+    } else {
+      AHBLplusOverflowReg = AHBLReg;
+    }
+    
+    if (CHi == 0) {
+      BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg).addReg(AHBLplusOverflowReg);
+    } else {
+      unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
+      doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
+      
+      BuildMI(BB, IP, PPC32::ADD, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
+              DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
+    }
+    return;
+  }
+
+  // General 64x64 multiply
+
+  unsigned Op1Reg  = getReg(Op1, &BB, IP);
+  
+  // Multiply the two low parts... capturing carry into EDX
+  BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);  // AL*BL
+  
+  unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
+  
+  unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
+  BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
+  
+  unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, IP, PPC32::ADD, 2,                // AH*BL+(AL*BL >> 32)
+          AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
+  
+  unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
+  BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
+  
+  BuildMI(BB, IP, PPC32::ADD, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
+          DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
+}
+
+
+/// visitDivRem - Handle division and remainder instructions... these
+/// instruction both require the same instructions to be generated, they just
+/// select the result from a different register.  Note that both of these
+/// instructions work differently for signed and unsigned operands.
+///
+void ISel::visitDivRem(BinaryOperator &I) {
+  unsigned ResultReg = getReg(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  MachineBasicBlock::iterator IP = BB->end();
+  emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg);
+}
+
+void ISel::emitDivRemOperation(MachineBasicBlock *BB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Op0, Value *Op1, bool isDiv,
+                               unsigned ResultReg) {
+  const Type *Ty = Op0->getType();
+  unsigned Class = getClass(Ty);
+  switch (Class) {
+  case cFP:              // Floating point divide
+    if (isDiv) {
+      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
+      return;
+    } else {               // Floating point remainder...
+      unsigned Op0Reg = getReg(Op0, BB, IP);
+      unsigned Op1Reg = getReg(Op1, BB, IP);
+      MachineInstr *TheCall =
+        BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
+      std::vector<ValueRecord> Args;
+      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
+      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
+      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
+    }
+    return;
+  case cLong: {
+    static const char *FnName[] =
+      { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
+    unsigned Op0Reg = getReg(Op0, BB, IP);
+    unsigned Op1Reg = getReg(Op1, BB, IP);
+    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
+    MachineInstr *TheCall =
+      BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
+
+    std::vector<ValueRecord> Args;
+    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
+    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
+    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
+    return;
+  }
+  case cByte: case cShort: case cInt:
+    break;          // Small integrals, handled below...
+  default: assert(0 && "Unknown class!");
+  }
+
+  // Special case signed division by power of 2.
+  if (isDiv)
+    if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
+      assert(Class != cLong && "This doesn't handle 64-bit divides!");
+      int V = CI->getValue();
+
+      if (V == 1) {       // X /s 1 => X
+        unsigned Op0Reg = getReg(Op0, BB, IP);
+        BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
+        return;
+      }
+
+      if (V == -1) {      // X /s -1 => -X
+        unsigned Op0Reg = getReg(Op0, BB, IP);
+        BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
+        return;
+      }
+
+      bool isNeg = false;
+      if (V < 0) {         // Not a positive power of 2?
+        V = -V;
+        isNeg = true;      // Maybe it's a negative power of 2.
+      }
+      if (unsigned Log = ExactLog2(V)) {
+        --Log;
+        unsigned Op0Reg = getReg(Op0, BB, IP);
+        unsigned TmpReg = makeAnotherReg(Op0->getType());
+        if (Log != 1) 
+          BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(Log-1);
+        else
+          BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
+
+        unsigned TmpReg2 = makeAnotherReg(Op0->getType());
+        BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log).addImm(32-Log).addImm(31);
+
+        unsigned TmpReg3 = makeAnotherReg(Op0->getType());
+        BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
+
+        unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
+        BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
+
+        if (isNeg)
+          BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
+        return;
+      }
+    }
+
+  unsigned Op0Reg = getReg(Op0, BB, IP);
+  unsigned Op1Reg = getReg(Op1, BB, IP);
+
+  if (isDiv) {
+       if (Ty->isSigned()) {
+               BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
+       } else {
+               BuildMI(*BB, IP, PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
+       }
+  } else { // Remainder
+       unsigned TmpReg1 = makeAnotherReg(Op0->getType());
+       unsigned TmpReg2 = makeAnotherReg(Op0->getType());
+       
+       if (Ty->isSigned()) {
+               BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
+       } else {
+               BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
+       }
+       BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
+       BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
+  }
+}
+
+
+/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
+/// for constant immediate shift values, and for constant immediate
+/// shift values equal to 1. Even the general case is sort of special,
+/// because the shift amount has to be in CL, not just any old register.
+///
+void ISel::visitShiftInst(ShiftInst &I) {
+  MachineBasicBlock::iterator IP = BB->end ();
+  emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
+                      I.getOpcode () == Instruction::Shl, I.getType (),
+                      getReg (I));
+}
+
+/// emitShiftOperation - Common code shared between visitShiftInst and
+/// constant expression support.
+void ISel::emitShiftOperation(MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Op, Value *ShiftAmount, bool isLeftShift,
+                              const Type *ResultTy, unsigned DestReg) {
+  unsigned SrcReg = getReg (Op, MBB, IP);
+  bool isSigned = ResultTy->isSigned ();
+  unsigned Class = getClass (ResultTy);
+  
+  // Longs, as usual, are handled specially...
+  if (Class == cLong) {
+    // If we have a constant shift, we can generate much more efficient code
+    // than otherwise...
+    //
+    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+      unsigned Amount = CUI->getValue();
+      if (Amount < 32) {
+        if (isLeftShift) {
+                 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(Amount).addImm(0).addImm(31-Amount);
+          BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg).addImm(Amount).addImm(32-Amount).addImm(31);
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
+        } else {
+                 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
+          BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(0).addImm(Amount-1);
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
+        }
+      } else {                 // Shifting more than 32 bits
+        Amount -= 32;
+        if (isLeftShift) {
+          if (Amount != 0) {
+                       BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
+          } else {
+            BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
+          }
+          BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+        } else {
+          if (Amount != 0) {
+                       if (isSigned)
+                               BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1).addImm(Amount);
+                       else
+                               BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
+          } else {
+            BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
+          }
+          BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
+        }
+      }
+    } else {
+      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
+      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
+         unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+         
+      if (isLeftShift) {
+               BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
+               BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1).addReg(ShiftAmountReg);
+               BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg).addReg(TmpReg1);
+               BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+               BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
+               BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg).addReg(TmpReg5);
+               BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4).addReg(TmpReg6);
+               BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
+         } else {
+               if (isSigned) {
+                       // FIXME: Unimplmented
+                       // Page C-3 of the PowerPC 32bit Programming Environments Manual
+               } else {
+                       BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
+                       BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg).addReg(ShiftAmountReg);
+                       BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
+                       BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+                       BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
+                       BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
+                       BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4).addReg(TmpReg6);
+                       BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1).addReg(ShiftAmountReg);
+               }
+         }
+    }
+    return;
+  }
+
+  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
+    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
+    unsigned Amount = CUI->getValue();
+
+       if (isLeftShift) {
+               BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
+       } else {
+               if (isSigned) {
+                       BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(Amount);
+               } else {
+                       BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
+               }
+       }
+  } else {                  // The shift amount is non-constant.
+    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+
+       if (isLeftShift) {
+               BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
+       } else {
+               BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
+       }
+  }
+}
+
+
+/// visitLoadInst - Implement LLVM load instructions
+///
+void ISel::visitLoadInst(LoadInst &I) {
+  static const unsigned Opcodes[] = { PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS };
+  unsigned Class = getClassB(I.getType());
+  unsigned Opcode = Opcodes[Class];
+  if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
+
+  unsigned DestReg = getReg(I);
+
+  if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
+       unsigned FI = getFixedSizedAllocaFI(AI);
+    if (Class == cLong) {
+               addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
+               addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
+    } else {
+               addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
+       }
+  } else {
+       unsigned SrcAddrReg = getReg(I.getOperand(0));
+    
+    if (Class == cLong) {
+      BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
+      BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
+    } else {
+      BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
+    }
+  }
+}
+
+/// visitStoreInst - Implement LLVM store instructions
+///
+void ISel::visitStoreInst(StoreInst &I) {
+  unsigned ValReg      = getReg(I.getOperand(0));
+  unsigned AddressReg  = getReg(I.getOperand(1));
+  const Type *ValTy = I.getOperand(0)->getType();
+  unsigned Class = getClassB(ValTy);
+
+  if (Class == cLong) {
+       BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
+       BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
+    return;
+  }
+
+  static const unsigned Opcodes[] = {
+    PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
+  };
+  unsigned Opcode = Opcodes[Class];
+  if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
+  BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
+}
+
+
+/// visitCastInst - Here we have various kinds of copying with or without sign
+/// extension going on.
+///
+void ISel::visitCastInst(CastInst &CI) {
+  Value *Op = CI.getOperand(0);
+
+  unsigned SrcClass = getClassB(Op->getType());
+  unsigned DestClass = getClassB(CI.getType());
+  // Noop casts are not emitted: getReg will return the source operand as the
+  // register to use for any uses of the noop cast.
+  if (DestClass == SrcClass)
+    return;
+
+  // If this is a cast from a 32-bit integer to a Long type, and the only uses
+  // of the case are GEP instructions, then the cast does not need to be
+  // generated explicitly, it will be folded into the GEP.
+  if (DestClass == cLong && SrcClass == cInt) {
+    bool AllUsesAreGEPs = true;
+    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
+      if (!isa<GetElementPtrInst>(*I)) {
+        AllUsesAreGEPs = false;
+        break;
+      }        
+
+    // No need to codegen this cast if all users are getelementptr instrs...
+    if (AllUsesAreGEPs) return;
+  }
+
+  unsigned DestReg = getReg(CI);
+  MachineBasicBlock::iterator MI = BB->end();
+  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
+}
+
+/// emitCastOperation - Common code shared between visitCastInst and constant
+/// expression cast support.
+///
+void ISel::emitCastOperation(MachineBasicBlock *BB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Src, const Type *DestTy,
+                             unsigned DestReg) {
+  const Type *SrcTy = Src->getType();
+  unsigned SrcClass = getClassB(SrcTy);
+  unsigned DestClass = getClassB(DestTy);
+  unsigned SrcReg = getReg(Src, BB, IP);
+
+  // Implement casts to bool by using compare on the operand followed by set if
+  // not zero on the result.
+  if (DestTy == Type::BoolTy) {
+    switch (SrcClass) {
+    case cByte:
+       case cShort:
+    case cInt: {
+      unsigned TmpReg = makeAnotherReg(Type::IntTy);
+         BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
+         BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
+      break;
+    }
+    case cLong: {
+      unsigned TmpReg = makeAnotherReg(Type::IntTy);
+      unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
+      BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
+         BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
+         BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
+      break;
+    }
+    case cFP:
+      // FIXME
+         // Load -0.0
+         // Compare
+         // move to CR1
+         // Negate -0.0
+         // Compare
+         // CROR
+         // MFCR
+         // Left-align
+         // SRA ?
+      break;
+    }
+    return;
+  }
+
+  // Implement casts between values of the same type class (as determined by
+  // getClass) by using a register-to-register move.
+  if (SrcClass == DestClass) {
+       if (SrcClass <= cInt) {
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       } else if (SrcClass == cFP && SrcTy == DestTy) {
+      BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
+    } else if (SrcClass == cFP) {
+      if (SrcTy == Type::FloatTy) {  // float -> double
+        assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
+        BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
+      } else {                       // double -> float
+        assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
+               "Unknown cFP member!");
+               BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
+      }
+    } else if (SrcClass == cLong) {
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
+    } else {
+      assert(0 && "Cannot handle this type of cast instruction!");
+      abort();
+    }
+    return;
+  }
+
+  // Handle cast of SMALLER int to LARGER int using a move with sign extension
+  // or zero extension, depending on whether the source type was signed.
+  if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
+      SrcClass < DestClass) {
+    bool isLong = DestClass == cLong;
+    if (isLong) DestClass = cInt;
+
+    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+    if (SrcClass < cInt) {
+      if (isUnsigned) {
+       unsigned shift = (SrcClass == cByte) ? 24 : 16;
+       BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
+      } else {
+        BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
+         }
+       } else {
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       }
+
+    if (isLong) {  // Handle upper 32 bits as appropriate...
+      if (isUnsigned)     // Zero out top bits...
+        BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
+      else                // Sign extend bottom half...
+        BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
+    }
+    return;
+  }
+
+  // Special case long -> int ...
+  if (SrcClass == cLong && DestClass == cInt) {
+    BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+    return;
+  }
+  
+  // Handle cast of LARGER int to SMALLER int with a clear or sign extend
+  if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
+      && SrcClass > DestClass) {
+    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+       if (isUnsigned) {
+       unsigned shift = (SrcClass == cByte) ? 24 : 16;
+       BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
+       } else {
+        BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
+       }
+    return;
+  }
+
+  // Handle casts from integer to floating point now...
+  if (DestClass == cFP) {
+
+       // Emit a library call for long to float conversion
+       if (SrcClass == cLong) {
+               std::vector<ValueRecord> Args;
+               Args.push_back(ValueRecord(SrcReg, SrcTy));
+               MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
+               doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
+               return;
+       }
+
+    unsigned TmpReg = makeAnotherReg(Type::IntTy);
+    switch (SrcTy->getPrimitiveID()) {
+    case Type::BoolTyID:
+    case Type::SByteTyID:
+      BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
+      break;
+    case Type::UByteTyID:
+         BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(24).addImm(31);
+      break;
+    case Type::ShortTyID:
+      BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
+      break;
+    case Type::UShortTyID:
+         BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(16).addImm(31);
+      break;
+       case Type::IntTyID:
+         BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
+         break;
+       case Type::UIntTyID:
+         BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
+         break;
+    default:  // No promotion needed...
+      break;
+    }
+    
+    SrcReg = TmpReg;
+       
+    // Spill the integer to memory and reload it from there.
+       // Also spill room for a special conversion constant
+       int ConstantFrameIndex = 
+      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+    int ValueFrameIdx =
+      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+
+       unsigned constantHi = makeAnotherReg(Type::IntTy);
+       unsigned constantLo = makeAnotherReg(Type::IntTy);
+       unsigned ConstF = makeAnotherReg(Type::DoubleTy);
+       unsigned TempF = makeAnotherReg(Type::DoubleTy);
+       
+    if (!SrcTy->isSigned()) {
+               BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
+               BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), ValueFrameIdx, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
+               BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+       } else {
+               unsigned TempLo = makeAnotherReg(Type::IntTy);
+               BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
+               BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0).addImm(0x8000);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
+               BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), ValueFrameIdx, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
+               BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+       }
+    return;
+  }
+
+  // Handle casts from floating point to integer now...
+  if (SrcClass == cFP) {
+
+       // emit library call
+       if (DestClass == cLong) {
+               std::vector<ValueRecord> Args;
+               Args.push_back(ValueRecord(SrcReg, SrcTy));
+               MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
+               doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
+               return;
+       }
+
+    int ValueFrameIdx =
+      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+
+       // load into 32 bit value, and then truncate as necessary
+       // FIXME: This is wrong for unsigned dest types
+       //if (DestTy->isSigned()) {
+               unsigned TempReg = makeAnotherReg(Type::DoubleTy);
+               BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(TempReg), ValueFrameIdx);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), ValueFrameIdx+4);
+       //} else {
+       //}
+       
+       // FIXME: Truncate return value
+    return;
+  }
+
+  // Anything we haven't handled already, we can't (yet) handle at all.
+  assert(0 && "Unhandled cast instruction!");
+  abort();
+}
+
+/// visitVANextInst - Implement the va_next instruction...
+///
+void ISel::visitVANextInst(VANextInst &I) {
+  unsigned VAList = getReg(I.getOperand(0));
+  unsigned DestReg = getReg(I);
+
+  unsigned Size;
+  switch (I.getArgType()->getPrimitiveID()) {
+  default:
+    std::cerr << I;
+    assert(0 && "Error: bad type for va_next instruction!");
+    return;
+  case Type::PointerTyID:
+  case Type::UIntTyID:
+  case Type::IntTyID:
+    Size = 4;
+    break;
+  case Type::ULongTyID:
+  case Type::LongTyID:
+  case Type::DoubleTyID:
+    Size = 8;
+    break;
+  }
+
+  // Increment the VAList pointer...
+  BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
+}
+
+void ISel::visitVAArgInst(VAArgInst &I) {
+  unsigned VAList = getReg(I.getOperand(0));
+  unsigned DestReg = getReg(I);
+
+  switch (I.getType()->getPrimitiveID()) {
+  default:
+    std::cerr << I;
+    assert(0 && "Error: bad type for va_next instruction!");
+    return;
+  case Type::PointerTyID:
+  case Type::UIntTyID:
+  case Type::IntTyID:
+    BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
+    break;
+  case Type::ULongTyID:
+  case Type::LongTyID:
+    BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
+    BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
+    break;
+  case Type::DoubleTyID:
+    BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
+    break;
+  }
+}
+
+/// visitGetElementPtrInst - instruction-select GEP instructions
+///
+void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
+  unsigned outputReg = getReg(I);
+  emitGEPOperation(BB, BB->end(), I.getOperand(0),I.op_begin()+1, I.op_end(), outputReg);
+}
+
+void ISel::emitGEPOperation(MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator IP,
+                            Value *Src, User::op_iterator IdxBegin,
+                            User::op_iterator IdxEnd, unsigned TargetReg) {
+  const TargetData &TD = TM.getTargetData();
+  if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
+    Src = CPR->getValue();
+
+  std::vector<Value*> GEPOps;
+  GEPOps.resize(IdxEnd-IdxBegin+1);
+  GEPOps[0] = Src;
+  std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
+  
+  std::vector<const Type*> GEPTypes;
+  GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
+                  gep_type_end(Src->getType(), IdxBegin, IdxEnd));
+
+  // Keep emitting instructions until we consume the entire GEP instruction.
+  while (!GEPOps.empty()) {
+      // It's an array or pointer access: [ArraySize x ElementType].
+      const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
+      Value *idx = GEPOps.back();
+      GEPOps.pop_back();        // Consume a GEP operand
+      GEPTypes.pop_back();
+
+      // Many GEP instructions use a [cast (int/uint) to LongTy] as their
+      // operand on X86.  Handle this case directly now...
+      if (CastInst *CI = dyn_cast<CastInst>(idx))
+        if (CI->getOperand(0)->getType() == Type::IntTy ||
+            CI->getOperand(0)->getType() == Type::UIntTy)
+          idx = CI->getOperand(0);
+
+      // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
+      // must find the size of the pointed-to type (Not coincidentally, the next
+      // type is the type of the elements in the array).
+      const Type *ElTy = SqTy->getElementType();
+      unsigned elementSize = TD.getTypeSize(ElTy);
+
+     if (elementSize == 1) {
+        // If the element size is 1, we don't have to multiply, just add
+        unsigned idxReg = getReg(idx, MBB, IP);
+        unsigned Reg = makeAnotherReg(Type::UIntTy);
+        BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
+        --IP;            // Insert the next instruction before this one.
+        TargetReg = Reg; // Codegen the rest of the GEP into this
+      } else {
+        unsigned idxReg = getReg(idx, MBB, IP);
+        unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
+
+        // Make sure we can back the iterator up to point to the first
+        // instruction emitted.
+        MachineBasicBlock::iterator BeforeIt = IP;
+        if (IP == MBB->begin())
+          BeforeIt = MBB->end();
+        else
+          --BeforeIt;
+        doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
+
+        // Emit an ADD to add OffsetReg to the basePtr.
+        unsigned Reg = makeAnotherReg(Type::UIntTy);
+        BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
+
+        // Step to the first instruction of the multiply.
+        if (BeforeIt == MBB->end())
+          IP = MBB->begin();
+        else
+          IP = ++BeforeIt;
+
+        TargetReg = Reg; // Codegen the rest of the GEP into this
+      }
+    }
+}
+
+/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
+/// frame manager, otherwise do it the hard way.
+///
+void ISel::visitAllocaInst(AllocaInst &I) {
+  // If this is a fixed size alloca in the entry block for the function, we
+  // statically stack allocate the space, so we don't need to do anything here.
+  //
+  if (dyn_castFixedAlloca(&I)) return;
+  
+  // Find the data size of the alloca inst's getAllocatedType.
+  const Type *Ty = I.getAllocatedType();
+  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+
+  // Create a register to hold the temporary result of multiplying the type size
+  // constant by the variable amount.
+  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
+  unsigned SrcReg1 = getReg(I.getArraySize());
+  
+  // TotalSizeReg = mul <numelements>, <TypeSize>
+  MachineBasicBlock::iterator MBBI = BB->end();
+  doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
+
+  // AddedSize = add <TotalSizeReg>, 15
+  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
+
+  // AlignedSize = and <AddedSize>, ~15
+  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0).addImm(0).addImm(27);
+  
+  // Subtract size from stack pointer, thereby allocating some space.
+  BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
+
+  // Put a pointer to the space into the result register, by copying
+  // the stack pointer.
+  BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
+
+  // Inform the Frame Information that we have just allocated a variable-sized
+  // object.
+  F->getFrameInfo()->CreateVariableSizedObject();
+}
+
+/// visitMallocInst - Malloc instructions are code generated into direct calls
+/// to the library malloc.
+///
+void ISel::visitMallocInst(MallocInst &I) {
+  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
+  unsigned Arg;
+
+  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
+    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
+  } else {
+    Arg = makeAnotherReg(Type::UIntTy);
+    unsigned Op0Reg = getReg(I.getOperand(0));
+    MachineBasicBlock::iterator MBBI = BB->end();
+    doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
+  }
+
+  std::vector<ValueRecord> Args;
+  Args.push_back(ValueRecord(Arg, Type::UIntTy));
+  MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
+  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
+}
+
+
+/// visitFreeInst - Free instructions are code gen'd to call the free libc
+/// function.
+///
+void ISel::visitFreeInst(FreeInst &I) {
+  std::vector<ValueRecord> Args;
+  Args.push_back(ValueRecord(I.getOperand(0)));
+  MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
+  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
+}
+   
+/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
+/// into a machine code representation is a very simple peep-hole fashion.  The
+/// generated code sucks but the implementation is nice and simple.
+///
+FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
+  return new ISel(TM);
+}
diff --git a/lib/Target/PowerPC/PPCAsmPrinter.cpp b/lib/Target/PowerPC/PPCAsmPrinter.cpp
new file mode 100644 (file)
index 0000000..697be09
--- /dev/null
@@ -0,0 +1,694 @@
+//===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal
+// representation of machine-dependent LLVM code to Intel-format
+// assembly language. This printer is the output mechanism used
+// by `llc' and `lli -print-machineinstrs' on X86.
+//
+//===----------------------------------------------------------------------===//
+
+#include <set>
+
+#include "PowerPC.h"
+#include "PowerPCInstrInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Mangler.h"
+#include "Support/Statistic.h"
+#include "Support/StringExtras.h"
+#include "Support/CommandLine.h"
+
+namespace llvm {
+
+namespace {
+  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
+
+  struct Printer : public MachineFunctionPass {
+    /// Output stream on which we're printing assembly code.
+    ///
+    std::ostream &O;
+
+    /// Target machine description which we query for reg. names, data
+    /// layout, etc.
+    ///
+    TargetMachine &TM;
+
+    /// Name-mangler for global names.
+    ///
+    Mangler *Mang;
+    std::set< std::string > Stubs;
+    std::set<std::string> Strings;
+
+    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
+
+    /// We name each basic block in a Function with a unique number, so
+    /// that we can consistently refer to them later. This is cleared
+    /// at the beginning of each call to runOnMachineFunction().
+    ///
+    typedef std::map<const Value *, unsigned> ValueMapTy;
+    ValueMapTy NumberForBB;
+
+    /// Cache of mangled name for current function. This is
+    /// recalculated at the beginning of each call to
+    /// runOnMachineFunction().
+    ///
+    std::string CurrentFnName;
+
+    virtual const char *getPassName() const {
+      return "PowerPC Assembly Printer";
+    }
+
+    void printMachineInstruction(const MachineInstr *MI);
+    void printOp(const MachineOperand &MO,
+                bool elideOffsetKeyword = false);
+    void printConstantPool(MachineConstantPool *MCP);
+    bool runOnMachineFunction(MachineFunction &F);    
+    bool doInitialization(Module &M);
+    bool doFinalization(Module &M);
+    void emitGlobalConstant(const Constant* CV);
+    void emitConstantValueOnly(const Constant *CV);
+  };
+} // end of anonymous namespace
+
+/// createPPCCodePrinterPass - Returns a pass that prints the X86
+/// assembly code for a MachineFunction to the given output stream,
+/// using the given target machine description.  This should work
+/// regardless of whether the function is in SSA form.
+///
+FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm){
+  return new Printer(o, tm);
+}
+
+/// isStringCompatible - Can we treat the specified array as a string?
+/// Only if it is an array of ubytes or non-negative sbytes.
+///
+static bool isStringCompatible(const ConstantArray *CVA) {
+  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
+  if (ETy == Type::UByteTy) return true;
+  if (ETy != Type::SByteTy) return false;
+
+  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
+    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
+      return false;
+
+  return true;
+}
+
+/// toOctal - Convert the low order bits of X into an octal digit.
+///
+static inline char toOctal(int X) {
+  return (X&7)+'0';
+}
+
+/// getAsCString - Return the specified array as a C compatible
+/// string, only if the predicate isStringCompatible is true.
+///
+static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
+  assert(isStringCompatible(CVA) && "Array is not string compatible!");
+
+  O << "\"";
+  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
+    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
+
+    if (C == '"') {
+      O << "\\\"";
+    } else if (C == '\\') {
+      O << "\\\\";
+    } else if (isprint(C)) {
+      O << C;
+    } else {
+      switch(C) {
+      case '\b': O << "\\b"; break;
+      case '\f': O << "\\f"; break;
+      case '\n': O << "\\n"; break;
+      case '\r': O << "\\r"; break;
+      case '\t': O << "\\t"; break;
+      default:
+        O << '\\';
+        O << toOctal(C >> 6);
+        O << toOctal(C >> 3);
+        O << toOctal(C >> 0);
+        break;
+      }
+    }
+  }
+  O << "\"";
+}
+
+// Print out the specified constant, without a storage class.  Only the
+// constants valid in constant expressions can occur here.
+void Printer::emitConstantValueOnly(const Constant *CV) {
+  if (CV->isNullValue())
+    O << "0";
+  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+    assert(CB == ConstantBool::True);
+    O << "1";
+  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
+    O << CI->getValue();
+  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
+    O << CI->getValue();
+  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
+    // This is a constant address for a global variable or function.  Use the
+    // name of the variable or function as the address value.
+    O << Mang->getValueName(CPR->getValue());
+  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+    const TargetData &TD = TM.getTargetData();
+    switch(CE->getOpcode()) {
+    case Instruction::GetElementPtr: {
+      // generate a symbolic expression for the byte address
+      const Constant *ptrVal = CE->getOperand(0);
+      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
+      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
+        O << "(";
+        emitConstantValueOnly(ptrVal);
+        O << ") + " << Offset;
+      } else {
+        emitConstantValueOnly(ptrVal);
+      }
+      break;
+    }
+    case Instruction::Cast: {
+      // Support only non-converting or widening casts for now, that is, ones
+      // that do not involve a change in value.  This assertion is really gross,
+      // and may not even be a complete check.
+      Constant *Op = CE->getOperand(0);
+      const Type *OpTy = Op->getType(), *Ty = CE->getType();
+
+      // Remember, kids, pointers on x86 can be losslessly converted back and
+      // forth into 32-bit or wider integers, regardless of signedness. :-P
+      assert(((isa<PointerType>(OpTy)
+               && (Ty == Type::LongTy || Ty == Type::ULongTy
+                   || Ty == Type::IntTy || Ty == Type::UIntTy))
+              || (isa<PointerType>(Ty)
+                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
+                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
+              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
+                   && OpTy->isLosslesslyConvertibleTo(Ty))))
+             && "FIXME: Don't yet support this kind of constant cast expr");
+      O << "(";
+      emitConstantValueOnly(Op);
+      O << ")";
+      break;
+    }
+    case Instruction::Add:
+      O << "(";
+      emitConstantValueOnly(CE->getOperand(0));
+      O << ") + (";
+      emitConstantValueOnly(CE->getOperand(1));
+      O << ")";
+      break;
+    default:
+      assert(0 && "Unsupported operator!");
+    }
+  } else {
+    assert(0 && "Unknown constant value!");
+  }
+}
+
+// Print a constant value or values, with the appropriate storage class as a
+// prefix.
+void Printer::emitGlobalConstant(const Constant *CV) {  
+  const TargetData &TD = TM.getTargetData();
+
+  if (CV->isNullValue()) {
+    O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";      
+    return;
+  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+    if (isStringCompatible(CVA)) {
+      O << ".ascii";
+      printAsCString(O, CVA);
+      O << "\n";
+    } else { // Not a string.  Print the values in successive locations
+      const std::vector<Use> &constValues = CVA->getValues();
+      for (unsigned i=0; i < constValues.size(); i++)
+        emitGlobalConstant(cast<Constant>(constValues[i].get()));
+    }
+    return;
+  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+    // Print the fields in successive locations. Pad to align if needed!
+    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
+    const std::vector<Use>& constValues = CVS->getValues();
+    unsigned sizeSoFar = 0;
+    for (unsigned i=0, N = constValues.size(); i < N; i++) {
+      const Constant* field = cast<Constant>(constValues[i].get());
+
+      // Check if padding is needed and insert one or more 0s.
+      unsigned fieldSize = TD.getTypeSize(field->getType());
+      unsigned padSize = ((i == N-1? cvsLayout->StructSize
+                           : cvsLayout->MemberOffsets[i+1])
+                          - cvsLayout->MemberOffsets[i]) - fieldSize;
+      sizeSoFar += fieldSize + padSize;
+
+      // Now print the actual field value
+      emitGlobalConstant(field);
+
+      // Insert the field padding unless it's zero bytes...
+      if (padSize)
+        O << "\t.space\t " << padSize << "\n";      
+    }
+    assert(sizeSoFar == cvsLayout->StructSize &&
+           "Layout of constant struct may be incorrect!");
+    return;
+  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+    // FP Constants are printed as integer constants to avoid losing
+    // precision...
+    double Val = CFP->getValue();
+    switch (CFP->getType()->getPrimitiveID()) {
+    default: assert(0 && "Unknown floating point type!");
+    case Type::FloatTyID: {
+      union FU {                            // Abide by C TBAA rules
+        float FVal;
+        unsigned UVal;
+      } U;
+      U.FVal = Val;
+      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
+      return;
+    }
+    case Type::DoubleTyID: {
+      union DU {                            // Abide by C TBAA rules
+        double FVal;
+        uint64_t UVal;
+        struct {
+               uint32_t MSWord;
+               uint32_t LSWord;
+        } T;
+      } U;
+      U.FVal = Val;
+      
+      O << ".long\t" << U.T.MSWord << "\t# double most significant word " << Val << "\n";
+      O << ".long\t" << U.T.LSWord << "\t# double least significant word" << Val << "\n";
+      return;
+    }
+    }
+  } else if (CV->getType()->getPrimitiveSize() == 64) {
+    const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
+    if(CI) {
+       union DU {                            // Abide by C TBAA rules
+        int64_t UVal;
+        struct {
+               uint32_t MSWord;
+               uint32_t LSWord;
+        } T;
+      } U;
+      U.UVal = CI->getRawValue();
+        
+      O << ".long\t" << U.T.MSWord << "\t# Double-word most significant word " << U.UVal << "\n";
+      O << ".long\t" << U.T.LSWord << "\t# Double-word least significant word" << U.UVal << "\n";
+      return;    
+    }
+  }
+
+  const Type *type = CV->getType();
+  O << "\t";
+  switch (type->getPrimitiveID()) {
+  case Type::UByteTyID: case Type::SByteTyID:
+    O << ".byte";
+    break;
+  case Type::UShortTyID: case Type::ShortTyID:
+    O << ".short";
+    break;
+  case Type::BoolTyID: 
+  case Type::PointerTyID:
+  case Type::UIntTyID: case Type::IntTyID:
+    O << ".long";
+    break;
+  case Type::ULongTyID: case Type::LongTyID:    
+       assert (0 && "Should have already output double-word constant.");
+  case Type::FloatTyID: case Type::DoubleTyID:
+    assert (0 && "Should have already output floating point constant.");
+  default:
+    assert (0 && "Can't handle printing this type of thing");
+    break;
+  }
+  O << "\t";
+  emitConstantValueOnly(CV);
+  O << "\n";
+}
+
+/// printConstantPool - Print to the current output stream assembly
+/// representations of the constants in the constant pool MCP. This is
+/// used to print out constants which have been "spilled to memory" by
+/// the code generator.
+///
+void Printer::printConstantPool(MachineConstantPool *MCP) {
+  const std::vector<Constant*> &CP = MCP->getConstants();
+  const TargetData &TD = TM.getTargetData();
+  if (CP.empty()) return;
+
+  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+    O << "\t.const\n";
+    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
+      << "\n";
+    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
+      << *CP[i] << "\n";
+    emitGlobalConstant(CP[i]);
+  }
+}
+
+/// runOnMachineFunction - This uses the printMachineInstruction()
+/// method to print assembly for each instruction.
+///
+bool Printer::runOnMachineFunction(MachineFunction &MF) {
+  // BBNumber is used here so that a given Printer will never give two
+  // BBs the same name. (If you have a better way, please let me know!)
+  static unsigned BBNumber = 0;
+
+  O << "\n\n";
+  // What's my mangled name?
+  CurrentFnName = Mang->getValueName(MF.getFunction());
+
+  // Print out constants referenced by the function
+  printConstantPool(MF.getConstantPool());
+
+  // Print out labels for the function.
+  O << "\t.text\n"; 
+  O << "\t.globl\t" << CurrentFnName << "\n";
+  O << "\t.align 5\n";
+  O << CurrentFnName << ":\n";
+
+  // Number each basic block so that we can consistently refer to them
+  // in PC-relative references.
+  NumberForBB.clear();
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+       I != E; ++I) {
+    NumberForBB[I->getBasicBlock()] = BBNumber++;
+  }
+
+  // Print out code for the function.
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+       I != E; ++I) {
+    // Print a label for the basic block.
+    O << "L" << NumberForBB[I->getBasicBlock()] << ":\t# "
+      << I->getBasicBlock()->getName() << "\n";
+    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+        II != E; ++II) {
+      // Print the assembly for the instruction.
+      O << "\t";
+      printMachineInstruction(II);
+    }
+  }
+
+  // We didn't modify anything.
+  return false;
+}
+
+
+
+void Printer::printOp(const MachineOperand &MO,
+                     bool elideOffsetKeyword /* = false */) {
+  const MRegisterInfo &RI = *TM.getRegisterInfo();
+  int new_symbol;
+  
+  switch (MO.getType()) {
+  case MachineOperand::MO_VirtualRegister:
+    if (Value *V = MO.getVRegValueOrNull()) {
+      O << "<" << V->getName() << ">";
+      return;
+    }
+    // FALLTHROUGH
+  case MachineOperand::MO_MachineRegister:
+      O << RI.get(MO.getReg()).Name;
+      return;
+
+  case MachineOperand::MO_SignExtendedImmed:
+  case MachineOperand::MO_UnextendedImmed:
+    O << (int)MO.getImmedValue();
+    return;
+  case MachineOperand::MO_MachineBasicBlock: {
+    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
+    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
+      << "_" << MBBOp->getNumber () << "\t# "
+      << MBBOp->getBasicBlock ()->getName ();
+    return;
+  }
+  case MachineOperand::MO_PCRelativeDisp:
+    std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
+    abort ();
+    return;
+  case MachineOperand::MO_GlobalAddress:
+    if (!elideOffsetKeyword) {
+               if(isa<Function>(MO.getGlobal())) {
+                       Stubs.insert(Mang->getValueName(MO.getGlobal()));
+                       O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub";
+               } else {
+                       O << Mang->getValueName(MO.getGlobal());
+               }
+    }
+    return;
+  case MachineOperand::MO_ExternalSymbol:
+    O << MO.getSymbolName();
+    return;
+  default:
+    O << "<unknown operand type>"; return;    
+  }
+}
+
+#if 0
+static inline
+unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) {
+       int i;
+       unsigned int retval = 1;
+       
+       for(i = 0; i<5; i++) {
+               switch(ArgType[i]) {
+                       case none:
+                               break;
+                       case Gpr:
+                       case Gpr0:
+                               Type::UIntTy
+                       case Simm16:
+                       case Zimm16:
+                       case PCRelimm24:
+                       case Imm24:
+                       case Imm5:
+                       case PCRelimm14:
+                       case Imm14:
+                       case Imm2:
+                       case Crf:
+                       case Imm3:
+                       case Imm1:
+                       case Fpr:
+                       case Imm4:
+                       case Imm8:
+                       case Disimm16:
+                       case Spr:
+                       case Sgr:
+       };
+               
+               }
+       }
+}
+#endif
+
+/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
+/// MI in Darwin syntax to the current output stream.
+///
+void Printer::printMachineInstruction(const MachineInstr *MI) {
+  unsigned Opcode = MI->getOpcode();
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  const TargetInstrDescriptor &Desc = TII.get(Opcode);
+  unsigned int i;
+  
+  unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask;
+  unsigned int ArgType[5];
+
+
+  ArgType[0] = (Desc.TSFlags>>PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[1] = (Desc.TSFlags>>PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[2] = (Desc.TSFlags>>PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[3] = (Desc.TSFlags>>PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[4] = (Desc.TSFlags>>PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask;
+  
+  assert ( ((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support");
+  assert ( ((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support");
+  //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs");
+  ++EmittedInsts;
+
+  if(Opcode == PPC32::MovePCtoLR) {
+    O << "mflr r0\n";
+    O << "bcl 20,31,L" << CurrentFnName << "$pb\n";
+    O  << "L" << CurrentFnName << "$pb:\n";
+    return;
+  }
+
+  O << TII.getName(MI->getOpcode()) << " ";
+  std::cout << TII.getName(MI->getOpcode()) << " expects " << ArgCount << " args\n";
+
+  if(Opcode == PPC32::LOADLoAddr) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << ", lo16(";
+    printOp(MI->getOperand(2));
+    O << "-L" << CurrentFnName << "$pb)\n";
+    return;
+  }
+
+  if(Opcode == PPC32::LOADHiAddr) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << ", ha16(" ;
+    printOp(MI->getOperand(2));
+     O << "-L" << CurrentFnName << "$pb)\n";
+    return;
+  }
+  
+  if( (ArgCount == 3) && (ArgType[1] == PPC32II::Disimm16) ) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << "(";
+    if((ArgType[2] == PPC32II::Gpr0) && (MI->getOperand(2).getReg() == PPC32::R0)) {
+       O << "0";
+    } else {
+       printOp(MI->getOperand(2));
+    }
+    O << ")\n";
+  } else {
+    for(i = 0; i< ArgCount; i++) {
+        if( (ArgType[i] == PPC32II::Gpr0) && ((MI->getOperand(i).getReg()) == PPC32::R0)) {
+            O << "0";
+        } else {
+               //std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n";
+            printOp(MI->getOperand(i));
+        }
+        if( ArgCount - 1 == i) {
+            O << "\n";
+        } else {
+            O << ", ";
+        }
+    }
+  }
+  
+  return;  
+}
+
+bool Printer::doInitialization(Module &M) {
+  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
+  //
+  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
+  // instruction as a reference to the register named sp, and if you try to
+  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
+  // before being looked up in the symbol table. This creates spurious
+  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
+  // mode, and decorate all register names with percent signs.
+ // O << "\t.intel_syntax\n";
+  Mang = new Mangler(M, true);
+  return false; // success
+}
+
+// SwitchSection - Switch to the specified section of the executable if we are
+// not already in it!
+//
+static void SwitchSection(std::ostream &OS, std::string &CurSection,
+                          const char *NewSection) {
+  if (CurSection != NewSection) {
+    CurSection = NewSection;
+    if (!CurSection.empty())
+      OS << "\t" << NewSection << "\n";
+  }
+}
+
+bool Printer::doFinalization(Module &M) {
+  const TargetData &TD = TM.getTargetData();
+  std::string CurSection;
+
+  // Print out module-level global variables here.
+  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
+    if (I->hasInitializer()) {   // External global require no code
+      O << "\n\n";
+      std::string name = Mang->getValueName(I);
+      Constant *C = I->getInitializer();
+      unsigned Size = TD.getTypeSize(C->getType());
+      unsigned Align = TD.getTypeAlignment(C->getType());
+
+      if (C->isNullValue() && 
+          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
+           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
+        SwitchSection(O, CurSection, ".data");
+        if (I->hasInternalLinkage())
+          O << "\t.local " << name << "\n";
+        
+        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
+          << "," << (unsigned)TD.getTypeAlignment(C->getType());
+        O << "\t\t# ";
+        WriteAsOperand(O, I, true, true, &M);
+        O << "\n";
+      } else {
+        switch (I->getLinkage()) {
+        case GlobalValue::LinkOnceLinkage:
+        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
+          // Nonnull linkonce -> weak
+          O << "\t.weak " << name << "\n";
+          SwitchSection(O, CurSection, "");
+          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
+          break;
+        
+        case GlobalValue::AppendingLinkage:
+          // FIXME: appending linkage variables should go into a section of
+          // their name or something.  For now, just emit them as external.
+        case GlobalValue::ExternalLinkage:
+          // If external or appending, declare as a global symbol
+          O << "\t.globl " << name << "\n";
+          // FALL THROUGH
+        case GlobalValue::InternalLinkage:
+          if (C->isNullValue())
+            SwitchSection(O, CurSection, ".bss");
+          else
+            SwitchSection(O, CurSection, ".data");
+          break;
+        }
+
+        O << "\t.align " << Align << "\n";
+        O << name << ":\t\t\t\t# ";
+        WriteAsOperand(O, I, true, true, &M);
+        O << " = ";
+        WriteAsOperand(O, C, false, false, &M);
+        O << "\n";
+        emitGlobalConstant(C);
+      }
+    }
+        
+    for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i) {
+       O << ".data\n";     
+               O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
+               O << "\t.align 2\n";
+       O << "L" << *i << "$stub:\n";
+       O << "\t.indirect_symbol " << *i << "\n";
+       O << "\tmflr r0\n";
+       O << "\tbcl 20,31,L0$" << *i << "\n";
+       O << "L0$" << *i << ":\n";
+       O << "\tmflr r11\n";
+       O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
+       O << "\tmtlr r0\n";
+       O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
+       O << "\tmtctr r12\n";
+       O << "\tbctr\n";
+       O << ".data\n";
+               O << ".lazy_symbol_pointer\n";
+               O << "L" << *i << "$lazy_ptr:\n";
+        O << ".indirect_symbol " << *i << "\n";
+        O << ".long dyld_stub_binding_helper\n";
+
+       }
+
+  delete Mang;
+  return false; // success
+}
+
+} // End llvm namespace
diff --git a/lib/Target/PowerPC/PPCCodeEmitter.cpp b/lib/Target/PowerPC/PPCCodeEmitter.cpp
new file mode 100644 (file)
index 0000000..3c423e5
--- /dev/null
@@ -0,0 +1,43 @@
+//===-- PowerPCCodeEmitter.cpp - JIT Code Emitter for PowerPC -----*- C++ -*-=//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+// 
+//
+//===----------------------------------------------------------------------===//
+
+#include "PowerPCTargetMachine.h"
+
+namespace llvm {
+
+/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
+/// machine code emitted.  This uses a MachineCodeEmitter object to handle
+/// actually outputting the machine code and resolving things like the address
+/// of functions.  This method should returns true if machine code emission is
+/// not supported.
+///
+bool PowerPCTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
+                                                      MachineCodeEmitter &MCE) {
+  return true;
+  // It should go something like this:
+  // PM.add(new Emitter(MCE));  // Machine code emitter pass for PowerPC
+  // Delete machine code for this function after emitting it:
+  // PM.add(createMachineCodeDeleter());
+}
+
+void *PowerPCJITInfo::getJITStubForFunction(Function *F,
+                                            MachineCodeEmitter &MCE) {
+  assert (0 && "PowerPCJITInfo::getJITStubForFunction not implemented");
+  return 0;
+}
+
+void PowerPCJITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
+  assert (0 && "PowerPCJITInfo::replaceMachineCodeForFunction not implemented");
+}
+
+} // end llvm namespace
+
diff --git a/lib/Target/PowerPC/PPCInstrBuilder.h b/lib/Target/PowerPC/PPCInstrBuilder.h
new file mode 100644 (file)
index 0000000..704e17c
--- /dev/null
@@ -0,0 +1,53 @@
+//===-- PowerPCInstrBuilder.h - Functions to aid building PPC insts -*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file exposes functions that may be used with BuildMI from the
+// MachineInstrBuilder.h file to simplify generating frame and constant pool
+// references.
+//
+// For reference, the order of operands for memory references is:
+// (Operand), Dest Reg, Base Reg, and either Reg Index or Immediate Displacement.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef PPCINSTRBUILDER_H
+#define PPCINSTRBUILDER_H
+
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+
+namespace llvm {
+
+/// addFrameReference - This function is used to add a reference to the base of
+/// an abstract object on the stack frame of the current function.  This
+/// reference has base register as the FrameIndex offset until it is resolved.
+/// This allows a constant offset to be specified as well...
+///
+inline const MachineInstrBuilder &
+addFrameReference(const MachineInstrBuilder &MIB, int FI, int Offset = 0, bool mem = true) {
+       if (mem)
+               return MIB.addSImm(Offset).addFrameIndex(FI);
+       else
+               return MIB.addFrameIndex(FI).addSImm(Offset);
+}
+
+/// addConstantPoolReference - This function is used to add a reference to the
+/// base of a constant value spilled to the per-function constant pool.  The
+/// reference has base register ConstantPoolIndex offset which is retained until
+/// either machine code emission or assembly output.  This allows an optional
+/// offset to be added as well.
+///
+inline const MachineInstrBuilder &
+addConstantPoolReference(const MachineInstrBuilder &MIB, unsigned CPI,
+                         int Offset = 0) {
+  return MIB.addSImm(Offset).addConstantPoolIndex(CPI);
+}
+
+} // End llvm namespace
+
+#endif
diff --git a/lib/Target/PowerPC/PPCInstrInfo.td b/lib/Target/PowerPC/PPCInstrInfo.td
new file mode 100644 (file)
index 0000000..cdb2d95
--- /dev/null
@@ -0,0 +1,2054 @@
+//===- PowerPCInstrInfo.td - Describe the PowerPC Instruction Set -*- C++ -*-=//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+class Format<bits<5> val> {
+       bits<5> Value = val;
+}
+
+class PPC32Inst : Instruction {
+       field bits<32> Inst;
+       bits<3> ArgCount;
+       bits<5> Arg0Type;
+       bits<5> Arg1Type;
+       bits<5> Arg2Type;
+       bits<5> Arg3Type;
+       bits<5> Arg4Type;
+       bit PPC64;
+       bit VMX;
+
+       let Namespace = "PPC32";
+}
+
+def Pseudo: Format<0>;
+def Gpr : Format<1>;
+def Gpr0 : Format<2>;
+def Simm16 : Format<3>;
+def Zimm16 : Format<4>;
+def PCRelimm24 : Format<5>;
+def Imm24 : Format<6>;
+def Imm5 : Format<7>;
+def PCRelimm14 : Format<8>;
+def Imm14 : Format<9>;
+def Imm2 : Format<10>;
+def Crf : Format<11>;
+def Imm3 : Format<12>;
+def Imm1 : Format<13>;
+def Fpr : Format<14>;
+def Imm4 : Format<15>;
+def Imm8 : Format<16>;
+def Disimm16 : Format<17>;
+def Disimm14 : Format<18>;
+def Spr : Format<19>;
+def Sgr : Format<20>;
+def Imm15 : Format<21>;
+def Vpr : Format<22>;
+
+class PPC32InstPattern0 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<16> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-0} = operand2;
+}
+
+class PPC32InstPattern1 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<5> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<16> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20-16} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {15-0} = operand1;
+}
+
+class PPC32InstPattern2 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-11} = operand2;
+}
+
+class PPC32InstPattern3 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<16> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {15-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+}
+
+class PPC32InstPattern4 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<16> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20-16} = operand0;
+       let Inst {25-21} = operand1;
+       let Inst {15-0} = operand2;
+}
+
+class PPC32InstPattern5 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {25-21} = operand1;
+       let Inst {15-11} = operand2;
+}
+
+class PPC32InstPattern6 <string name, Format OperandType0, bits<6> opconstant0, bits<2> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<24> operand0;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {1-0} = opconstant1;
+       let Inst {25-2} = operand0;
+}
+
+class PPC32InstPattern7 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<2> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<14> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {1-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-2} = operand2;
+}
+
+class PPC32InstPattern8 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<3> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<2> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {15-13} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {12-11} = operand2;
+}
+
+class PPC32InstPattern9 <string name, Format OperandType0, Format OperandType1, bits<11> opconstant0, bits<2> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<14> operand1;
+
+
+       let Inst {31-21} = opconstant0;
+       let Inst {1-0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {15-2} = operand1;
+}
+
+class PPC32InstPattern10 <string name, Format OperandType0, bits<16> opconstant0, bits<2> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<14> operand0;
+
+
+       let Inst {31-16} = opconstant0;
+       let Inst {1-0} = opconstant1;
+       let Inst {15-2} = operand0;
+}
+
+class PPC32InstPattern11 <string name, Format OperandType0, bits<19> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<2> operand0;
+
+
+       let Inst {31-13} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {12-11} = operand0;
+}
+
+class PPC32InstPattern12 <string name, Format OperandType0, Format OperandType1, bits<11> opconstant0, bits<3> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<2> operand1;
+
+
+       let Inst {31-21} = opconstant0;
+       let Inst {15-13} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {20-16} = operand0;
+       let Inst {12-11} = operand1;
+}
+
+class PPC32InstPattern13 <string name, Format OperandType0, Format OperandType1, Format OperandType2, Format OperandType3, bits<6> opconstant0, bits<1> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 4;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = OperandType3.Value;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<1> operand1;
+       bits<5> operand2;
+       bits<16> operand3;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22} = opconstant1;
+       let Inst {25-23} = operand0;
+       let Inst {21} = operand1;
+       let Inst {20-16} = operand2;
+       let Inst {15-0} = operand3;
+}
+
+class PPC32InstPattern14 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<2> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<5> operand1;
+       bits<16> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22-21} = opconstant1;
+       let Inst {25-23} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-0} = operand2;
+}
+
+class PPC32InstPattern15 <string name, Format OperandType0, Format OperandType1, Format OperandType2, Format OperandType3, bits<6> opconstant0, bits<1> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 4;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = OperandType3.Value;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<1> operand1;
+       bits<5> operand2;
+       bits<5> operand3;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {25-23} = operand0;
+       let Inst {21} = operand1;
+       let Inst {20-16} = operand2;
+       let Inst {15-11} = operand3;
+}
+
+class PPC32InstPattern16 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<2> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22-21} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {25-23} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-11} = operand2;
+}
+
+class PPC32InstPattern17 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<16> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {15-0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {25-21} = operand1;
+}
+
+class PPC32InstPattern18 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<5> opconstant1, bits<6> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {15-11} = opconstant1;
+       let Inst {5-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {10-6} = operand2;
+}
+
+class PPC32InstPattern19 <string name, Format OperandType0, Format OperandType1, Format OperandType2, Format OperandType3, bits<6> opconstant0, bits<6> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 4;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = OperandType3.Value;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+       bits<5> operand3;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {5-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {10-6} = operand2;
+       let Inst {15-11} = operand3;
+}
+
+class PPC32InstPattern20 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<5> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20-16} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {15-11} = operand1;
+}
+
+class PPC32InstPattern21 <string name, Format OperandType0, bits<6> opconstant0, bits<21> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20-0} = opconstant1;
+       let Inst {25-21} = operand0;
+}
+
+class PPC32InstPattern22 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<18> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {17-0} = opconstant1;
+       let Inst {25-23} = operand0;
+       let Inst {22-18} = operand1;
+}
+
+class PPC32InstPattern23 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<7> opconstant1, bits<12> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<4> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22-16} = opconstant1;
+       let Inst {11-0} = opconstant2;
+       let Inst {25-23} = operand0;
+       let Inst {15-12} = operand1;
+}
+
+class PPC32InstPattern24 <string name, Format OperandType0, Format OperandType1, bits<7> opconstant0, bits<1> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<8> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-25} = opconstant0;
+       let Inst {16} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {24-17} = operand0;
+       let Inst {15-11} = operand1;
+}
+
+class PPC32InstPattern25 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<16> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {25-21} = operand0;
+       let Inst {15-0} = operand1;
+       let Inst {20-16} = operand2;
+}
+
+class PPC32InstPattern26 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<2> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<14> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {1-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {15-2} = operand1;
+       let Inst {20-16} = operand2;
+}
+
+class PPC32InstPattern27 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<2> opconstant1, bits<18> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+       bits<3> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22-21} = opconstant1;
+       let Inst {17-0} = opconstant2;
+       let Inst {25-23} = operand0;
+       let Inst {20-18} = operand1;
+}
+
+class PPC32InstPattern28 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<10> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {20-11} = operand1;
+}
+
+class PPC32InstPattern29 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<10> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {20-11} = operand0;
+       let Inst {25-21} = operand1;
+}
+
+class PPC32InstPattern30 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<1> opconstant1, bits<12> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<8> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20} = opconstant1;
+       let Inst {11-0} = opconstant2;
+       let Inst {19-12} = operand0;
+       let Inst {25-21} = operand1;
+}
+
+class PPC32InstPattern31 <string name, Format OperandType0, bits<6> opconstant0, bits<23> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<3> operand0;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {22-0} = opconstant1;
+       let Inst {25-23} = operand0;
+}
+
+class PPC32InstPattern32 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<1> opconstant1, bits<12> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<8> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20} = opconstant1;
+       let Inst {11-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {19-12} = operand1;
+}
+
+class PPC32InstPattern33 <string name, bits<32> opconstant0, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 0;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = 0;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+
+
+       let Inst {31-0} = opconstant0;
+}
+
+class PPC32InstPattern34 <string name, Format OperandType0, Format OperandType1, Format OperandType2, Format OperandType3, Format OperandType4, bits<6> opconstant0, bits<1> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 5;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = OperandType3.Value;
+       let Arg4Type = OperandType4.Value;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+       bits<5> operand3;
+       bits<5> operand4;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {25-21} = operand1;
+       let Inst {15-11} = operand2;
+       let Inst {10-6} = operand3;
+       let Inst {5-1} = operand4;
+}
+
+class PPC32InstPattern35 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<6> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {15-11} = operand1;
+       let Inst {20-16} = operand2;
+}
+
+class PPC32InstPattern36 <string name, Format OperandType0, bits<9> opconstant0, bits<21> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<2> operand0;
+
+
+       let Inst {31-23} = opconstant0;
+       let Inst {20-0} = opconstant1;
+       let Inst {22-21} = operand0;
+}
+
+class PPC32InstPattern37 <string name, Format OperandType0, Format OperandType1, bits<11> opconstant0, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<16> operand1;
+
+
+       let Inst {31-21} = opconstant0;
+       let Inst {20-16} = operand0;
+       let Inst {15-0} = operand1;
+}
+
+class PPC32InstPattern38 <string name, Format OperandType0, Format OperandType1, bits<11> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-21} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {15-11} = operand1;
+}
+
+class PPC32InstPattern39 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<7> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<4> operand2;
+
+
+       let Inst {31-25} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {15-11} = operand1;
+       let Inst {24-21} = operand2;
+}
+
+class PPC32InstPattern40 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<4> opconstant1, bits<16> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<1> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20-17} = opconstant1;
+       let Inst {15-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {16} = operand1;
+}
+
+class PPC32InstPattern41 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<1> opconstant1, bits<16> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<4> operand0;
+       bits<5> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20} = opconstant1;
+       let Inst {15-0} = opconstant2;
+       let Inst {19-16} = operand0;
+       let Inst {25-21} = operand1;
+}
+
+class PPC32InstPattern42 <string name, Format OperandType0, Format OperandType1, bits<6> opconstant0, bits<1> opconstant1, bits<16> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<4> operand1;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {20} = opconstant1;
+       let Inst {15-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {19-16} = operand1;
+}
+
+class PPC32InstPattern43 <string name, Format OperandType0, bits<16> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+
+
+       let Inst {31-16} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {15-11} = operand0;
+}
+
+class PPC32InstPattern44 <string name, Format OperandType0, Format OperandType1, bits<10> opconstant0, bits<5> opconstant1, bits<11> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 2;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<1> operand1;
+
+
+       let Inst {31-22} = opconstant0;
+       let Inst {20-16} = opconstant1;
+       let Inst {10-0} = opconstant2;
+       let Inst {15-11} = operand0;
+       let Inst {21} = operand1;
+}
+
+class PPC32InstPattern45 <string name, Format OperandType0, bits<6> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 1;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = 0;
+       let Arg2Type = 0;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<15> operand0;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {25-11} = operand0;
+}
+
+class PPC32InstPattern46 <string name, Format OperandType0, Format OperandType1, Format OperandType2, bits<9> opconstant0, bits<11> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 3;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = 0;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<2> operand2;
+
+
+       let Inst {31-23} = opconstant0;
+       let Inst {10-0} = opconstant1;
+       let Inst {20-16} = operand0;
+       let Inst {15-11} = operand1;
+       let Inst {22-21} = operand2;
+}
+
+class PPC32InstPattern47 <string name, Format OperandType0, Format OperandType1, Format OperandType2, Format OperandType3, bits<6> opconstant0, bits<6> opconstant1, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 4;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = OperandType3.Value;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+       bits<5> operand3;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {5-0} = opconstant1;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-11} = operand2;
+       let Inst {10-6} = operand3;
+}
+
+class PPC32InstPattern48 <string name, Format OperandType0, Format OperandType1, Format OperandType2, Format OperandType3, bits<6> opconstant0, bits<1> opconstant1, bits<6> opconstant2, bit ppc64, bit vmx> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 4;
+       let PPC64 = ppc64;
+       let VMX =vmx;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType1.Value;
+       let Arg2Type = OperandType2.Value;
+       let Arg3Type = OperandType3.Value;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+       bits<4> operand3;
+
+
+       let Inst {31-26} = opconstant0;
+       let Inst {10} = opconstant1;
+       let Inst {5-0} = opconstant2;
+       let Inst {25-21} = operand0;
+       let Inst {20-16} = operand1;
+       let Inst {15-11} = operand2;
+       let Inst {9-6} = operand3;
+}
+
+class PPC32InstPatternPseudo <string name, Format OperandType0> : PPC32Inst {
+       let Name = name;
+       let ArgCount = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+
+       let Arg0Type = OperandType0.Value;
+       let Arg1Type = OperandType0.Value;
+       let Arg2Type = OperandType0.Value;
+       let Arg3Type = OperandType0.Value;
+       let Arg4Type = 0;
+       let PPC64 = 0;
+       let VMX = 0;
+       bits<5> operand0;
+       bits<5> operand1;
+       bits<5> operand2;
+       bits<4> operand3;
+
+
+       let Inst {31-0} = 0;
+}
+
+
+let isCall = 1 in
+  // All calls clobber the non-callee saved registers...
+  let Defs = [R0, R2, R3, R4, R5, R6, R7, R8, R9, R10] in {
+    def CALLpcrel : PPC32InstPattern6 <"bl", PCRelimm24, 18, 1, 0, 0>;
+    def CALLindirect : PPC32InstPattern3 <"bctrl", Imm5, Imm5, 19, 1057, 0, 0>;
+ }
+
+let isTerminator = 1, isReturn = 1 in
+       def BLR : PPC32InstPattern11 <"blr", Imm2, 160768, 32, 0, 0>;
+
+// Pseudo-instructions:
+def PHI : PPC32InstPatternPseudo<"PHI", Pseudo>;          // PHI node...
+def ADJCALLSTACKDOWN : PPC32InstPatternPseudo<"ADJCALLSTACKDOWN", Pseudo>;
+def ADJCALLSTACKUP : PPC32InstPatternPseudo<"ADJCALLSTACKUP", Pseudo>;
+def MovePCtoLR : PPC32InstPatternPseudo<"MovePCtoLR", Pseudo>;
+
+def LOADLoAddr : PPC32InstPattern0 <"addi", Gpr, Gpr0, Simm16, 14, 0, 0>;
+def LOADHiAddr : PPC32InstPattern0 <"addis", Gpr, Gpr0, Simm16, 15, 0, 0>;
+
+def ADDI : PPC32InstPattern0 <"addi", Gpr, Gpr0, Simm16, 14, 0, 0>;
+def LI : PPC32InstPattern1 <"li", Gpr, Simm16, 14, 0, 0, 0>;
+def ADDIS : PPC32InstPattern0 <"addis", Gpr, Gpr0, Simm16, 15, 0, 0>;
+def LIS : PPC32InstPattern1 <"lis", Gpr, Simm16, 15, 0, 0, 0>;
+def ADDIC : PPC32InstPattern0 <"addic", Gpr, Gpr, Simm16, 12, 0, 0>;
+def ADDICo : PPC32InstPattern0 <"addic.", Gpr, Gpr, Simm16, 13, 0, 0>;
+def ADD : PPC32InstPattern2 <"add", Gpr, Gpr, Gpr, 31, 532, 0, 0>;
+def ADDo : PPC32InstPattern2 <"add.", Gpr, Gpr, Gpr, 31, 533, 0, 0>;
+def ADDO : PPC32InstPattern2 <"addo", Gpr, Gpr, Gpr, 31, 532, 0, 0>;
+def ADDOo : PPC32InstPattern2 <"addo.", Gpr, Gpr, Gpr, 31, 533, 0, 0>;
+def ADDC : PPC32InstPattern2 <"addc", Gpr, Gpr, Gpr, 31, 20, 0, 0>;
+def ADDCo : PPC32InstPattern2 <"addc.", Gpr, Gpr, Gpr, 31, 21, 0, 0>;
+def ADDCO : PPC32InstPattern2 <"addco", Gpr, Gpr, Gpr, 31, 20, 0, 0>;
+def ADDCOo : PPC32InstPattern2 <"addco.", Gpr, Gpr, Gpr, 31, 21, 0, 0>;
+def ADDE : PPC32InstPattern2 <"adde", Gpr, Gpr, Gpr, 31, 276, 0, 0>;
+def ADDEo : PPC32InstPattern2 <"adde.", Gpr, Gpr, Gpr, 31, 277, 0, 0>;
+def ADDEO : PPC32InstPattern2 <"addeo", Gpr, Gpr, Gpr, 31, 276, 0, 0>;
+def ADDEOo : PPC32InstPattern2 <"addeo.", Gpr, Gpr, Gpr, 31, 277, 0, 0>;
+def ADDME : PPC32InstPattern3 <"addme", Gpr, Gpr, 31, 468, 0, 0>;
+def ADDMEo : PPC32InstPattern3 <"addme.", Gpr, Gpr, 31, 469, 0, 0>;
+def ADDMEO : PPC32InstPattern3 <"addmeo", Gpr, Gpr, 31, 1492, 0, 0>;
+def ADDMEOo : PPC32InstPattern3 <"addmeo.", Gpr, Gpr, 31, 1493, 0, 0>;
+def ADDZE : PPC32InstPattern3 <"addze", Gpr, Gpr, 31, 404, 0, 0>;
+def ADDZEo : PPC32InstPattern3 <"addze.", Gpr, Gpr, 31, 405, 0, 0>;
+def ADDZEO : PPC32InstPattern3 <"addzeo", Gpr, Gpr, 31, 1428, 0, 0>;
+def ADDZEOo : PPC32InstPattern3 <"addzeo.", Gpr, Gpr, 31, 1429, 0, 0>;
+def ANDIo : PPC32InstPattern4 <"andi.", Gpr, Gpr, Zimm16, 28, 0, 0>;
+def ANDISo : PPC32InstPattern4 <"andis.", Gpr, Gpr, Zimm16, 29, 0, 0>;
+def AND : PPC32InstPattern5 <"and", Gpr, Gpr, Gpr, 31, 56, 0, 0>;
+def ANDo : PPC32InstPattern5 <"and.", Gpr, Gpr, Gpr, 31, 57, 0, 0>;
+def ANDC : PPC32InstPattern5 <"andc", Gpr, Gpr, Gpr, 31, 120, 0, 0>;
+def ANDCo : PPC32InstPattern5 <"andc.", Gpr, Gpr, Gpr, 31, 121, 0, 0>;
+def B : PPC32InstPattern6 <"b", PCRelimm24, 18, 0, 0, 0>;
+def BA : PPC32InstPattern6 <"ba", Imm24, 18, 0, 0, 0>;
+def BL : PPC32InstPattern6 <"bl", PCRelimm24, 18, 1, 0, 0>;
+def BLA : PPC32InstPattern6 <"bla", Imm24, 18, 1, 0, 0>;
+def BC : PPC32InstPattern7 <"bc", Imm5, Imm5, PCRelimm14, 16, 0, 0, 0>;
+def BCA : PPC32InstPattern7 <"bca", Imm5, Imm5, Imm14, 16, 0, 0, 0>;
+def BCL : PPC32InstPattern7 <"bcl", Imm5, Imm5, PCRelimm14, 16, 1, 0, 0>;
+def BCLA : PPC32InstPattern7 <"bcla", Imm5, Imm5, Imm14, 16, 1, 0, 0>;
+def BCCTR : PPC32InstPattern8 <"bcctr", Imm5, Imm5, Imm2, 19, 0, 32, 0, 0>;
+def BCCTRL : PPC32InstPattern8 <"bcctrl", Imm5, Imm5, Imm2, 19, 0, 33, 0, 0>;
+def BCLR : PPC32InstPattern8 <"bclr", Imm5, Imm5, Imm2, 19, 0, 32, 0, 0>;
+def BCLRL : PPC32InstPattern8 <"bclrl", Imm5, Imm5, Imm2, 19, 0, 33, 0, 0>;
+def BT : PPC32InstPattern9 <"bt", Imm5, PCRelimm14, 524, 0, 0, 0>;
+def BTL : PPC32InstPattern9 <"btl", Imm5, PCRelimm14, 524, 1, 0, 0>;
+def BF : PPC32InstPattern9 <"bf", Imm5, PCRelimm14, 516, 0, 0, 0>;
+def BFL : PPC32InstPattern9 <"bfl", Imm5, PCRelimm14, 516, 1, 0, 0>;
+def BDNZ : PPC32InstPattern10 <"bdnz", PCRelimm14, 16896, 0, 0, 0>;
+def BDNZL : PPC32InstPattern10 <"bdnzl", PCRelimm14, 16896, 1, 0, 0>;
+def BDNZT : PPC32InstPattern9 <"bdnzt", Imm5, PCRelimm14, 520, 0, 0, 0>;
+def BDNZTL : PPC32InstPattern9 <"bdnztl", Imm5, PCRelimm14, 520, 1, 0, 0>;
+def BDNZF : PPC32InstPattern9 <"bdnzf", Imm5, PCRelimm14, 512, 0, 0, 0>;
+def BDNZFL : PPC32InstPattern9 <"bdnzfl", Imm5, PCRelimm14, 512, 1, 0, 0>;
+def BDZ : PPC32InstPattern10 <"bdz", PCRelimm14, 16960, 0, 0, 0>;
+def BDZL : PPC32InstPattern10 <"bdzl", PCRelimm14, 16960, 1, 0, 0>;
+def BDZT : PPC32InstPattern9 <"bdzt", Imm5, PCRelimm14, 522, 0, 0, 0>;
+def BDZTL : PPC32InstPattern9 <"bdztl", Imm5, PCRelimm14, 522, 1, 0, 0>;
+def BDZF : PPC32InstPattern9 <"bdzf", Imm5, PCRelimm14, 514, 0, 0, 0>;
+def BDZFL : PPC32InstPattern9 <"bdzfl", Imm5, PCRelimm14, 514, 1, 0, 0>;
+def BTA : PPC32InstPattern9 <"bta", Imm5, Imm14, 524, 0, 0, 0>;
+def BTLA : PPC32InstPattern9 <"btla", Imm5, Imm14, 524, 1, 0, 0>;
+def BFA : PPC32InstPattern9 <"bfa", Imm5, Imm14, 516, 0, 0, 0>;
+def BFLA : PPC32InstPattern9 <"bfla", Imm5, Imm14, 516, 1, 0, 0>;
+def BDNZA : PPC32InstPattern10 <"bdnza", Imm14, 16896, 0, 0, 0>;
+def BDNZLA : PPC32InstPattern10 <"bdnzla", Imm14, 16896, 1, 0, 0>;
+def BDNZTA : PPC32InstPattern9 <"bdnzta", Imm5, Imm14, 520, 0, 0, 0>;
+def BDNZTLA : PPC32InstPattern9 <"bdnztla", Imm5, Imm14, 520, 1, 0, 0>;
+def BDNZFA : PPC32InstPattern9 <"bdnzfa", Imm5, Imm14, 512, 0, 0, 0>;
+def BDNZFLA : PPC32InstPattern9 <"bdnzfla", Imm5, Imm14, 512, 1, 0, 0>;
+def BDZA : PPC32InstPattern10 <"bdza", Imm14, 16960, 0, 0, 0>;
+def BDZLA : PPC32InstPattern10 <"bdzla", Imm14, 16960, 1, 0, 0>;
+def BDZTA : PPC32InstPattern9 <"bdzta", Imm5, Imm14, 522, 0, 0, 0>;
+def BDZTLA : PPC32InstPattern9 <"bdztla", Imm5, Imm14, 522, 1, 0, 0>;
+def BDZFA : PPC32InstPattern9 <"bdzfa", Imm5, Imm14, 514, 0, 0, 0>;
+def BDZFLA : PPC32InstPattern9 <"bdzfla", Imm5, Imm14, 514, 1, 0, 0>;
+def BLRL : PPC32InstPattern11 <"blrl", Imm2, 160768, 33, 0, 0>;
+def BTLR : PPC32InstPattern12 <"btlr", Imm5, Imm2, 620, 0, 32, 0, 0>;
+def BTLRL : PPC32InstPattern12 <"btlrl", Imm5, Imm2, 620, 0, 33, 0, 0>;
+def BFLR : PPC32InstPattern12 <"bflr", Imm5, Imm2, 612, 0, 32, 0, 0>;
+def BFLRL : PPC32InstPattern12 <"bflrl", Imm5, Imm2, 612, 0, 33, 0, 0>;
+def BDNZLR : PPC32InstPattern11 <"bdnzlr", Imm2, 159744, 32, 0, 0>;
+def BDNZLRL : PPC32InstPattern11 <"bdnzlrl", Imm2, 159744, 33, 0, 0>;
+def BDNZTLR : PPC32InstPattern12 <"bdnztlr", Imm5, Imm2, 616, 0, 32, 0, 0>;
+def BDNZTLRL : PPC32InstPattern12 <"bdnztlrl", Imm5, Imm2, 616, 0, 33, 0, 0>;
+def BDNZFLR : PPC32InstPattern12 <"bdnzflr", Imm5, Imm2, 608, 0, 32, 0, 0>;
+def BDNZFLRL : PPC32InstPattern12 <"bdnzflrl", Imm5, Imm2, 608, 0, 33, 0, 0>;
+def BDZLR : PPC32InstPattern11 <"bdzlr", Imm2, 160256, 32, 0, 0>;
+def BDZLRL : PPC32InstPattern11 <"bdzlrl", Imm2, 160256, 33, 0, 0>;
+def BDZTLR : PPC32InstPattern12 <"bdztlr", Imm5, Imm2, 618, 0, 32, 0, 0>;
+def BDZTLRL : PPC32InstPattern12 <"bdztlrl", Imm5, Imm2, 618, 0, 33, 0, 0>;
+def BDZFLR : PPC32InstPattern12 <"bdzflr", Imm5, Imm2, 610, 0, 32, 0, 0>;
+def BDZFLRL : PPC32InstPattern12 <"bdzflrl", Imm5, Imm2, 610, 0, 33, 0, 0>;
+def BCTR : PPC32InstPattern3 <"bctr", Imm5, Imm5, 19, 1056, 0, 0>;
+def BCTRL : PPC32InstPattern3 <"bctrl", Imm5, Imm5, 19, 1057, 0, 0>;
+def BTCTR : PPC32InstPattern12 <"btctr", Imm5, Imm2, 620, 0, 32, 0, 0>;
+def BTCTRL : PPC32InstPattern12 <"btctrl", Imm5, Imm2, 620, 0, 33, 0, 0>;
+def BFCTR : PPC32InstPattern12 <"bfctr", Imm5, Imm2, 612, 0, 32, 0, 0>;
+def BFCTRL : PPC32InstPattern12 <"bfctrl", Imm5, Imm2, 612, 0, 33, 0, 0>;
+def BLT : PPC32InstPattern9 <"blt", Crf, PCRelimm14, 524, 0, 0, 0>;
+def BLTL : PPC32InstPattern9 <"bltl", Crf, PCRelimm14, 524, 1, 0, 0>;
+def BLE : PPC32InstPattern9 <"ble", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BLEL : PPC32InstPattern9 <"blel", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BEQ : PPC32InstPattern9 <"beq", Crf, PCRelimm14, 524, 0, 0, 0>;
+def BEQL : PPC32InstPattern9 <"beql", Crf, PCRelimm14, 524, 1, 0, 0>;
+def BGE : PPC32InstPattern9 <"bge", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BGEL : PPC32InstPattern9 <"bgel", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BGT : PPC32InstPattern9 <"bgt", Crf, PCRelimm14, 524, 0, 0, 0>;
+def BGTL : PPC32InstPattern9 <"bgtl", Crf, PCRelimm14, 524, 1, 0, 0>;
+def BNL : PPC32InstPattern9 <"bnl", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BNLL : PPC32InstPattern9 <"bnll", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BNE : PPC32InstPattern9 <"bne", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BNEL : PPC32InstPattern9 <"bnel", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BNG : PPC32InstPattern9 <"bng", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BNGL : PPC32InstPattern9 <"bngl", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BSO : PPC32InstPattern9 <"bso", Crf, PCRelimm14, 524, 0, 0, 0>;
+def BSOL : PPC32InstPattern9 <"bsol", Crf, PCRelimm14, 524, 1, 0, 0>;
+def BNS : PPC32InstPattern9 <"bns", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BNSL : PPC32InstPattern9 <"bnsl", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BUN : PPC32InstPattern9 <"bun", Crf, PCRelimm14, 524, 0, 0, 0>;
+def BUNL : PPC32InstPattern9 <"bunl", Crf, PCRelimm14, 524, 1, 0, 0>;
+def BNU : PPC32InstPattern9 <"bnu", Crf, PCRelimm14, 516, 0, 0, 0>;
+def BNUL : PPC32InstPattern9 <"bnul", Crf, PCRelimm14, 516, 1, 0, 0>;
+def BLTA : PPC32InstPattern9 <"blta", Crf, Imm14, 524, 0, 0, 0>;
+def BLTLA : PPC32InstPattern9 <"bltla", Crf, Imm14, 524, 1, 0, 0>;
+def BLEA : PPC32InstPattern9 <"blea", Crf, Imm14, 516, 0, 0, 0>;
+def BLELA : PPC32InstPattern9 <"blela", Crf, Imm14, 516, 1, 0, 0>;
+def BEQA : PPC32InstPattern9 <"beqa", Crf, Imm14, 524, 0, 0, 0>;
+def BEQLA : PPC32InstPattern9 <"beqla", Crf, Imm14, 524, 1, 0, 0>;
+def BGEA : PPC32InstPattern9 <"bgea", Crf, Imm14, 516, 0, 0, 0>;
+def BGELA : PPC32InstPattern9 <"bgela", Crf, Imm14, 516, 1, 0, 0>;
+def BGTA : PPC32InstPattern9 <"bgta", Crf, Imm14, 524, 0, 0, 0>;
+def BGTLA : PPC32InstPattern9 <"bgtla", Crf, Imm14, 524, 1, 0, 0>;
+def BNLA : PPC32InstPattern9 <"bnla", Crf, Imm14, 516, 0, 0, 0>;
+def BNLLA : PPC32InstPattern9 <"bnlla", Crf, Imm14, 516, 1, 0, 0>;
+def BNEA : PPC32InstPattern9 <"bnea", Crf, Imm14, 516, 0, 0, 0>;
+def BNELA : PPC32InstPattern9 <"bnela", Crf, Imm14, 516, 1, 0, 0>;
+def BNGA : PPC32InstPattern9 <"bnga", Crf, Imm14, 516, 0, 0, 0>;
+def BNGLA : PPC32InstPattern9 <"bngla", Crf, Imm14, 516, 1, 0, 0>;
+def BSOA : PPC32InstPattern9 <"bsoa", Crf, Imm14, 524, 0, 0, 0>;
+def BSOLA : PPC32InstPattern9 <"bsola", Crf, Imm14, 524, 1, 0, 0>;
+def BNSA : PPC32InstPattern9 <"bnsa", Crf, Imm14, 516, 0, 0, 0>;
+def BNSLA : PPC32InstPattern9 <"bnsla", Crf, Imm14, 516, 1, 0, 0>;
+def BUNA : PPC32InstPattern9 <"buna", Crf, Imm14, 524, 0, 0, 0>;
+def BUNLA : PPC32InstPattern9 <"bunla", Crf, Imm14, 524, 1, 0, 0>;
+def BNUA : PPC32InstPattern9 <"bnua", Crf, Imm14, 516, 0, 0, 0>;
+def BNULA : PPC32InstPattern9 <"bnula", Crf, Imm14, 516, 1, 0, 0>;
+def BLTLR : PPC32InstPattern12 <"bltlr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BLTLRL : PPC32InstPattern12 <"bltlrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BLELR : PPC32InstPattern12 <"blelr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BLELRL : PPC32InstPattern12 <"blelrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BEQLR : PPC32InstPattern12 <"beqlr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BEQLRL : PPC32InstPattern12 <"beqlrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BGELR : PPC32InstPattern12 <"bgelr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BGELRL : PPC32InstPattern12 <"bgelrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BGTLR : PPC32InstPattern12 <"bgtlr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BGTLRL : PPC32InstPattern12 <"bgtlrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BNLLR : PPC32InstPattern12 <"bnllr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNLLRL : PPC32InstPattern12 <"bnllrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BNELR : PPC32InstPattern12 <"bnelr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNELRL : PPC32InstPattern12 <"bnelrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BNGLR : PPC32InstPattern12 <"bnglr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNGLRL : PPC32InstPattern12 <"bnglrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BSOLR : PPC32InstPattern12 <"bsolr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BSOLRL : PPC32InstPattern12 <"bsolrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BNSLR : PPC32InstPattern12 <"bnslr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNSLRL : PPC32InstPattern12 <"bnslrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BUNLR : PPC32InstPattern12 <"bunlr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BUNLRL : PPC32InstPattern12 <"bunlrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BNULR : PPC32InstPattern12 <"bnulr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNULRL : PPC32InstPattern12 <"bnulrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BLTCTR : PPC32InstPattern12 <"bltctr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BLTCTRL : PPC32InstPattern12 <"bltctrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BLECTR : PPC32InstPattern12 <"blectr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BLECTRL : PPC32InstPattern12 <"blectrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BEQCTR : PPC32InstPattern12 <"beqctr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BEQCTRL : PPC32InstPattern12 <"beqctrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BGECTR : PPC32InstPattern12 <"bgectr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BGECTRL : PPC32InstPattern12 <"bgectrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BGTCTR : PPC32InstPattern12 <"bgtctr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BGTCTRL : PPC32InstPattern12 <"bgtctrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BNLCTR : PPC32InstPattern12 <"bnlctr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNLCTRL : PPC32InstPattern12 <"bnlctrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BNECTR : PPC32InstPattern12 <"bnectr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNECTRL : PPC32InstPattern12 <"bnectrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BNGCTR : PPC32InstPattern12 <"bngctr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNGCTRL : PPC32InstPattern12 <"bngctrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BSOCTR : PPC32InstPattern12 <"bsoctr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BSOCTRL : PPC32InstPattern12 <"bsoctrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BNSCTR : PPC32InstPattern12 <"bnsctr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNSCTRL : PPC32InstPattern12 <"bnsctrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def BUNCTR : PPC32InstPattern12 <"bunctr", Crf, Imm2, 620, 0, 32, 0, 0>;
+def BUNCTRL : PPC32InstPattern12 <"bunctrl", Crf, Imm2, 620, 0, 33, 0, 0>;
+def BNUCTR : PPC32InstPattern12 <"bnuctr", Crf, Imm2, 612, 0, 32, 0, 0>;
+def BNUCTRL : PPC32InstPattern12 <"bnuctrl", Crf, Imm2, 612, 0, 33, 0, 0>;
+def CMPI : PPC32InstPattern13 <"cmpi", Imm3, Imm1, Gpr, Simm16, 11, 0, 0, 0>;
+def CMPWI : PPC32InstPattern14 <"cmpwi", Imm3, Gpr, Simm16, 11, 0, 0, 0>;
+def CMPDI : PPC32InstPattern14 <"cmpdi", Imm3, Gpr, Simm16, 11, 1, 0, 0>;
+def CMP : PPC32InstPattern15 <"cmp", Imm3, Imm1, Gpr, Gpr, 31, 0, 0, 0, 0>;
+def CMPW : PPC32InstPattern16 <"cmpw", Imm3, Gpr, Gpr, 31, 0, 0, 0, 0>;
+def CMPD : PPC32InstPattern16 <"cmpd", Imm3, Gpr, Gpr, 31, 1, 0, 0, 0>;
+def CMPLI : PPC32InstPattern13 <"cmpli", Imm3, Imm1, Gpr, Zimm16, 10, 0, 0, 0>;
+def CMPLWI : PPC32InstPattern14 <"cmplwi", Imm3, Gpr, Zimm16, 10, 0, 0, 0>;
+def CMPLDI : PPC32InstPattern14 <"cmpldi", Imm3, Gpr, Zimm16, 10, 1, 0, 0>;
+def CMPL : PPC32InstPattern15 <"cmpl", Imm3, Imm1, Gpr, Gpr, 31, 0, 64, 0, 0>;
+def CMPLW : PPC32InstPattern16 <"cmplw", Imm3, Gpr, Gpr, 31, 0, 64, 0, 0>;
+def CMPLD : PPC32InstPattern16 <"cmpld", Imm3, Gpr, Gpr, 31, 1, 64, 0, 0>;
+def CNTLZW : PPC32InstPattern17 <"cntlzw", Gpr, Gpr, 31, 52, 0, 0>;
+def CNTLZWo : PPC32InstPattern17 <"cntlzw.", Gpr, Gpr, 31, 53, 0, 0>;
+def CNTLZD : PPC32InstPattern17 <"cntlzd", Gpr, Gpr, 31, 116, 1, 0>;
+def CNTLZDo : PPC32InstPattern17 <"cntlzd.", Gpr, Gpr, 31, 117, 1, 0>;
+def CRAND : PPC32InstPattern2 <"crand", Imm5, Imm5, Imm5, 19, 514, 0, 0>;
+def CRANDC : PPC32InstPattern2 <"crandc", Imm5, Imm5, Imm5, 19, 258, 0, 0>;
+def CREQV : PPC32InstPattern2 <"creqv", Imm5, Imm5, Imm5, 19, 578, 0, 0>;
+def CRNAND : PPC32InstPattern2 <"crnand", Imm5, Imm5, Imm5, 19, 450, 0, 0>;
+def CRNOR : PPC32InstPattern2 <"crnor", Imm5, Imm5, Imm5, 19, 66, 0, 0>;
+def CROR : PPC32InstPattern2 <"cror", Imm5, Imm5, Imm5, 19, 898, 0, 0>;
+def CRORC : PPC32InstPattern2 <"crorc", Imm5, Imm5, Imm5, 19, 834, 0, 0>;
+def CRXOR : PPC32InstPattern2 <"crxor", Imm5, Imm5, Imm5, 19, 386, 0, 0>;
+def DIVD : PPC32InstPattern2 <"divd", Gpr, Gpr, Gpr, 31, 978, 1, 0>;
+def DIVDo : PPC32InstPattern2 <"divd.", Gpr, Gpr, Gpr, 31, 979, 1, 0>;
+def DIVDO : PPC32InstPattern2 <"divdo", Gpr, Gpr, Gpr, 31, 978, 1, 0>;
+def DIVDOo : PPC32InstPattern2 <"divdo.", Gpr, Gpr, Gpr, 31, 979, 1, 0>;
+def DIVDU : PPC32InstPattern2 <"divdu", Gpr, Gpr, Gpr, 31, 914, 1, 0>;
+def DIVDUo : PPC32InstPattern2 <"divdu.", Gpr, Gpr, Gpr, 31, 915, 1, 0>;
+def DIVDUO : PPC32InstPattern2 <"divduo", Gpr, Gpr, Gpr, 31, 914, 1, 0>;
+def DIVDUOo : PPC32InstPattern2 <"divduo.", Gpr, Gpr, Gpr, 31, 915, 1, 0>;
+def DIVW : PPC32InstPattern2 <"divw", Gpr, Gpr, Gpr, 31, 982, 0, 0>;
+def DIVWo : PPC32InstPattern2 <"divw.", Gpr, Gpr, Gpr, 31, 983, 0, 0>;
+def DIVWO : PPC32InstPattern2 <"divwo", Gpr, Gpr, Gpr, 31, 982, 0, 0>;
+def DIVWOo : PPC32InstPattern2 <"divwo.", Gpr, Gpr, Gpr, 31, 983, 0, 0>;
+def DIVWU : PPC32InstPattern2 <"divwu", Gpr, Gpr, Gpr, 31, 918, 0, 0>;
+def DIVWUo : PPC32InstPattern2 <"divwu.", Gpr, Gpr, Gpr, 31, 919, 0, 0>;
+def DIVWUO : PPC32InstPattern2 <"divwuo", Gpr, Gpr, Gpr, 31, 918, 0, 0>;
+def DIVWUOo : PPC32InstPattern2 <"divwuo.", Gpr, Gpr, Gpr, 31, 919, 0, 0>;
+def EQV : PPC32InstPattern5 <"eqv", Gpr, Gpr, Gpr, 31, 568, 0, 0>;
+def EQVo : PPC32InstPattern5 <"eqv.", Gpr, Gpr, Gpr, 31, 569, 0, 0>;
+def EXTSB : PPC32InstPattern17 <"extsb", Gpr, Gpr, 31, 1908, 0, 0>;
+def EXTSBo : PPC32InstPattern17 <"extsb.", Gpr, Gpr, 31, 1909, 0, 0>;
+def EXTSH : PPC32InstPattern17 <"extsh", Gpr, Gpr, 31, 1844, 0, 0>;
+def EXTSHo : PPC32InstPattern17 <"extsh.", Gpr, Gpr, 31, 1845, 0, 0>;
+def EXTSW : PPC32InstPattern17 <"extsw", Gpr, Gpr, 31, 1972, 1, 0>;
+def EXTSWo : PPC32InstPattern17 <"extsw.", Gpr, Gpr, 31, 1973, 1, 0>;
+def FADD : PPC32InstPattern2 <"fadd", Fpr, Fpr, Fpr, 63, 42, 0, 0>;
+def FADDo : PPC32InstPattern2 <"fadd.", Fpr, Fpr, Fpr, 63, 43, 0, 0>;
+def FADDS : PPC32InstPattern2 <"fadds", Fpr, Fpr, Fpr, 59, 42, 0, 0>;
+def FADDSo : PPC32InstPattern2 <"fadds.", Fpr, Fpr, Fpr, 59, 43, 0, 0>;
+def FSUB : PPC32InstPattern2 <"fsub", Fpr, Fpr, Fpr, 63, 40, 0, 0>;
+def FSUBo : PPC32InstPattern2 <"fsub.", Fpr, Fpr, Fpr, 63, 41, 0, 0>;
+def FSUBS : PPC32InstPattern2 <"fsubs", Fpr, Fpr, Fpr, 59, 40, 0, 0>;
+def FSUBSo : PPC32InstPattern2 <"fsubs.", Fpr, Fpr, Fpr, 59, 41, 0, 0>;
+def FMUL : PPC32InstPattern18 <"fmul", Fpr, Fpr, Fpr, 63, 0, 18, 0, 0>;
+def FMULo : PPC32InstPattern18 <"fmul.", Fpr, Fpr, Fpr, 63, 0, 19, 0, 0>;
+def FMULS : PPC32InstPattern18 <"fmuls", Fpr, Fpr, Fpr, 59, 0, 18, 0, 0>;
+def FMULSo : PPC32InstPattern18 <"fmuls.", Fpr, Fpr, Fpr, 59, 0, 19, 0, 0>;
+def FDIV : PPC32InstPattern2 <"fdiv", Fpr, Fpr, Fpr, 63, 36, 0, 0>;
+def FDIVo : PPC32InstPattern2 <"fdiv.", Fpr, Fpr, Fpr, 63, 37, 0, 0>;
+def FDIVS : PPC32InstPattern2 <"fdivs", Fpr, Fpr, Fpr, 59, 36, 0, 0>;
+def FDIVSo : PPC32InstPattern2 <"fdivs.", Fpr, Fpr, Fpr, 59, 37, 0, 0>;
+def FMADD : PPC32InstPattern19 <"fmadd", Fpr, Fpr, Fpr, Fpr, 63, 26, 0, 0>;
+def FMADDo : PPC32InstPattern19 <"fmadd.", Fpr, Fpr, Fpr, Fpr, 63, 27, 0, 0>;
+def FMADDS : PPC32InstPattern19 <"fmadds", Fpr, Fpr, Fpr, Fpr, 59, 26, 0, 0>;
+def FMADDSo : PPC32InstPattern19 <"fmadds.", Fpr, Fpr, Fpr, Fpr, 59, 27, 0, 0>;
+def FMSUB : PPC32InstPattern19 <"fmsub", Fpr, Fpr, Fpr, Fpr, 63, 24, 0, 0>;
+def FMSUBo : PPC32InstPattern19 <"fmsub.", Fpr, Fpr, Fpr, Fpr, 63, 25, 0, 0>;
+def FMSUBS : PPC32InstPattern19 <"fmsubs", Fpr, Fpr, Fpr, Fpr, 59, 24, 0, 0>;
+def FMSUBSo : PPC32InstPattern19 <"fmsubs.", Fpr, Fpr, Fpr, Fpr, 59, 25, 0, 0>;
+def FNMADD : PPC32InstPattern19 <"fnmadd", Fpr, Fpr, Fpr, Fpr, 63, 30, 0, 0>;
+def FNMADDo : PPC32InstPattern19 <"fnmadd.", Fpr, Fpr, Fpr, Fpr, 63, 31, 0, 0>;
+def FNMADDS : PPC32InstPattern19 <"fnmadds", Fpr, Fpr, Fpr, Fpr, 59, 30, 0, 0>;
+def FNMADDSo : PPC32InstPattern19 <"fnmadds.", Fpr, Fpr, Fpr, Fpr, 59, 31, 0, 0>;
+def FNMSUB : PPC32InstPattern19 <"fnmsub", Fpr, Fpr, Fpr, Fpr, 63, 28, 0, 0>;
+def FNMSUBo : PPC32InstPattern19 <"fnmsub.", Fpr, Fpr, Fpr, Fpr, 63, 29, 0, 0>;
+def FNMSUBS : PPC32InstPattern19 <"fnmsubs", Fpr, Fpr, Fpr, Fpr, 59, 28, 0, 0>;
+def FNMSUBSo : PPC32InstPattern19 <"fnmsubs.", Fpr, Fpr, Fpr, Fpr, 59, 29, 0, 0>;
+def FMR : PPC32InstPattern20 <"fmr", Fpr, Fpr, 63, 0, 144, 0, 0>;
+def FMRo : PPC32InstPattern20 <"fmr.", Fpr, Fpr, 63, 0, 145, 0, 0>;
+def FABS : PPC32InstPattern20 <"fabs", Fpr, Fpr, 63, 0, 528, 0, 0>;
+def FABSo : PPC32InstPattern20 <"fabs.", Fpr, Fpr, 63, 0, 529, 0, 0>;
+def FNEG : PPC32InstPattern20 <"fneg", Fpr, Fpr, 63, 0, 80, 0, 0>;
+def FNEGo : PPC32InstPattern20 <"fneg.", Fpr, Fpr, 63, 0, 81, 0, 0>;
+def FNABS : PPC32InstPattern20 <"fnabs", Fpr, Fpr, 63, 0, 272, 0, 0>;
+def FNABSo : PPC32InstPattern20 <"fnabs.", Fpr, Fpr, 63, 0, 273, 0, 0>;
+def FRES : PPC32InstPattern20 <"fres", Fpr, Fpr, 59, 0, 48, 0, 0>;
+def FRESo : PPC32InstPattern20 <"fres.", Fpr, Fpr, 59, 0, 49, 0, 0>;
+def FRSP : PPC32InstPattern20 <"frsp", Fpr, Fpr, 63, 0, 24, 0, 0>;
+def FRSPo : PPC32InstPattern20 <"frsp.", Fpr, Fpr, 63, 0, 25, 0, 0>;
+def FRSQRTE : PPC32InstPattern20 <"frsqrte", Fpr, Fpr, 63, 0, 52, 0, 0>;
+def FRSQRTEo : PPC32InstPattern20 <"frsqrte.", Fpr, Fpr, 63, 0, 53, 0, 0>;
+def FSEL : PPC32InstPattern19 <"fsel", Fpr, Fpr, Fpr, Fpr, 63, 14, 0, 0>;
+def FSELo : PPC32InstPattern19 <"fsel.", Fpr, Fpr, Fpr, Fpr, 63, 15, 0, 0>;
+def FSQRT : PPC32InstPattern20 <"fsqrt", Fpr, Fpr, 63, 0, 44, 0, 0>;
+def FSQRTo : PPC32InstPattern20 <"fsqrt.", Fpr, Fpr, 63, 0, 45, 0, 0>;
+def FSQRTS : PPC32InstPattern20 <"fsqrts", Fpr, Fpr, 59, 0, 44, 0, 0>;
+def FSQRTSo : PPC32InstPattern20 <"fsqrts.", Fpr, Fpr, 59, 0, 45, 0, 0>;
+def FCTID : PPC32InstPattern20 <"fctid", Fpr, Fpr, 63, 0, 604, 1, 0>;
+def FCTIDo : PPC32InstPattern20 <"fctid.", Fpr, Fpr, 63, 0, 605, 1, 0>;
+def FCTIDZ : PPC32InstPattern20 <"fctidz", Fpr, Fpr, 63, 0, 606, 1, 0>;
+def FCTIDZo : PPC32InstPattern20 <"fctidz.", Fpr, Fpr, 63, 0, 607, 1, 0>;
+def FCTIW : PPC32InstPattern20 <"fctiw", Fpr, Fpr, 63, 0, 28, 0, 0>;
+def FCTIWo : PPC32InstPattern20 <"fctiw.", Fpr, Fpr, 63, 0, 29, 0, 0>;
+def FCTIWZ : PPC32InstPattern20 <"fctiwz", Fpr, Fpr, 63, 0, 30, 0, 0>;
+def FCTIWZo : PPC32InstPattern20 <"fctiwz.", Fpr, Fpr, 63, 0, 31, 0, 0>;
+def FCFID : PPC32InstPattern20 <"fcfid", Fpr, Fpr, 63, 0, 668, 1, 0>;
+def FCFIDo : PPC32InstPattern20 <"fcfid.", Fpr, Fpr, 63, 0, 669, 1, 0>;
+def FCMPU : PPC32InstPattern16 <"fcmpu", Imm3, Fpr, Fpr, 63, 0, 0, 0, 0>;
+def FCMPO : PPC32InstPattern16 <"fcmpo", Imm3, Fpr, Fpr, 63, 0, 64, 0, 0>;
+def MFFS : PPC32InstPattern21 <"mffs", Fpr, 63, 1166, 0, 0>;
+def MFFSo : PPC32InstPattern21 <"mffs.", Fpr, 63, 1167, 0, 0>;
+def MCRFS : PPC32InstPattern22 <"mcrfs", Imm3, Imm5, 63, 128, 0, 0>;
+def MTFSFI : PPC32InstPattern23 <"mtfsfi", Imm3, Imm4, 63, 0, 268, 0, 0>;
+def MTFSFIo : PPC32InstPattern23 <"mtfsfi.", Imm3, Imm4, 63, 0, 269, 0, 0>;
+def MTFSF : PPC32InstPattern24 <"mtfsf", Imm8, Fpr, 126, 0, 398, 0, 0>;
+def MTFSFo : PPC32InstPattern24 <"mtfsf.", Imm8, Fpr, 126, 0, 399, 0, 0>;
+def MTFSB0 : PPC32InstPattern21 <"mtfsb0", Imm5, 63, 140, 0, 0>;
+def MTFSB0o : PPC32InstPattern21 <"mtfsb0.", Imm5, 63, 141, 0, 0>;
+def MTFSB1 : PPC32InstPattern21 <"mtfsb1", Imm5, 63, 76, 0, 0>;
+def MTFSB1o : PPC32InstPattern21 <"mtfsb1.", Imm5, 63, 77, 0, 0>;
+def LBZ : PPC32InstPattern25 <"lbz", Gpr, Disimm16, Gpr0, 34, 0, 0>;
+def LBZX : PPC32InstPattern2 <"lbzx", Gpr, Gpr0, Gpr, 31, 174, 0, 0>;
+def LBZU : PPC32InstPattern25 <"lbzu", Gpr, Disimm16, Gpr0, 35, 0, 0>;
+def LBZUX : PPC32InstPattern2 <"lbzux", Gpr, Gpr, Gpr, 31, 238, 0, 0>;
+def LHZ : PPC32InstPattern25 <"lhz", Gpr, Disimm16, Gpr0, 40, 0, 0>;
+def LHZX : PPC32InstPattern2 <"lhzx", Gpr, Gpr0, Gpr, 31, 558, 0, 0>;
+def LHZU : PPC32InstPattern25 <"lhzu", Gpr, Disimm16, Gpr0, 41, 0, 0>;
+def LHZUX : PPC32InstPattern2 <"lhzux", Gpr, Gpr, Gpr, 31, 622, 0, 0>;
+def LHA : PPC32InstPattern25 <"lha", Gpr, Disimm16, Gpr0, 42, 0, 0>;
+def LHAX : PPC32InstPattern2 <"lhax", Gpr, Gpr0, Gpr, 31, 686, 0, 0>;
+def LHAU : PPC32InstPattern25 <"lhau", Gpr, Disimm16, Gpr, 43, 0, 0>;
+def LHAUX : PPC32InstPattern2 <"lhaux", Gpr, Gpr, Gpr, 31, 750, 0, 0>;
+def LWZ : PPC32InstPattern25 <"lwz", Gpr, Disimm16, Gpr0, 32, 0, 0>;
+def LWZX : PPC32InstPattern2 <"lwzx", Gpr, Gpr0, Gpr, 31, 46, 0, 0>;
+def LWZU : PPC32InstPattern25 <"lwzu", Gpr, Disimm16, Gpr, 33, 0, 0>;
+def LWZUX : PPC32InstPattern2 <"lwzux", Gpr, Gpr, Gpr, 31, 110, 0, 0>;
+def LWA : PPC32InstPattern26 <"lwa", Gpr, Disimm14, Gpr0, 58, 0, 1, 0>;
+def LWAX : PPC32InstPattern2 <"lwax", Gpr, Gpr0, Gpr, 31, 682, 1, 0>;
+def LWAUX : PPC32InstPattern2 <"lwaux", Gpr, Gpr, Gpr, 31, 746, 1, 0>;
+def LD : PPC32InstPattern26 <"ld", Gpr, Disimm14, Gpr0, 58, 0, 1, 0>;
+def LDX : PPC32InstPattern2 <"ldx", Gpr, Gpr0, Gpr, 31, 42, 1, 0>;
+def LDU : PPC32InstPattern26 <"ldu", Gpr, Disimm14, Gpr, 58, 1, 1, 0>;
+def LDUX : PPC32InstPattern2 <"ldux", Gpr, Gpr, Gpr, 31, 106, 1, 0>;
+def LMW : PPC32InstPattern25 <"lmw", Gpr, Disimm16, Gpr0, 46, 0, 0>;
+def STMW : PPC32InstPattern25 <"stmw", Gpr, Disimm16, Gpr0, 47, 0, 0>;
+def LHBRX : PPC32InstPattern2 <"lhbrx", Gpr, Gpr0, Gpr, 31, 556, 0, 0>;
+def LWBRX : PPC32InstPattern2 <"lwbrx", Gpr, Gpr0, Gpr, 31, 44, 0, 0>;
+def LSWX : PPC32InstPattern2 <"lswx", Gpr, Gpr0, Gpr, 31, 42, 0, 0>;
+def LWARX : PPC32InstPattern2 <"lwarx", Gpr, Gpr0, Gpr, 31, 40, 0, 0>;
+def LDARX : PPC32InstPattern2 <"ldarx", Gpr, Gpr0, Gpr, 31, 168, 1, 0>;
+def LSWI : PPC32InstPattern2 <"lswi", Gpr, Gpr0, Imm5, 31, 170, 0, 0>;
+def LFS : PPC32InstPattern25 <"lfs", Fpr, Disimm16, Gpr0, 48, 0, 0>;
+def LFSU : PPC32InstPattern25 <"lfsu", Fpr, Disimm16, Gpr, 49, 0, 0>;
+def LFSX : PPC32InstPattern2 <"lfsx", Fpr, Gpr0, Gpr, 31, 46, 0, 0>;
+def LFSUX : PPC32InstPattern2 <"lfsux", Fpr, Gpr, Gpr, 31, 110, 0, 0>;
+def LFD : PPC32InstPattern25 <"lfd", Fpr, Disimm16, Gpr0, 50, 0, 0>;
+def LFDU : PPC32InstPattern25 <"lfdu", Fpr, Disimm16, Gpr, 51, 0, 0>;
+def LFDX : PPC32InstPattern2 <"lfdx", Fpr, Gpr0, Gpr, 31, 174, 0, 0>;
+def LFDUX : PPC32InstPattern2 <"lfdux", Fpr, Gpr, Gpr, 31, 238, 0, 0>;
+def LA : PPC32InstPattern25 <"la", Gpr, Disimm16, Gpr0, 14, 0, 0>;
+def MCRF : PPC32InstPattern27 <"mcrf", Imm3, Imm3, 19, 0, 0, 0, 0>;
+def MFSPR : PPC32InstPattern28 <"mfspr", Gpr, Spr, 31, 678, 0, 0>;
+def MTSPR : PPC32InstPattern29 <"mtspr", Spr, Gpr, 31, 934, 0, 0>;
+def MTCRF : PPC32InstPattern30 <"mtcrf", Imm8, Gpr, 31, 0, 288, 0, 0>;
+def MCRXR : PPC32InstPattern31 <"mcrxr", Imm3, 31, 1024, 0, 0>;
+def MFCR : PPC32InstPattern32 <"mfcr", Gpr, Imm8, 31, 0, 38, 0, 0>;
+def MFXER : PPC32InstPattern21 <"mfxer", Gpr, 31, 66214, 0, 0>;
+def MFLR : PPC32InstPattern21 <"mflr", Gpr, 31, 524966, 0, 0>;
+def MFCTR : PPC32InstPattern21 <"mfctr", Gpr, 31, 590502, 0, 0>;
+def MTXER : PPC32InstPattern21 <"mtxer", Gpr, 31, 66470, 0, 0>;
+def MTLR : PPC32InstPattern21 <"mtlr", Gpr, 31, 525222, 0, 0>;
+def MTCTR : PPC32InstPattern21 <"mtctr", Gpr, 31, 590758, 0, 0>;
+def MFMQ : PPC32InstPattern21 <"mfmq", Gpr, 31, 678, 0, 0>;
+def MFRTCL : PPC32InstPattern21 <"mfrtcl", Gpr, 31, 328358, 0, 0>;
+def MFRTCU : PPC32InstPattern21 <"mfrtcu", Gpr, 31, 262822, 0, 0>;
+def MTMQ : PPC32InstPattern21 <"mtmq", Gpr, 31, 934, 0, 0>;
+def MTRTCL : PPC32InstPattern21 <"mtrtcl", Gpr, 31, 328614, 0, 0>;
+def MTRTCU : PPC32InstPattern21 <"mtrtcu", Gpr, 31, 263078, 0, 0>;
+def MULLW : PPC32InstPattern2 <"mullw", Gpr, Gpr, Gpr, 31, 470, 0, 0>;
+def MULLWo : PPC32InstPattern2 <"mullw.", Gpr, Gpr, Gpr, 31, 471, 0, 0>;
+def MULLWO : PPC32InstPattern2 <"mullwo", Gpr, Gpr, Gpr, 31, 470, 0, 0>;
+def MULLWOo : PPC32InstPattern2 <"mullwo.", Gpr, Gpr, Gpr, 31, 471, 0, 0>;
+def MULHD : PPC32InstPattern2 <"mulhd", Gpr, Gpr, Gpr, 31, 146, 1, 0>;
+def MULHDo : PPC32InstPattern2 <"mulhd.", Gpr, Gpr, Gpr, 31, 147, 1, 0>;
+def MULHW : PPC32InstPattern2 <"mulhw", Gpr, Gpr, Gpr, 31, 150, 0, 0>;
+def MULHWo : PPC32InstPattern2 <"mulhw.", Gpr, Gpr, Gpr, 31, 151, 0, 0>;
+def MULHDU : PPC32InstPattern2 <"mulhdu", Gpr, Gpr, Gpr, 31, 18, 1, 0>;
+def MULHDUo : PPC32InstPattern2 <"mulhdu.", Gpr, Gpr, Gpr, 31, 19, 1, 0>;
+def MULHWU : PPC32InstPattern2 <"mulhwu", Gpr, Gpr, Gpr, 31, 22, 0, 0>;
+def MULHWUo : PPC32InstPattern2 <"mulhwu.", Gpr, Gpr, Gpr, 31, 23, 0, 0>;
+def MULLD : PPC32InstPattern2 <"mulld", Gpr, Gpr, Gpr, 31, 466, 1, 0>;
+def MULLDo : PPC32InstPattern2 <"mulld.", Gpr, Gpr, Gpr, 31, 467, 1, 0>;
+def MULLDO : PPC32InstPattern2 <"mulldo", Gpr, Gpr, Gpr, 31, 466, 1, 0>;
+def MULLDOo : PPC32InstPattern2 <"mulldo.", Gpr, Gpr, Gpr, 31, 467, 1, 0>;
+def NAND : PPC32InstPattern5 <"nand", Gpr, Gpr, Gpr, 31, 952, 0, 0>;
+def NANDo : PPC32InstPattern5 <"nand.", Gpr, Gpr, Gpr, 31, 953, 0, 0>;
+def NEG : PPC32InstPattern3 <"neg", Gpr, Gpr, 31, 208, 0, 0>;
+def NEGo : PPC32InstPattern3 <"neg.", Gpr, Gpr, 31, 209, 0, 0>;
+def NEGO : PPC32InstPattern3 <"nego", Gpr, Gpr, 31, 1232, 0, 0>;
+def NEGOo : PPC32InstPattern3 <"nego.", Gpr, Gpr, 31, 1233, 0, 0>;
+def NOR : PPC32InstPattern5 <"nor", Gpr, Gpr, Gpr, 31, 248, 0, 0>;
+def NORo : PPC32InstPattern5 <"nor.", Gpr, Gpr, Gpr, 31, 249, 0, 0>;
+def NOP : PPC32InstPattern33 <"nop", 1610612736, 0, 0>;
+def ORI : PPC32InstPattern4 <"ori", Gpr, Gpr, Zimm16, 24, 0, 0>;
+def ORIS : PPC32InstPattern4 <"oris", Gpr, Gpr, Zimm16, 25, 0, 0>;
+def OR : PPC32InstPattern5 <"or", Gpr, Gpr, Gpr, 31, 888, 0, 0>;
+def ORo : PPC32InstPattern5 <"or.", Gpr, Gpr, Gpr, 31, 889, 0, 0>;
+def ORC : PPC32InstPattern5 <"orc", Gpr, Gpr, Gpr, 31, 824, 0, 0>;
+def ORCo : PPC32InstPattern5 <"orc.", Gpr, Gpr, Gpr, 31, 825, 0, 0>;
+def RLDICL : PPC32InstPattern17 <"rldicl", Gpr, Gpr, 30, 0, 1, 0>;
+def RLDICLo : PPC32InstPattern17 <"rldicl.", Gpr, Gpr, 30, 1, 1, 0>;
+def RLDICR : PPC32InstPattern17 <"rldicr", Gpr, Gpr, 30, 4, 1, 0>;
+def RLDICRo : PPC32InstPattern17 <"rldicr.", Gpr, Gpr, 30, 5, 1, 0>;
+def RLDIC : PPC32InstPattern17 <"rldic", Gpr, Gpr, 30, 8, 1, 0>;
+def RLDICo : PPC32InstPattern17 <"rldic.", Gpr, Gpr, 30, 9, 1, 0>;
+def RLDIMI : PPC32InstPattern17 <"rldimi", Gpr, Gpr, 30, 12, 1, 0>;
+def RLDIMIo : PPC32InstPattern17 <"rldimi.", Gpr, Gpr, 30, 13, 1, 0>;
+def RLDCL : PPC32InstPattern5 <"rldcl", Gpr, Gpr, Gpr, 30, 16, 1, 0>;
+def RLDCLo : PPC32InstPattern5 <"rldcl.", Gpr, Gpr, Gpr, 30, 17, 1, 0>;
+def RLDCR : PPC32InstPattern5 <"rldcr", Gpr, Gpr, Gpr, 30, 18, 1, 0>;
+def RLDCRo : PPC32InstPattern5 <"rldcr.", Gpr, Gpr, Gpr, 30, 19, 1, 0>;
+def RLWINM : PPC32InstPattern34 <"rlwinm", Gpr, Gpr, Imm5, Imm5, Imm5, 21, 0, 0, 0>;
+def RLWINMo : PPC32InstPattern34 <"rlwinm.", Gpr, Gpr, Imm5, Imm5, Imm5, 21, 0, 0, 0>;
+def RLWNM : PPC32InstPattern34 <"rlwnm", Gpr, Gpr, Gpr, Imm5, Imm5, 23, 0, 0, 0>;
+def RLWNMo : PPC32InstPattern34 <"rlwnm.", Gpr, Gpr, Gpr, Imm5, Imm5, 23, 0, 0, 0>;
+def RLWIMI : PPC32InstPattern34 <"rlwimi", Gpr, Gpr, Imm5, Imm5, Imm5, 20, 0, 0, 0>;
+def RLWIMIo : PPC32InstPattern34 <"rlwimi.", Gpr, Gpr, Imm5, Imm5, Imm5, 20, 0, 0, 0>;
+def SC : PPC32InstPattern33 <"sc", 1140850690, 0, 0>;
+def RFID : PPC32InstPattern33 <"rfid", 1275068452, 1, 0>;
+def SLW : PPC32InstPattern5 <"slw", Gpr, Gpr, Gpr, 31, 48, 0, 0>;
+def SLWo : PPC32InstPattern5 <"slw.", Gpr, Gpr, Gpr, 31, 49, 0, 0>;
+def SLD : PPC32InstPattern5 <"sld", Gpr, Gpr, Gpr, 31, 54, 1, 0>;
+def SLDo : PPC32InstPattern5 <"sld.", Gpr, Gpr, Gpr, 31, 55, 1, 0>;
+def SRW : PPC32InstPattern5 <"srw", Gpr, Gpr, Gpr, 31, 48, 0, 0>;
+def SRWo : PPC32InstPattern5 <"srw.", Gpr, Gpr, Gpr, 31, 49, 0, 0>;
+def SRD : PPC32InstPattern5 <"srd", Gpr, Gpr, Gpr, 31, 54, 1, 0>;
+def SRDo : PPC32InstPattern5 <"srd.", Gpr, Gpr, Gpr, 31, 55, 1, 0>;
+def SRAWI : PPC32InstPattern5 <"srawi", Gpr, Gpr, Imm5, 31, 624, 0, 0>;
+def SRAWIo : PPC32InstPattern5 <"srawi.", Gpr, Gpr, Imm5, 31, 625, 0, 0>;
+def SRADI : PPC32InstPattern17 <"sradi", Gpr, Gpr, 31, 1652, 1, 0>;
+def SRADIo : PPC32InstPattern17 <"sradi.", Gpr, Gpr, 31, 1653, 1, 0>;
+def SRAW : PPC32InstPattern5 <"sraw", Gpr, Gpr, Gpr, 31, 560, 0, 0>;
+def SRAWo : PPC32InstPattern5 <"sraw.", Gpr, Gpr, Gpr, 31, 561, 0, 0>;
+def SRAD : PPC32InstPattern5 <"srad", Gpr, Gpr, Gpr, 31, 564, 1, 0>;
+def SRADo : PPC32InstPattern5 <"srad.", Gpr, Gpr, Gpr, 31, 565, 1, 0>;
+def STB : PPC32InstPattern25 <"stb", Gpr, Disimm16, Gpr0, 38, 0, 0>;
+def STBU : PPC32InstPattern25 <"stbu", Gpr, Disimm16, Gpr, 39, 0, 0>;
+def STBX : PPC32InstPattern2 <"stbx", Gpr, Gpr0, Gpr, 31, 430, 0, 0>;
+def STBUX : PPC32InstPattern2 <"stbux", Gpr, Gpr, Gpr, 31, 494, 0, 0>;
+def STH : PPC32InstPattern25 <"sth", Gpr, Disimm16, Gpr0, 44, 0, 0>;
+def STHU : PPC32InstPattern25 <"sthu", Gpr, Disimm16, Gpr, 45, 0, 0>;
+def STHX : PPC32InstPattern2 <"sthx", Gpr, Gpr0, Gpr, 31, 814, 0, 0>;
+def STHUX : PPC32InstPattern2 <"sthux", Gpr, Gpr, Gpr, 31, 878, 0, 0>;
+def STW : PPC32InstPattern25 <"stw", Gpr, Disimm16, Gpr0, 36, 0, 0>;
+def STWU : PPC32InstPattern25 <"stwu", Gpr, Disimm16, Gpr, 37, 0, 0>;
+def STWX : PPC32InstPattern2 <"stwx", Gpr, Gpr0, Gpr, 31, 302, 0, 0>;
+def STWUX : PPC32InstPattern2 <"stwux", Gpr, Gpr, Gpr, 31, 366, 0, 0>;
+def STD : PPC32InstPattern26 <"std", Gpr, Disimm14, Gpr0, 62, 0, 1, 0>;
+def STDU : PPC32InstPattern26 <"stdu", Gpr, Disimm14, Gpr, 62, 1, 1, 0>;
+def STDX : PPC32InstPattern2 <"stdx", Gpr, Gpr0, Gpr, 31, 298, 1, 0>;
+def STDUX : PPC32InstPattern2 <"stdux", Gpr, Gpr, Gpr, 31, 362, 1, 0>;
+def STHBRX : PPC32InstPattern2 <"sthbrx", Gpr, Gpr0, Gpr, 31, 812, 0, 0>;
+def STWBRX : PPC32InstPattern2 <"stwbrx", Gpr, Gpr0, Gpr, 31, 300, 0, 0>;
+def STSWX : PPC32InstPattern2 <"stswx", Gpr, Gpr0, Gpr, 31, 298, 0, 0>;
+def STWCXo : PPC32InstPattern2 <"stwcx.", Gpr, Gpr0, Gpr, 31, 301, 0, 0>;
+def STDCXo : PPC32InstPattern2 <"stdcx.", Gpr, Gpr0, Gpr, 31, 429, 1, 0>;
+def STSWI : PPC32InstPattern2 <"stswi", Gpr, Gpr0, Imm5, 31, 426, 0, 0>;
+def STFIWX : PPC32InstPattern2 <"stfiwx", Fpr, Gpr0, Gpr, 31, 942, 0, 0>;
+def STFS : PPC32InstPattern25 <"stfs", Fpr, Disimm16, Gpr0, 52, 0, 0>;
+def STFSU : PPC32InstPattern25 <"stfsu", Fpr, Disimm16, Gpr, 53, 0, 0>;
+def STFSX : PPC32InstPattern2 <"stfsx", Fpr, Gpr0, Gpr, 31, 302, 0, 0>;
+def STFSUX : PPC32InstPattern2 <"stfsux", Fpr, Gpr, Gpr, 31, 366, 0, 0>;
+def STFD : PPC32InstPattern25 <"stfd", Fpr, Disimm16, Gpr0, 54, 0, 0>;
+def STFDU : PPC32InstPattern25 <"stfdu", Fpr, Disimm16, Gpr, 55, 0, 0>;
+def STFDX : PPC32InstPattern2 <"stfdx", Fpr, Gpr0, Gpr, 31, 430, 0, 0>;
+def STFDUX : PPC32InstPattern2 <"stfdux", Fpr, Gpr, Gpr, 31, 494, 0, 0>;
+def SUBFIC : PPC32InstPattern0 <"subfic", Gpr, Gpr, Simm16, 8, 0, 0>;
+def SUB : PPC32InstPattern35 <"sub", Gpr, Gpr, Gpr, 31, 80, 0, 0>;
+def SUBo : PPC32InstPattern35 <"sub.", Gpr, Gpr, Gpr, 31, 81, 0, 0>;
+def SUBO : PPC32InstPattern35 <"subo", Gpr, Gpr, Gpr, 31, 80, 0, 0>;
+def SUBOo : PPC32InstPattern35 <"subo.", Gpr, Gpr, Gpr, 31, 81, 0, 0>;
+def SUBF : PPC32InstPattern2 <"subf", Gpr, Gpr, Gpr, 31, 80, 0, 0>;
+def SUBFo : PPC32InstPattern2 <"subf.", Gpr, Gpr, Gpr, 31, 81, 0, 0>;
+def SUBFO : PPC32InstPattern2 <"subfo", Gpr, Gpr, Gpr, 31, 80, 0, 0>;
+def SUBFOo : PPC32InstPattern2 <"subfo.", Gpr, Gpr, Gpr, 31, 81, 0, 0>;
+def SUBC : PPC32InstPattern35 <"subc", Gpr, Gpr, Gpr, 31, 16, 0, 0>;
+def SUBCo : PPC32InstPattern35 <"subc.", Gpr, Gpr, Gpr, 31, 17, 0, 0>;
+def SUBCO : PPC32InstPattern35 <"subco", Gpr, Gpr, Gpr, 31, 16, 0, 0>;
+def SUBCOo : PPC32InstPattern35 <"subco.", Gpr, Gpr, Gpr, 31, 17, 0, 0>;
+def SUBFC : PPC32InstPattern2 <"subfc", Gpr, Gpr, Gpr, 31, 16, 0, 0>;
+def SUBFCo : PPC32InstPattern2 <"subfc.", Gpr, Gpr, Gpr, 31, 17, 0, 0>;
+def SUBFCO : PPC32InstPattern2 <"subfco", Gpr, Gpr, Gpr, 31, 16, 0, 0>;
+def SUBFCOo : PPC32InstPattern2 <"subfco.", Gpr, Gpr, Gpr, 31, 17, 0, 0>;
+def SUBFE : PPC32InstPattern2 <"subfe", Gpr, Gpr, Gpr, 31, 272, 0, 0>;
+def SUBFEo : PPC32InstPattern2 <"subfe.", Gpr, Gpr, Gpr, 31, 273, 0, 0>;
+def SUBFEO : PPC32InstPattern2 <"subfeo", Gpr, Gpr, Gpr, 31, 272, 0, 0>;
+def SUBFEOo : PPC32InstPattern2 <"subfeo.", Gpr, Gpr, Gpr, 31, 273, 0, 0>;
+def SUBFME : PPC32InstPattern3 <"subfme", Gpr, Gpr, 31, 464, 0, 0>;
+def SUBFMEo : PPC32InstPattern3 <"subfme.", Gpr, Gpr, 31, 465, 0, 0>;
+def SUBFMEO : PPC32InstPattern3 <"subfmeo", Gpr, Gpr, 31, 1488, 0, 0>;
+def SUBFMEOo : PPC32InstPattern3 <"subfmeo.", Gpr, Gpr, 31, 1489, 0, 0>;
+def SUBFZE : PPC32InstPattern3 <"subfze", Gpr, Gpr, 31, 400, 0, 0>;
+def SUBFZEo : PPC32InstPattern3 <"subfze.", Gpr, Gpr, 31, 401, 0, 0>;
+def SUBFZEO : PPC32InstPattern3 <"subfzeo", Gpr, Gpr, 31, 1424, 0, 0>;
+def SUBFZEOo : PPC32InstPattern3 <"subfzeo.", Gpr, Gpr, 31, 1425, 0, 0>;
+def SYNC : PPC32InstPattern36 <"sync", Imm2, 248, 1196, 0, 0>;
+def LWSYNC : PPC32InstPattern33 <"lwsync", 2082473132, 0, 0>;
+def PTESYNC : PPC32InstPattern33 <"ptesync", 2084570284, 0, 0>;
+def TDI : PPC32InstPattern0 <"tdi", Imm5, Gpr, Simm16, 2, 1, 0>;
+def TDLTI : PPC32InstPattern37 <"tdlti", Gpr, Simm16, 80, 1, 0>;
+def TDLEI : PPC32InstPattern37 <"tdlei", Gpr, Simm16, 84, 1, 0>;
+def TDEQI : PPC32InstPattern37 <"tdeqi", Gpr, Simm16, 68, 1, 0>;
+def TDGEI : PPC32InstPattern37 <"tdgei", Gpr, Simm16, 76, 1, 0>;
+def TDGTI : PPC32InstPattern37 <"tdgti", Gpr, Simm16, 72, 1, 0>;
+def TDNLI : PPC32InstPattern37 <"tdnli", Gpr, Simm16, 76, 1, 0>;
+def TDNEI : PPC32InstPattern37 <"tdnei", Gpr, Simm16, 88, 1, 0>;
+def TDNGI : PPC32InstPattern37 <"tdngi", Gpr, Simm16, 84, 1, 0>;
+def TDLLTI : PPC32InstPattern37 <"tdllti", Gpr, Simm16, 66, 1, 0>;
+def TDLLEI : PPC32InstPattern37 <"tdllei", Gpr, Simm16, 70, 1, 0>;
+def TDLGEI : PPC32InstPattern37 <"tdlgei", Gpr, Simm16, 69, 1, 0>;
+def TDLGTI : PPC32InstPattern37 <"tdlgti", Gpr, Simm16, 65, 1, 0>;
+def TDLNLI : PPC32InstPattern37 <"tdlnli", Gpr, Simm16, 69, 1, 0>;
+def TDLNGI : PPC32InstPattern37 <"tdlngi", Gpr, Simm16, 70, 1, 0>;
+def TD : PPC32InstPattern2 <"td", Imm5, Gpr, Gpr, 31, 136, 1, 0>;
+def TDLT : PPC32InstPattern38 <"tdlt", Gpr, Gpr, 1008, 136, 1, 0>;
+def TDLE : PPC32InstPattern38 <"tdle", Gpr, Gpr, 1012, 136, 1, 0>;
+def TDEQ : PPC32InstPattern38 <"tdeq", Gpr, Gpr, 996, 136, 1, 0>;
+def TDGE : PPC32InstPattern38 <"tdge", Gpr, Gpr, 1004, 136, 1, 0>;
+def TDGT : PPC32InstPattern38 <"tdgt", Gpr, Gpr, 1000, 136, 1, 0>;
+def TDNL : PPC32InstPattern38 <"tdnl", Gpr, Gpr, 1004, 136, 1, 0>;
+def TDNE : PPC32InstPattern38 <"tdne", Gpr, Gpr, 1016, 136, 1, 0>;
+def TDNG : PPC32InstPattern38 <"tdng", Gpr, Gpr, 1012, 136, 1, 0>;
+def TDLLT : PPC32InstPattern38 <"tdllt", Gpr, Gpr, 994, 136, 1, 0>;
+def TDLLE : PPC32InstPattern38 <"tdlle", Gpr, Gpr, 998, 136, 1, 0>;
+def TDLGE : PPC32InstPattern38 <"tdlge", Gpr, Gpr, 997, 136, 1, 0>;
+def TDLGT : PPC32InstPattern38 <"tdlgt", Gpr, Gpr, 993, 136, 1, 0>;
+def TDLNL : PPC32InstPattern38 <"tdlnl", Gpr, Gpr, 997, 136, 1, 0>;
+def TDLNG : PPC32InstPattern38 <"tdlng", Gpr, Gpr, 998, 136, 1, 0>;
+def TWI : PPC32InstPattern0 <"twi", Imm5, Gpr, Simm16, 3, 0, 0>;
+def TWLTI : PPC32InstPattern37 <"twlti", Gpr, Simm16, 112, 0, 0>;
+def TWLEI : PPC32InstPattern37 <"twlei", Gpr, Simm16, 116, 0, 0>;
+def TWEQI : PPC32InstPattern37 <"tweqi", Gpr, Simm16, 100, 0, 0>;
+def TWGEI : PPC32InstPattern37 <"twgei", Gpr, Simm16, 108, 0, 0>;
+def TWGTI : PPC32InstPattern37 <"twgti", Gpr, Simm16, 104, 0, 0>;
+def TWNLI : PPC32InstPattern37 <"twnli", Gpr, Simm16, 108, 0, 0>;
+def TWNEI : PPC32InstPattern37 <"twnei", Gpr, Simm16, 120, 0, 0>;
+def TWNGI : PPC32InstPattern37 <"twngi", Gpr, Simm16, 116, 0, 0>;
+def TWLLTI : PPC32InstPattern37 <"twllti", Gpr, Simm16, 98, 0, 0>;
+def TWLLEI : PPC32InstPattern37 <"twllei", Gpr, Simm16, 102, 0, 0>;
+def TWLGEI : PPC32InstPattern37 <"twlgei", Gpr, Simm16, 101, 0, 0>;
+def TWLGTI : PPC32InstPattern37 <"twlgti", Gpr, Simm16, 97, 0, 0>;
+def TWLNLI : PPC32InstPattern37 <"twlnli", Gpr, Simm16, 101, 0, 0>;
+def TWLNGI : PPC32InstPattern37 <"twlngi", Gpr, Simm16, 102, 0, 0>;
+def TW : PPC32InstPattern2 <"tw", Imm5, Gpr, Gpr, 31, 8, 0, 0>;
+def TWLT : PPC32InstPattern38 <"twlt", Gpr, Gpr, 1008, 8, 0, 0>;
+def TWLE : PPC32InstPattern38 <"twle", Gpr, Gpr, 1012, 8, 0, 0>;
+def TWEQ : PPC32InstPattern38 <"tweq", Gpr, Gpr, 996, 8, 0, 0>;
+def TWGE : PPC32InstPattern38 <"twge", Gpr, Gpr, 1004, 8, 0, 0>;
+def TWGT : PPC32InstPattern38 <"twgt", Gpr, Gpr, 1000, 8, 0, 0>;
+def TWNL : PPC32InstPattern38 <"twnl", Gpr, Gpr, 1004, 8, 0, 0>;
+def TWNE : PPC32InstPattern38 <"twne", Gpr, Gpr, 1016, 8, 0, 0>;
+def TWNG : PPC32InstPattern38 <"twng", Gpr, Gpr, 1012, 8, 0, 0>;
+def TWLLT : PPC32InstPattern38 <"twllt", Gpr, Gpr, 994, 8, 0, 0>;
+def TWLLE : PPC32InstPattern38 <"twlle", Gpr, Gpr, 998, 8, 0, 0>;
+def TWLGE : PPC32InstPattern38 <"twlge", Gpr, Gpr, 997, 8, 0, 0>;
+def TWLGT : PPC32InstPattern38 <"twlgt", Gpr, Gpr, 993, 8, 0, 0>;
+def TWLNL : PPC32InstPattern38 <"twlnl", Gpr, Gpr, 997, 8, 0, 0>;
+def TWLNG : PPC32InstPattern38 <"twlng", Gpr, Gpr, 998, 8, 0, 0>;
+def TRAP : PPC32InstPattern33 <"trap", 2145386504, 0, 0>;
+def XORI : PPC32InstPattern4 <"xori", Gpr, Gpr, Zimm16, 26, 0, 0>;
+def XORIS : PPC32InstPattern4 <"xoris", Gpr, Gpr, Zimm16, 27, 0, 0>;
+def XOR : PPC32InstPattern5 <"xor", Gpr, Gpr, Gpr, 31, 632, 0, 0>;
+def XORo : PPC32InstPattern5 <"xor.", Gpr, Gpr, Gpr, 31, 633, 0, 0>;
+def ICBI : PPC32InstPattern38 <"icbi", Gpr0, Gpr, 992, 940, 0, 0>;
+def ISYNC : PPC32InstPattern33 <"isync", 1275068716, 0, 0>;
+def DCBT : PPC32InstPattern39 <"dcbt", Gpr0, Gpr, Imm4, 62, 556, 1, 0>;
+def DCBTST : PPC32InstPattern38 <"dcbtst", Gpr0, Gpr, 992, 492, 0, 0>;
+def DCBT128 : PPC32InstPattern39 <"dcbt128", Gpr0, Gpr, Imm4, 62, 556, 1, 0>;
+def DCBZ : PPC32InstPattern38 <"dcbz", Gpr0, Gpr, 992, 1004, 0, 0>;
+def DCBZL : PPC32InstPattern38 <"dcbzl", Gpr0, Gpr, 993, 1004, 1, 0>;
+def DCBZ128 : PPC32InstPattern38 <"dcbz128", Gpr0, Gpr, 993, 1004, 1, 0>;
+def DCBST : PPC32InstPattern38 <"dcbst", Gpr0, Gpr, 992, 108, 0, 0>;
+def DCBF : PPC32InstPattern38 <"dcbf", Gpr0, Gpr, 992, 172, 0, 0>;
+def ECIWX : PPC32InstPattern2 <"eciwx", Gpr, Gpr0, Gpr, 31, 620, 0, 0>;
+def ECOWX : PPC32InstPattern2 <"ecowx", Gpr, Gpr0, Gpr, 31, 876, 0, 0>;
+def EIEIO : PPC32InstPattern33 <"eieio", 2080376492, 0, 0>;
+def RFI : PPC32InstPattern33 <"rfi", 1275068516, 0, 0>;
+def MTMSR : PPC32InstPattern21 <"mtmsr", Gpr, 31, 292, 0, 0>;
+def MTMSRD : PPC32InstPattern40 <"mtmsrd", Gpr, Imm1, 31, 0, 356, 1, 0>;
+def MFMSR : PPC32InstPattern21 <"mfmsr", Gpr, 31, 166, 0, 0>;
+def DCBA : PPC32InstPattern38 <"dcba", Gpr0, Gpr, 992, 492, 0, 0>;
+def DCBI : PPC32InstPattern38 <"dcbi", Gpr0, Gpr, 992, 940, 0, 0>;
+def MTSR : PPC32InstPattern41 <"mtsr", Sgr, Gpr, 31, 0, 420, 0, 0>;
+def MFSR : PPC32InstPattern42 <"mfsr", Gpr, Sgr, 31, 0, 1190, 0, 0>;
+def MTSRIN : PPC32InstPattern20 <"mtsrin", Gpr, Gpr, 31, 0, 484, 0, 0>;
+def MFSRIN : PPC32InstPattern20 <"mfsrin", Gpr, Gpr, 31, 0, 294, 0, 0>;
+def SLBIE : PPC32InstPattern43 <"slbie", Gpr, 31744, 868, 1, 0>;
+def SLBIA : PPC32InstPattern33 <"slbia", 2080375780, 1, 0>;
+def SLBMTE : PPC32InstPattern20 <"slbmte", Gpr, Gpr, 31, 0, 804, 1, 0>;
+def SLBMFEV : PPC32InstPattern20 <"slbmfev", Gpr, Gpr, 31, 0, 678, 1, 0>;
+def SLBMFEE : PPC32InstPattern20 <"slbmfee", Gpr, Gpr, 31, 0, 806, 1, 0>;
+def TLBIE : PPC32InstPattern44 <"tlbie", Gpr, Imm1, 496, 0, 612, 1, 0>;
+def TLBIEL : PPC32InstPattern43 <"tlbiel", Gpr, 31744, 548, 1, 0>;
+def TLBIA : PPC32InstPattern33 <"tlbia", 2080375524, 0, 0>;
+def TLBSYNC : PPC32InstPattern33 <"tlbsync", 2080375916, 0, 0>;
+def MTTBL : PPC32InstPattern21 <"mttbl", Gpr, 31, 803750, 0, 0>;
+def MTTBU : PPC32InstPattern21 <"mttbu", Gpr, 31, 869286, 0, 0>;
+def MFTB : PPC32InstPattern28 <"mftb", Gpr, Spr, 31, 742, 0, 0>;
+def MFTBU : PPC32InstPattern21 <"mftbu", Gpr, 31, 869094, 0, 0>;
+def ATTN : PPC32InstPattern45 <"attn", Imm15, 0, 512, 0, 0>;
+def MULLI : PPC32InstPattern0 <"mulli", Gpr, Gpr, Simm16, 7, 0, 0>;
+def TLBLD : PPC32InstPattern43 <"tlbld", Gpr, 31744, 932, 0, 0>;
+def TLBLI : PPC32InstPattern43 <"tlbli", Gpr, 31744, 996, 0, 0>;
+def LVEBX : PPC32InstPattern2 <"lvebx", Vpr, Gpr0, Gpr, 31, 14, 0, 1>;
+def LVEHX : PPC32InstPattern2 <"lvehx", Vpr, Gpr0, Gpr, 31, 78, 0, 1>;
+def LVEWX : PPC32InstPattern2 <"lvewx", Vpr, Gpr0, Gpr, 31, 142, 0, 1>;
+def LVX : PPC32InstPattern2 <"lvx", Vpr, Gpr0, Gpr, 31, 206, 0, 1>;
+def LVXL : PPC32InstPattern2 <"lvxl", Vpr, Gpr0, Gpr, 31, 718, 0, 1>;
+def STVEBX : PPC32InstPattern2 <"stvebx", Vpr, Gpr0, Gpr, 31, 270, 0, 1>;
+def STVEHX : PPC32InstPattern2 <"stvehx", Vpr, Gpr0, Gpr, 31, 334, 0, 1>;
+def STVEWX : PPC32InstPattern2 <"stvewx", Vpr, Gpr0, Gpr, 31, 398, 0, 1>;
+def STVX : PPC32InstPattern2 <"stvx", Vpr, Gpr0, Gpr, 31, 462, 0, 1>;
+def STVXL : PPC32InstPattern2 <"stvxl", Vpr, Gpr0, Gpr, 31, 974, 0, 1>;
+def LVSL : PPC32InstPattern2 <"lvsl", Vpr, Gpr0, Gpr, 31, 12, 0, 1>;
+def LVSR : PPC32InstPattern2 <"lvsr", Vpr, Gpr0, Gpr, 31, 76, 0, 1>;
+def MTVSCR : PPC32InstPattern43 <"mtvscr", Vpr, 4096, 580, 0, 1>;
+def MFVSCR : PPC32InstPattern21 <"mfvscr", Vpr, 4, 1540, 0, 1>;
+def DST : PPC32InstPattern46 <"dst", Gpr, Gpr, Imm2, 248, 684, 0, 1>;
+def DSTT : PPC32InstPattern46 <"dstt", Gpr, Gpr, Imm2, 252, 684, 0, 1>;
+def DSTST : PPC32InstPattern46 <"dstst", Gpr, Gpr, Imm2, 248, 748, 0, 1>;
+def DSTSTT : PPC32InstPattern46 <"dststt", Gpr, Gpr, Imm2, 252, 748, 0, 1>;
+def DSS : PPC32InstPattern36 <"dss", Imm2, 248, 1644, 0, 1>;
+def DSSALL : PPC32InstPattern33 <"dssall", 2113930860, 0, 1>;
+def VADDUBM : PPC32InstPattern2 <"vaddubm", Vpr, Vpr, Vpr, 4, 0, 0, 1>;
+def VADDUBS : PPC32InstPattern2 <"vaddubs", Vpr, Vpr, Vpr, 4, 512, 0, 1>;
+def VADDSBS : PPC32InstPattern2 <"vaddsbs", Vpr, Vpr, Vpr, 4, 768, 0, 1>;
+def VADDUHM : PPC32InstPattern2 <"vadduhm", Vpr, Vpr, Vpr, 4, 64, 0, 1>;
+def VADDUHS : PPC32InstPattern2 <"vadduhs", Vpr, Vpr, Vpr, 4, 576, 0, 1>;
+def VADDSHS : PPC32InstPattern2 <"vaddshs", Vpr, Vpr, Vpr, 4, 832, 0, 1>;
+def VADDUWM : PPC32InstPattern2 <"vadduwm", Vpr, Vpr, Vpr, 4, 128, 0, 1>;
+def VADDUWS : PPC32InstPattern2 <"vadduws", Vpr, Vpr, Vpr, 4, 640, 0, 1>;
+def VADDSWS : PPC32InstPattern2 <"vaddsws", Vpr, Vpr, Vpr, 4, 896, 0, 1>;
+def VADDFP : PPC32InstPattern2 <"vaddfp", Vpr, Vpr, Vpr, 4, 10, 0, 1>;
+def VADDCUW : PPC32InstPattern2 <"vaddcuw", Vpr, Vpr, Vpr, 4, 384, 0, 1>;
+def VSUBUBM : PPC32InstPattern2 <"vsububm", Vpr, Vpr, Vpr, 4, 0, 0, 1>;
+def VSUBUBS : PPC32InstPattern2 <"vsububs", Vpr, Vpr, Vpr, 4, 512, 0, 1>;
+def VSUBSBS : PPC32InstPattern2 <"vsubsbs", Vpr, Vpr, Vpr, 4, 768, 0, 1>;
+def VSUBUHM : PPC32InstPattern2 <"vsubuhm", Vpr, Vpr, Vpr, 4, 64, 0, 1>;
+def VSUBUHS : PPC32InstPattern2 <"vsubuhs", Vpr, Vpr, Vpr, 4, 576, 0, 1>;
+def VSUBSHS : PPC32InstPattern2 <"vsubshs", Vpr, Vpr, Vpr, 4, 832, 0, 1>;
+def VSUBUWM : PPC32InstPattern2 <"vsubuwm", Vpr, Vpr, Vpr, 4, 128, 0, 1>;
+def VSUBUWS : PPC32InstPattern2 <"vsubuws", Vpr, Vpr, Vpr, 4, 640, 0, 1>;
+def VSUBSWS : PPC32InstPattern2 <"vsubsws", Vpr, Vpr, Vpr, 4, 896, 0, 1>;
+def VSUBFP : PPC32InstPattern2 <"vsubfp", Vpr, Vpr, Vpr, 4, 74, 0, 1>;
+def VSUBCUW : PPC32InstPattern2 <"vsubcuw", Vpr, Vpr, Vpr, 4, 384, 0, 1>;
+def VMULOUB : PPC32InstPattern2 <"vmuloub", Vpr, Vpr, Vpr, 4, 8, 0, 1>;
+def VMULOSB : PPC32InstPattern2 <"vmulosb", Vpr, Vpr, Vpr, 4, 264, 0, 1>;
+def VMULOUH : PPC32InstPattern2 <"vmulouh", Vpr, Vpr, Vpr, 4, 72, 0, 1>;
+def VMULOSH : PPC32InstPattern2 <"vmulosh", Vpr, Vpr, Vpr, 4, 328, 0, 1>;
+def VMULEUB : PPC32InstPattern2 <"vmuleub", Vpr, Vpr, Vpr, 4, 520, 0, 1>;
+def VMULESB : PPC32InstPattern2 <"vmulesb", Vpr, Vpr, Vpr, 4, 776, 0, 1>;
+def VMULEUH : PPC32InstPattern2 <"vmuleuh", Vpr, Vpr, Vpr, 4, 584, 0, 1>;
+def VMULESH : PPC32InstPattern2 <"vmulesh", Vpr, Vpr, Vpr, 4, 840, 0, 1>;
+def VMHADDSHS : PPC32InstPattern47 <"vmhaddshs", Vpr, Vpr, Vpr, Vpr, 4, 0, 0, 1>;
+def VMHRADDSHS : PPC32InstPattern47 <"vmhraddshs", Vpr, Vpr, Vpr, Vpr, 4, 1, 0, 1>;
+def VMLADDUHM : PPC32InstPattern47 <"vmladduhm", Vpr, Vpr, Vpr, Vpr, 4, 2, 0, 1>;
+def VMADDFP : PPC32InstPattern19 <"vmaddfp", Vpr, Vpr, Vpr, Vpr, 4, 14, 0, 1>;
+def VMSUMUBM : PPC32InstPattern47 <"vmsumubm", Vpr, Vpr, Vpr, Vpr, 4, 4, 0, 1>;
+def VMSUMMBM : PPC32InstPattern47 <"vmsummbm", Vpr, Vpr, Vpr, Vpr, 4, 5, 0, 1>;
+def VMSUMUHM : PPC32InstPattern47 <"vmsumuhm", Vpr, Vpr, Vpr, Vpr, 4, 6, 0, 1>;
+def VMSUMUHS : PPC32InstPattern47 <"vmsumuhs", Vpr, Vpr, Vpr, Vpr, 4, 7, 0, 1>;
+def VMSUMSHM : PPC32InstPattern47 <"vmsumshm", Vpr, Vpr, Vpr, Vpr, 4, 8, 0, 1>;
+def VMSUMSHS : PPC32InstPattern47 <"vmsumshs", Vpr, Vpr, Vpr, Vpr, 4, 9, 0, 1>;
+def VSUMSWS : PPC32InstPattern2 <"vsumsws", Vpr, Vpr, Vpr, 4, 904, 0, 1>;
+def VSUM2SWS : PPC32InstPattern2 <"vsum2sws", Vpr, Vpr, Vpr, 4, 648, 0, 1>;
+def VSUM4UBS : PPC32InstPattern2 <"vsum4ubs", Vpr, Vpr, Vpr, 4, 520, 0, 1>;
+def VSUM4SBS : PPC32InstPattern2 <"vsum4sbs", Vpr, Vpr, Vpr, 4, 776, 0, 1>;
+def VSUM4SHS : PPC32InstPattern2 <"vsum4shs", Vpr, Vpr, Vpr, 4, 584, 0, 1>;
+def VAVGUB : PPC32InstPattern2 <"vavgub", Vpr, Vpr, Vpr, 4, 2, 0, 1>;
+def VAVGUH : PPC32InstPattern2 <"vavguh", Vpr, Vpr, Vpr, 4, 66, 0, 1>;
+def VAVGUW : PPC32InstPattern2 <"vavguw", Vpr, Vpr, Vpr, 4, 130, 0, 1>;
+def VAVGSB : PPC32InstPattern2 <"vavgsb", Vpr, Vpr, Vpr, 4, 258, 0, 1>;
+def VAVGSH : PPC32InstPattern2 <"vavgsh", Vpr, Vpr, Vpr, 4, 322, 0, 1>;
+def VAVGSW : PPC32InstPattern2 <"vavgsw", Vpr, Vpr, Vpr, 4, 386, 0, 1>;
+def VAND : PPC32InstPattern2 <"vand", Vpr, Vpr, Vpr, 4, 4, 0, 1>;
+def VOR : PPC32InstPattern2 <"vor", Vpr, Vpr, Vpr, 4, 132, 0, 1>;
+def VXOR : PPC32InstPattern2 <"vxor", Vpr, Vpr, Vpr, 4, 196, 0, 1>;
+def VANDC : PPC32InstPattern2 <"vandc", Vpr, Vpr, Vpr, 4, 68, 0, 1>;
+def VNOR : PPC32InstPattern2 <"vnor", Vpr, Vpr, Vpr, 4, 260, 0, 1>;
+def VRLB : PPC32InstPattern2 <"vrlb", Vpr, Vpr, Vpr, 4, 4, 0, 1>;
+def VRLH : PPC32InstPattern2 <"vrlh", Vpr, Vpr, Vpr, 4, 68, 0, 1>;
+def VRLW : PPC32InstPattern2 <"vrlw", Vpr, Vpr, Vpr, 4, 132, 0, 1>;
+def VSLB : PPC32InstPattern2 <"vslb", Vpr, Vpr, Vpr, 4, 260, 0, 1>;
+def VSLH : PPC32InstPattern2 <"vslh", Vpr, Vpr, Vpr, 4, 324, 0, 1>;
+def VSLW : PPC32InstPattern2 <"vslw", Vpr, Vpr, Vpr, 4, 388, 0, 1>;
+def VSL : PPC32InstPattern2 <"vsl", Vpr, Vpr, Vpr, 4, 452, 0, 1>;
+def VSRB : PPC32InstPattern2 <"vsrb", Vpr, Vpr, Vpr, 4, 516, 0, 1>;
+def VSRAB : PPC32InstPattern2 <"vsrab", Vpr, Vpr, Vpr, 4, 772, 0, 1>;
+def VSRH : PPC32InstPattern2 <"vsrh", Vpr, Vpr, Vpr, 4, 580, 0, 1>;
+def VSRAH : PPC32InstPattern2 <"vsrah", Vpr, Vpr, Vpr, 4, 836, 0, 1>;
+def VSRW : PPC32InstPattern2 <"vsrw", Vpr, Vpr, Vpr, 4, 644, 0, 1>;
+def VSRAW : PPC32InstPattern2 <"vsraw", Vpr, Vpr, Vpr, 4, 900, 0, 1>;
+def VSR : PPC32InstPattern2 <"vsr", Vpr, Vpr, Vpr, 4, 708, 0, 1>;
+def VCMPGTUB : PPC32InstPattern2 <"vcmpgtub", Vpr, Vpr, Vpr, 4, 518, 0, 1>;
+def VCMPGTUBo : PPC32InstPattern2 <"vcmpgtub.", Vpr, Vpr, Vpr, 4, 518, 0, 1>;
+def VCMPGTSB : PPC32InstPattern2 <"vcmpgtsb", Vpr, Vpr, Vpr, 4, 774, 0, 1>;
+def VCMPGTSBo : PPC32InstPattern2 <"vcmpgtsb.", Vpr, Vpr, Vpr, 4, 774, 0, 1>;
+def VCMPGTUH : PPC32InstPattern2 <"vcmpgtuh", Vpr, Vpr, Vpr, 4, 582, 0, 1>;
+def VCMPGTUHo : PPC32InstPattern2 <"vcmpgtuh.", Vpr, Vpr, Vpr, 4, 582, 0, 1>;
+def VCMPGTSH : PPC32InstPattern2 <"vcmpgtsh", Vpr, Vpr, Vpr, 4, 838, 0, 1>;
+def VCMPGTSHo : PPC32InstPattern2 <"vcmpgtsh.", Vpr, Vpr, Vpr, 4, 838, 0, 1>;
+def VCMPGTUW : PPC32InstPattern2 <"vcmpgtuw", Vpr, Vpr, Vpr, 4, 646, 0, 1>;
+def VCMPGTUWo : PPC32InstPattern2 <"vcmpgtuw.", Vpr, Vpr, Vpr, 4, 646, 0, 1>;
+def VCMPGTSW : PPC32InstPattern2 <"vcmpgtsw", Vpr, Vpr, Vpr, 4, 902, 0, 1>;
+def VCMPGTSWo : PPC32InstPattern2 <"vcmpgtsw.", Vpr, Vpr, Vpr, 4, 902, 0, 1>;
+def VCMPGTFP : PPC32InstPattern2 <"vcmpgtfp", Vpr, Vpr, Vpr, 4, 710, 0, 1>;
+def VCMPGTFPo : PPC32InstPattern2 <"vcmpgtfp.", Vpr, Vpr, Vpr, 4, 710, 0, 1>;
+def VCMPEQUB : PPC32InstPattern2 <"vcmpequb", Vpr, Vpr, Vpr, 4, 6, 0, 1>;
+def VCMPEQUBo : PPC32InstPattern2 <"vcmpequb.", Vpr, Vpr, Vpr, 4, 6, 0, 1>;
+def VCMPEQUH : PPC32InstPattern2 <"vcmpequh", Vpr, Vpr, Vpr, 4, 70, 0, 1>;
+def VCMPEQUHo : PPC32InstPattern2 <"vcmpequh.", Vpr, Vpr, Vpr, 4, 70, 0, 1>;
+def VCMPEQUW : PPC32InstPattern2 <"vcmpequw", Vpr, Vpr, Vpr, 4, 134, 0, 1>;
+def VCMPEQUWo : PPC32InstPattern2 <"vcmpequw.", Vpr, Vpr, Vpr, 4, 134, 0, 1>;
+def VCMPEQFP : PPC32InstPattern2 <"vcmpeqfp", Vpr, Vpr, Vpr, 4, 198, 0, 1>;
+def VCMPEQFPo : PPC32InstPattern2 <"vcmpeqfp.", Vpr, Vpr, Vpr, 4, 198, 0, 1>;
+def VCMPGEFP : PPC32InstPattern2 <"vcmpgefp", Vpr, Vpr, Vpr, 4, 454, 0, 1>;
+def VCMPGEFPo : PPC32InstPattern2 <"vcmpgefp.", Vpr, Vpr, Vpr, 4, 454, 0, 1>;
+def VCMPBFP : PPC32InstPattern2 <"vcmpbfp", Vpr, Vpr, Vpr, 4, 966, 0, 1>;
+def VCMPBFPo : PPC32InstPattern2 <"vcmpbfp.", Vpr, Vpr, Vpr, 4, 966, 0, 1>;
+def VSEL : PPC32InstPattern47 <"vsel", Vpr, Vpr, Vpr, Vpr, 4, 10, 0, 1>;
+def VPKUHUM : PPC32InstPattern2 <"vpkuhum", Vpr, Vpr, Vpr, 4, 14, 0, 1>;
+def VPKUHUS : PPC32InstPattern2 <"vpkuhus", Vpr, Vpr, Vpr, 4, 142, 0, 1>;
+def VPKSHUS : PPC32InstPattern2 <"vpkshus", Vpr, Vpr, Vpr, 4, 270, 0, 1>;
+def VPKSHSS : PPC32InstPattern2 <"vpkshss", Vpr, Vpr, Vpr, 4, 398, 0, 1>;
+def VPKUWUM : PPC32InstPattern2 <"vpkuwum", Vpr, Vpr, Vpr, 4, 78, 0, 1>;
+def VPKUWUS : PPC32InstPattern2 <"vpkuwus", Vpr, Vpr, Vpr, 4, 206, 0, 1>;
+def VPKSWUS : PPC32InstPattern2 <"vpkswus", Vpr, Vpr, Vpr, 4, 334, 0, 1>;
+def VPKSWSS : PPC32InstPattern2 <"vpkswss", Vpr, Vpr, Vpr, 4, 462, 0, 1>;
+def VPKPX : PPC32InstPattern2 <"vpkpx", Vpr, Vpr, Vpr, 4, 782, 0, 1>;
+def VUPKHSB : PPC32InstPattern20 <"vupkhsb", Vpr, Vpr, 4, 0, 526, 0, 1>;
+def VUPKHSH : PPC32InstPattern20 <"vupkhsh", Vpr, Vpr, 4, 0, 590, 0, 1>;
+def VUPKHPX : PPC32InstPattern20 <"vupkhpx", Vpr, Vpr, 4, 0, 846, 0, 1>;
+def VUPKLSB : PPC32InstPattern20 <"vupklsb", Vpr, Vpr, 4, 0, 654, 0, 1>;
+def VUPKLSH : PPC32InstPattern20 <"vupklsh", Vpr, Vpr, 4, 0, 718, 0, 1>;
+def VUPKLPX : PPC32InstPattern20 <"vupklpx", Vpr, Vpr, 4, 0, 974, 0, 1>;
+def VMRGHB : PPC32InstPattern2 <"vmrghb", Vpr, Vpr, Vpr, 4, 12, 0, 1>;
+def VMRGHH : PPC32InstPattern2 <"vmrghh", Vpr, Vpr, Vpr, 4, 76, 0, 1>;
+def VMRGHW : PPC32InstPattern2 <"vmrghw", Vpr, Vpr, Vpr, 4, 140, 0, 1>;
+def VMRGLB : PPC32InstPattern2 <"vmrglb", Vpr, Vpr, Vpr, 4, 268, 0, 1>;
+def VMRGLH : PPC32InstPattern2 <"vmrglh", Vpr, Vpr, Vpr, 4, 332, 0, 1>;
+def VMRGLW : PPC32InstPattern2 <"vmrglw", Vpr, Vpr, Vpr, 4, 396, 0, 1>;
+def VSPLTB : PPC32InstPattern35 <"vspltb", Vpr, Vpr, Imm5, 4, 524, 0, 1>;
+def VSPLTH : PPC32InstPattern35 <"vsplth", Vpr, Vpr, Imm5, 4, 588, 0, 1>;
+def VSPLTW : PPC32InstPattern35 <"vspltw", Vpr, Vpr, Imm5, 4, 652, 0, 1>;
+def VSPLTISB : PPC32InstPattern3 <"vspltisb", Vpr, Imm5, 4, 780, 0, 1>;
+def VSPLTISH : PPC32InstPattern3 <"vspltish", Vpr, Imm5, 4, 844, 0, 1>;
+def VSPLTISW : PPC32InstPattern3 <"vspltisw", Vpr, Imm5, 4, 908, 0, 1>;
+def VPERM : PPC32InstPattern47 <"vperm", Vpr, Vpr, Vpr, Vpr, 4, 11, 0, 1>;
+def VSLDOI : PPC32InstPattern48 <"vsldoi", Vpr, Vpr, Vpr, Imm4, 4, 0, 12, 0, 1>;
+def VSLO : PPC32InstPattern2 <"vslo", Vpr, Vpr, Vpr, 4, 12, 0, 1>;
+def VSRO : PPC32InstPattern2 <"vsro", Vpr, Vpr, Vpr, 4, 76, 0, 1>;
+def VMAXUB : PPC32InstPattern2 <"vmaxub", Vpr, Vpr, Vpr, 4, 2, 0, 1>;
+def VMAXSB : PPC32InstPattern2 <"vmaxsb", Vpr, Vpr, Vpr, 4, 258, 0, 1>;
+def VMAXUH : PPC32InstPattern2 <"vmaxuh", Vpr, Vpr, Vpr, 4, 66, 0, 1>;
+def VMAXSH : PPC32InstPattern2 <"vmaxsh", Vpr, Vpr, Vpr, 4, 322, 0, 1>;
+def VMAXUW : PPC32InstPattern2 <"vmaxuw", Vpr, Vpr, Vpr, 4, 130, 0, 1>;
+def VMAXSW : PPC32InstPattern2 <"vmaxsw", Vpr, Vpr, Vpr, 4, 386, 0, 1>;
+def VMAXFP : PPC32InstPattern2 <"vmaxfp", Vpr, Vpr, Vpr, 4, 10, 0, 1>;
+def VMINUB : PPC32InstPattern2 <"vminub", Vpr, Vpr, Vpr, 4, 514, 0, 1>;
+def VMINSB : PPC32InstPattern2 <"vminsb", Vpr, Vpr, Vpr, 4, 770, 0, 1>;
+def VMINUH : PPC32InstPattern2 <"vminuh", Vpr, Vpr, Vpr, 4, 578, 0, 1>;
+def VMINSH : PPC32InstPattern2 <"vminsh", Vpr, Vpr, Vpr, 4, 834, 0, 1>;
+def VMINUW : PPC32InstPattern2 <"vminuw", Vpr, Vpr, Vpr, 4, 642, 0, 1>;
+def VMINSW : PPC32InstPattern2 <"vminsw", Vpr, Vpr, Vpr, 4, 898, 0, 1>;
+def VMINFP : PPC32InstPattern2 <"vminfp", Vpr, Vpr, Vpr, 4, 74, 0, 1>;
+def VREFP : PPC32InstPattern20 <"vrefp", Vpr, Vpr, 4, 0, 266, 0, 1>;
+def VRSQRTEFP : PPC32InstPattern20 <"vrsqrtefp", Vpr, Vpr, 4, 0, 330, 0, 1>;
+def VLOGEFP : PPC32InstPattern20 <"vlogefp", Vpr, Vpr, 4, 0, 458, 0, 1>;
+def VEXPTEFP : PPC32InstPattern20 <"vexptefp", Vpr, Vpr, 4, 0, 394, 0, 1>;
+def VNMSUBFP : PPC32InstPattern19 <"vnmsubfp", Vpr, Vpr, Vpr, Vpr, 4, 15, 0, 1>;
+def VRFIN : PPC32InstPattern20 <"vrfin", Vpr, Vpr, 4, 0, 522, 0, 1>;
+def VRFIZ : PPC32InstPattern20 <"vrfiz", Vpr, Vpr, 4, 0, 586, 0, 1>;
+def VRFIP : PPC32InstPattern20 <"vrfip", Vpr, Vpr, 4, 0, 650, 0, 1>;
+def VRFIM : PPC32InstPattern20 <"vrfim", Vpr, Vpr, 4, 0, 714, 0, 1>;
+def VCTUXS : PPC32InstPattern35 <"vctuxs", Vpr, Vpr, Imm5, 4, 906, 0, 1>;
+def VCTSXS : PPC32InstPattern35 <"vctsxs", Vpr, Vpr, Imm5, 4, 970, 0, 1>;
+def VCFUX : PPC32InstPattern35 <"vcfux", Vpr, Vpr, Imm5, 4, 778, 0, 1>;
+def VCFSX : PPC32InstPattern35 <"vcfsx", Vpr, Vpr, Imm5, 4, 842, 0, 1>;
diff --git a/lib/Target/PowerPC/PPCJITInfo.h b/lib/Target/PowerPC/PPCJITInfo.h
new file mode 100644 (file)
index 0000000..bd80851
--- /dev/null
@@ -0,0 +1,49 @@
+//===- PowerPCJITInfo.h - PowerPC impl. of the JIT interface ----*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetJITInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPCJITINFO_H
+#define POWERPCJITINFO_H
+
+#include "llvm/Target/TargetJITInfo.h"
+
+namespace llvm {
+  class TargetMachine;
+  class IntrinsicLowering;
+
+  class PowerPCJITInfo : public TargetJITInfo {
+    TargetMachine &TM;
+  public:
+    PowerPCJITInfo(TargetMachine &tm) : TM(tm) {}
+
+    /// addPassesToJITCompile - Add passes to the specified pass manager to
+    /// implement a fast dynamic compiler for this target.  Return true if this
+    /// is not supported for this target.
+    ///
+    virtual void addPassesToJITCompile(FunctionPassManager &PM);
+    
+    /// replaceMachineCodeForFunction - Make it so that calling the function
+    /// whose machine code is at OLD turns into a call to NEW, perhaps by
+    /// overwriting OLD with a branch to NEW.  This is used for self-modifying
+    /// code.
+    ///
+    virtual void replaceMachineCodeForFunction(void *Old, void *New);
+    
+    /// getJITStubForFunction - Create or return a stub for the specified
+    /// function.  This stub acts just like the specified function, except that
+    /// it allows the "address" of the function to be taken without having to
+    /// generate code for it.
+    virtual void *getJITStubForFunction(Function *F, MachineCodeEmitter &MCE);
+  };
+}
+
+#endif
diff --git a/lib/Target/PowerPC/PPCRegisterInfo.td b/lib/Target/PowerPC/PPCRegisterInfo.td
new file mode 100644 (file)
index 0000000..d6aaf4b
--- /dev/null
@@ -0,0 +1,82 @@
+//===- PowerPCReg.td - Describe the PowerPC Register File -------*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+class PPCReg : Register {
+  let Namespace = "PPC32";
+}
+
+// We identify all our registers with a 5-bit ID, for consistency's sake.
+
+// GPR - One of the 32 32-bit general-purpose registers
+class GPR<bits<5> num> : PPCReg {
+  field bits<5> Num = num;
+}
+
+// SPR - One of the 32-bit special-purpose registers
+class SPR<bits<5> num> : PPCReg {
+  field bits<5> Num = num;
+}
+
+// FPR - One of the 32 64-bit floating-point registers
+class FPR<bits<5> num> : PPCReg {
+  field bits<5> Num = num;
+}
+
+// CR - One of the 8 4-bit condition registers
+class CR<bits<5> num> : PPCReg {
+  field bits<5> Num = num;
+}
+
+// General-purpose registers
+def R0  : GPR< 0>;  def R1  : GPR< 1>;  def R2  : GPR< 2>;  def R3  : GPR< 3>;
+def R4  : GPR< 4>;  def R5  : GPR< 5>;  def R6  : GPR< 6>;  def R7  : GPR< 7>;
+def R8  : GPR< 8>;  def R9  : GPR< 9>;  def R10 : GPR<10>;  def R11 : GPR<11>;
+def R12 : GPR<12>;  def R13 : GPR<13>;  def R14 : GPR<14>;  def R15 : GPR<15>;
+def R16 : GPR<16>;  def R17 : GPR<17>;  def R18 : GPR<18>;  def R19 : GPR<19>;
+def R20 : GPR<20>;  def R21 : GPR<21>;  def R22 : GPR<22>;  def R23 : GPR<23>;
+def R24 : GPR<24>;  def R25 : GPR<25>;  def R26 : GPR<26>;  def R27 : GPR<27>;
+def R28 : GPR<28>;  def R29 : GPR<29>;  def R30 : GPR<30>;  def R31 : GPR<31>;
+
+// Floating-point registers
+def F0  : FPR< 0>;  def F1  : FPR< 1>;  def F2  : FPR< 2>;  def F3  : FPR< 3>;
+def F4  : FPR< 4>;  def F5  : FPR< 5>;  def F6  : FPR< 6>;  def F7  : FPR< 7>;
+def F8  : FPR< 8>;  def F9  : FPR< 9>;  def F10 : FPR<10>;  def F11 : FPR<11>;
+def F12 : FPR<12>;  def F13 : FPR<13>;  def F14 : FPR<14>;  def F15 : FPR<15>;
+def F16 : FPR<16>;  def F17 : FPR<17>;  def F18 : FPR<18>;  def F19 : FPR<19>;
+def F20 : FPR<20>;  def F21 : FPR<21>;  def F22 : FPR<22>;  def F23 : FPR<23>;
+def F24 : FPR<24>;  def F25 : FPR<25>;  def F26 : FPR<26>;  def F27 : FPR<27>;
+def F28 : FPR<28>;  def F29 : FPR<29>;  def F30 : FPR<30>;  def F31 : FPR<31>;
+
+// Condition registers
+def CR0 : CR<0>; def CR1 : CR<1>; def CR2 : CR<2>; def CR3 : CR<3>;
+def CR4 : CR<4>; def CR5 : CR<5>; def CR6 : CR<6>; def CR7 : CR<7>;
+
+// Floating-point status and control register
+def FPSCR : SPR<0>;
+// fiXed-point Exception Register? :-)
+def XER : SPR<1>;
+// Link register
+def LR : SPR<2>;
+// Count register
+def CTR : SPR<3>;
+// These are the "time base" registers which are read-only in user mode.
+def TBL : SPR<4>;
+def TBU : SPR<5>;
+
+/// Register classes: one for floats and another for non-floats.
+def GPRC : RegisterClass<i32, 4, [R0, R1, R2, R3, R4, R5, R6, R7,
+  R8, R9, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20, R21,
+  R22, R23, R24, R25, R26, R27, R28, R29, R30, R31]>;
+def FPRC : RegisterClass<f64, 8, [F0, F1, F2, F3, F4, F5, F6, F7,
+  F8, F9, F10, F11, F12, F13, F14, F15, F16, F17, F18, F19, F20, F21,
+  F22, F23, F24, F25, F26, F27, F28, F29, F30, F31]>;
+
diff --git a/lib/Target/PowerPC/PPCTargetMachine.cpp b/lib/Target/PowerPC/PPCTargetMachine.cpp
new file mode 100644 (file)
index 0000000..e221f53
--- /dev/null
@@ -0,0 +1,88 @@
+//===-- PowerPCTargetMachine.cpp - Define TargetMachine for PowerPC -------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+// 
+//
+//===----------------------------------------------------------------------===//
+
+#include "PowerPCTargetMachine.h"
+#include "PowerPC.h"
+#include "llvm/IntrinsicLowering.h"
+#include "llvm/Module.h"
+#include "llvm/PassManager.h"
+#include "llvm/Target/TargetMachineImpls.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/Transforms/Scalar.h"
+using namespace llvm;
+
+// allocatePowerPCTargetMachine - Allocate and return a subclass of 
+// TargetMachine that implements the PowerPC backend.
+//
+TargetMachine *llvm::allocatePowerPCTargetMachine(const Module &M,
+                                                  IntrinsicLowering *IL) {
+  return new PowerPCTargetMachine(M, IL);
+}
+
+/// PowerPCTargetMachine ctor - Create an ILP32 architecture model
+///
+/// FIXME: Should double alignment be 8 bytes?  Then we get a PtrAl != DoubleAl abort
+PowerPCTargetMachine::PowerPCTargetMachine(const Module &M,
+                                           IntrinsicLowering *IL)
+  : TargetMachine("PowerPC", IL, false, 4, 4, 4, 4, 4, 4, 4, 4),
+    FrameInfo(TargetFrameInfo::StackGrowsDown, 16, -4), JITInfo(*this) {
+}
+
+/// addPassesToEmitAssembly - Add passes to the specified pass manager
+/// to implement a static compiler for this target.
+///
+bool PowerPCTargetMachine::addPassesToEmitAssembly(PassManager &PM,
+                                              std::ostream &Out) {
+  // FIXME: Implement efficient support for garbage collection intrinsics.
+  PM.add(createLowerGCPass());
+
+  // FIXME: Implement the invoke/unwind instructions!
+  PM.add(createLowerInvokePass());
+
+  // FIXME: The code generator does not properly handle functions with
+  // unreachable basic blocks.
+  PM.add(createCFGSimplificationPass());
+
+  // FIXME: Implement the switch instruction in the instruction selector!
+  PM.add(createLowerSwitchPass());
+
+  PM.add(createPPCSimpleInstructionSelector(*this));
+  PM.add(createRegisterAllocator());
+  PM.add(createPrologEpilogCodeInserter());
+  PM.add(createPPCCodePrinterPass(Out, *this));
+  PM.add(createMachineCodeDeleter());
+  return false;
+}
+
+/// addPassesToJITCompile - Add passes to the specified pass manager to
+/// implement a fast dynamic compiler for this target.
+///
+void PowerPCJITInfo::addPassesToJITCompile(FunctionPassManager &PM) {
+  // FIXME: Implement efficient support for garbage collection intrinsics.
+  PM.add(createLowerGCPass());
+
+  // FIXME: Implement the invoke/unwind instructions!
+  PM.add(createLowerInvokePass());
+
+  // FIXME: The code generator does not properly handle functions with
+  // unreachable basic blocks.
+  PM.add(createCFGSimplificationPass());
+
+  // FIXME: Implement the switch instruction in the instruction selector!
+  PM.add(createLowerSwitchPass());
+
+  PM.add(createPPCSimpleInstructionSelector(TM));
+  PM.add(createRegisterAllocator());
+  PM.add(createPrologEpilogCodeInserter());
+}
+
diff --git a/lib/Target/PowerPC/PowerPC.td b/lib/Target/PowerPC/PowerPC.td
new file mode 100644 (file)
index 0000000..f70382f
--- /dev/null
@@ -0,0 +1,44 @@
+//===- PowerPC.td - Describe the PowerPC Target Machine ---------*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+//
+//===----------------------------------------------------------------------===//
+
+// Get the target-independent interfaces which we are implementing...
+//
+include "../Target.td"
+
+//===----------------------------------------------------------------------===//
+// Register File Description
+//===----------------------------------------------------------------------===//
+
+include "PowerPCReg.td"
+include "PowerPCInstrs.td"
+
+def PowerPCInstrInfo : InstrInfo {
+  let PHIInst  = PHI;
+
+  let TSFlagsFields = ["ArgCount", "Arg0Type", "Arg1Type", "Arg2Type", "Arg3Type", "Arg4Type", "VMX", "PPC64"];
+  let TSFlagsShifts = [ 0, 3, 8, 13, 18, 23, 28, 29 ];
+}
+
+def PowerPC : Target {
+  // Pointers are 32-bits in size.
+  let PointerType = i32;
+
+  // According to the Mach-O Runtime ABI, these regs are nonvolatile across
+  // calls:
+  let CalleeSavedRegisters = [R1, R13, R14, R15, R16, R17, R18, R19,
+    R20, R21, R22, R23, R24, R25, R26, R27, R28, R29, R30, R31, F14, F15,
+    F16, F17, F18, F19, F20, F21, F22, F23, F24, F25, F26, F27, F28, F29,
+    F30, F31, CR2, CR3, CR4];
+
+  // Pull in Instruction Info:
+  let InstructionSet = PowerPCInstrInfo;
+}
diff --git a/lib/Target/PowerPC/PowerPCAsmPrinter.cpp b/lib/Target/PowerPC/PowerPCAsmPrinter.cpp
new file mode 100644 (file)
index 0000000..697be09
--- /dev/null
@@ -0,0 +1,694 @@
+//===-- PPC32/Printer.cpp - Convert X86 LLVM code to Intel assembly ---------===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains a printer that converts from our internal
+// representation of machine-dependent LLVM code to Intel-format
+// assembly language. This printer is the output mechanism used
+// by `llc' and `lli -print-machineinstrs' on X86.
+//
+//===----------------------------------------------------------------------===//
+
+#include <set>
+
+#include "PowerPC.h"
+#include "PowerPCInstrInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Module.h"
+#include "llvm/Assembly/Writer.h"
+#include "llvm/CodeGen/MachineFunctionPass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineInstr.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/Mangler.h"
+#include "Support/Statistic.h"
+#include "Support/StringExtras.h"
+#include "Support/CommandLine.h"
+
+namespace llvm {
+
+namespace {
+  Statistic<> EmittedInsts("asm-printer", "Number of machine instrs printed");
+
+  struct Printer : public MachineFunctionPass {
+    /// Output stream on which we're printing assembly code.
+    ///
+    std::ostream &O;
+
+    /// Target machine description which we query for reg. names, data
+    /// layout, etc.
+    ///
+    TargetMachine &TM;
+
+    /// Name-mangler for global names.
+    ///
+    Mangler *Mang;
+    std::set< std::string > Stubs;
+    std::set<std::string> Strings;
+
+    Printer(std::ostream &o, TargetMachine &tm) : O(o), TM(tm) { }
+
+    /// We name each basic block in a Function with a unique number, so
+    /// that we can consistently refer to them later. This is cleared
+    /// at the beginning of each call to runOnMachineFunction().
+    ///
+    typedef std::map<const Value *, unsigned> ValueMapTy;
+    ValueMapTy NumberForBB;
+
+    /// Cache of mangled name for current function. This is
+    /// recalculated at the beginning of each call to
+    /// runOnMachineFunction().
+    ///
+    std::string CurrentFnName;
+
+    virtual const char *getPassName() const {
+      return "PowerPC Assembly Printer";
+    }
+
+    void printMachineInstruction(const MachineInstr *MI);
+    void printOp(const MachineOperand &MO,
+                bool elideOffsetKeyword = false);
+    void printConstantPool(MachineConstantPool *MCP);
+    bool runOnMachineFunction(MachineFunction &F);    
+    bool doInitialization(Module &M);
+    bool doFinalization(Module &M);
+    void emitGlobalConstant(const Constant* CV);
+    void emitConstantValueOnly(const Constant *CV);
+  };
+} // end of anonymous namespace
+
+/// createPPCCodePrinterPass - Returns a pass that prints the X86
+/// assembly code for a MachineFunction to the given output stream,
+/// using the given target machine description.  This should work
+/// regardless of whether the function is in SSA form.
+///
+FunctionPass *createPPCCodePrinterPass(std::ostream &o,TargetMachine &tm){
+  return new Printer(o, tm);
+}
+
+/// isStringCompatible - Can we treat the specified array as a string?
+/// Only if it is an array of ubytes or non-negative sbytes.
+///
+static bool isStringCompatible(const ConstantArray *CVA) {
+  const Type *ETy = cast<ArrayType>(CVA->getType())->getElementType();
+  if (ETy == Type::UByteTy) return true;
+  if (ETy != Type::SByteTy) return false;
+
+  for (unsigned i = 0; i < CVA->getNumOperands(); ++i)
+    if (cast<ConstantSInt>(CVA->getOperand(i))->getValue() < 0)
+      return false;
+
+  return true;
+}
+
+/// toOctal - Convert the low order bits of X into an octal digit.
+///
+static inline char toOctal(int X) {
+  return (X&7)+'0';
+}
+
+/// getAsCString - Return the specified array as a C compatible
+/// string, only if the predicate isStringCompatible is true.
+///
+static void printAsCString(std::ostream &O, const ConstantArray *CVA) {
+  assert(isStringCompatible(CVA) && "Array is not string compatible!");
+
+  O << "\"";
+  for (unsigned i = 0; i < CVA->getNumOperands(); ++i) {
+    unsigned char C = cast<ConstantInt>(CVA->getOperand(i))->getRawValue();
+
+    if (C == '"') {
+      O << "\\\"";
+    } else if (C == '\\') {
+      O << "\\\\";
+    } else if (isprint(C)) {
+      O << C;
+    } else {
+      switch(C) {
+      case '\b': O << "\\b"; break;
+      case '\f': O << "\\f"; break;
+      case '\n': O << "\\n"; break;
+      case '\r': O << "\\r"; break;
+      case '\t': O << "\\t"; break;
+      default:
+        O << '\\';
+        O << toOctal(C >> 6);
+        O << toOctal(C >> 3);
+        O << toOctal(C >> 0);
+        break;
+      }
+    }
+  }
+  O << "\"";
+}
+
+// Print out the specified constant, without a storage class.  Only the
+// constants valid in constant expressions can occur here.
+void Printer::emitConstantValueOnly(const Constant *CV) {
+  if (CV->isNullValue())
+    O << "0";
+  else if (const ConstantBool *CB = dyn_cast<ConstantBool>(CV)) {
+    assert(CB == ConstantBool::True);
+    O << "1";
+  } else if (const ConstantSInt *CI = dyn_cast<ConstantSInt>(CV))
+    O << CI->getValue();
+  else if (const ConstantUInt *CI = dyn_cast<ConstantUInt>(CV))
+    O << CI->getValue();
+  else if (const ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(CV))
+    // This is a constant address for a global variable or function.  Use the
+    // name of the variable or function as the address value.
+    O << Mang->getValueName(CPR->getValue());
+  else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
+    const TargetData &TD = TM.getTargetData();
+    switch(CE->getOpcode()) {
+    case Instruction::GetElementPtr: {
+      // generate a symbolic expression for the byte address
+      const Constant *ptrVal = CE->getOperand(0);
+      std::vector<Value*> idxVec(CE->op_begin()+1, CE->op_end());
+      if (unsigned Offset = TD.getIndexedOffset(ptrVal->getType(), idxVec)) {
+        O << "(";
+        emitConstantValueOnly(ptrVal);
+        O << ") + " << Offset;
+      } else {
+        emitConstantValueOnly(ptrVal);
+      }
+      break;
+    }
+    case Instruction::Cast: {
+      // Support only non-converting or widening casts for now, that is, ones
+      // that do not involve a change in value.  This assertion is really gross,
+      // and may not even be a complete check.
+      Constant *Op = CE->getOperand(0);
+      const Type *OpTy = Op->getType(), *Ty = CE->getType();
+
+      // Remember, kids, pointers on x86 can be losslessly converted back and
+      // forth into 32-bit or wider integers, regardless of signedness. :-P
+      assert(((isa<PointerType>(OpTy)
+               && (Ty == Type::LongTy || Ty == Type::ULongTy
+                   || Ty == Type::IntTy || Ty == Type::UIntTy))
+              || (isa<PointerType>(Ty)
+                  && (OpTy == Type::LongTy || OpTy == Type::ULongTy
+                      || OpTy == Type::IntTy || OpTy == Type::UIntTy))
+              || (((TD.getTypeSize(Ty) >= TD.getTypeSize(OpTy))
+                   && OpTy->isLosslesslyConvertibleTo(Ty))))
+             && "FIXME: Don't yet support this kind of constant cast expr");
+      O << "(";
+      emitConstantValueOnly(Op);
+      O << ")";
+      break;
+    }
+    case Instruction::Add:
+      O << "(";
+      emitConstantValueOnly(CE->getOperand(0));
+      O << ") + (";
+      emitConstantValueOnly(CE->getOperand(1));
+      O << ")";
+      break;
+    default:
+      assert(0 && "Unsupported operator!");
+    }
+  } else {
+    assert(0 && "Unknown constant value!");
+  }
+}
+
+// Print a constant value or values, with the appropriate storage class as a
+// prefix.
+void Printer::emitGlobalConstant(const Constant *CV) {  
+  const TargetData &TD = TM.getTargetData();
+
+  if (CV->isNullValue()) {
+    O << "\t.space\t " << TD.getTypeSize(CV->getType()) << "\n";      
+    return;
+  } else if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV)) {
+    if (isStringCompatible(CVA)) {
+      O << ".ascii";
+      printAsCString(O, CVA);
+      O << "\n";
+    } else { // Not a string.  Print the values in successive locations
+      const std::vector<Use> &constValues = CVA->getValues();
+      for (unsigned i=0; i < constValues.size(); i++)
+        emitGlobalConstant(cast<Constant>(constValues[i].get()));
+    }
+    return;
+  } else if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV)) {
+    // Print the fields in successive locations. Pad to align if needed!
+    const StructLayout *cvsLayout = TD.getStructLayout(CVS->getType());
+    const std::vector<Use>& constValues = CVS->getValues();
+    unsigned sizeSoFar = 0;
+    for (unsigned i=0, N = constValues.size(); i < N; i++) {
+      const Constant* field = cast<Constant>(constValues[i].get());
+
+      // Check if padding is needed and insert one or more 0s.
+      unsigned fieldSize = TD.getTypeSize(field->getType());
+      unsigned padSize = ((i == N-1? cvsLayout->StructSize
+                           : cvsLayout->MemberOffsets[i+1])
+                          - cvsLayout->MemberOffsets[i]) - fieldSize;
+      sizeSoFar += fieldSize + padSize;
+
+      // Now print the actual field value
+      emitGlobalConstant(field);
+
+      // Insert the field padding unless it's zero bytes...
+      if (padSize)
+        O << "\t.space\t " << padSize << "\n";      
+    }
+    assert(sizeSoFar == cvsLayout->StructSize &&
+           "Layout of constant struct may be incorrect!");
+    return;
+  } else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
+    // FP Constants are printed as integer constants to avoid losing
+    // precision...
+    double Val = CFP->getValue();
+    switch (CFP->getType()->getPrimitiveID()) {
+    default: assert(0 && "Unknown floating point type!");
+    case Type::FloatTyID: {
+      union FU {                            // Abide by C TBAA rules
+        float FVal;
+        unsigned UVal;
+      } U;
+      U.FVal = Val;
+      O << ".long\t" << U.UVal << "\t# float " << Val << "\n";
+      return;
+    }
+    case Type::DoubleTyID: {
+      union DU {                            // Abide by C TBAA rules
+        double FVal;
+        uint64_t UVal;
+        struct {
+               uint32_t MSWord;
+               uint32_t LSWord;
+        } T;
+      } U;
+      U.FVal = Val;
+      
+      O << ".long\t" << U.T.MSWord << "\t# double most significant word " << Val << "\n";
+      O << ".long\t" << U.T.LSWord << "\t# double least significant word" << Val << "\n";
+      return;
+    }
+    }
+  } else if (CV->getType()->getPrimitiveSize() == 64) {
+    const ConstantInt *CI = dyn_cast<ConstantInt>(CV);
+    if(CI) {
+       union DU {                            // Abide by C TBAA rules
+        int64_t UVal;
+        struct {
+               uint32_t MSWord;
+               uint32_t LSWord;
+        } T;
+      } U;
+      U.UVal = CI->getRawValue();
+        
+      O << ".long\t" << U.T.MSWord << "\t# Double-word most significant word " << U.UVal << "\n";
+      O << ".long\t" << U.T.LSWord << "\t# Double-word least significant word" << U.UVal << "\n";
+      return;    
+    }
+  }
+
+  const Type *type = CV->getType();
+  O << "\t";
+  switch (type->getPrimitiveID()) {
+  case Type::UByteTyID: case Type::SByteTyID:
+    O << ".byte";
+    break;
+  case Type::UShortTyID: case Type::ShortTyID:
+    O << ".short";
+    break;
+  case Type::BoolTyID: 
+  case Type::PointerTyID:
+  case Type::UIntTyID: case Type::IntTyID:
+    O << ".long";
+    break;
+  case Type::ULongTyID: case Type::LongTyID:    
+       assert (0 && "Should have already output double-word constant.");
+  case Type::FloatTyID: case Type::DoubleTyID:
+    assert (0 && "Should have already output floating point constant.");
+  default:
+    assert (0 && "Can't handle printing this type of thing");
+    break;
+  }
+  O << "\t";
+  emitConstantValueOnly(CV);
+  O << "\n";
+}
+
+/// printConstantPool - Print to the current output stream assembly
+/// representations of the constants in the constant pool MCP. This is
+/// used to print out constants which have been "spilled to memory" by
+/// the code generator.
+///
+void Printer::printConstantPool(MachineConstantPool *MCP) {
+  const std::vector<Constant*> &CP = MCP->getConstants();
+  const TargetData &TD = TM.getTargetData();
+  if (CP.empty()) return;
+
+  for (unsigned i = 0, e = CP.size(); i != e; ++i) {
+    O << "\t.const\n";
+    O << "\t.align " << (unsigned)TD.getTypeAlignment(CP[i]->getType())
+      << "\n";
+    O << ".CPI" << CurrentFnName << "_" << i << ":\t\t\t\t\t#"
+      << *CP[i] << "\n";
+    emitGlobalConstant(CP[i]);
+  }
+}
+
+/// runOnMachineFunction - This uses the printMachineInstruction()
+/// method to print assembly for each instruction.
+///
+bool Printer::runOnMachineFunction(MachineFunction &MF) {
+  // BBNumber is used here so that a given Printer will never give two
+  // BBs the same name. (If you have a better way, please let me know!)
+  static unsigned BBNumber = 0;
+
+  O << "\n\n";
+  // What's my mangled name?
+  CurrentFnName = Mang->getValueName(MF.getFunction());
+
+  // Print out constants referenced by the function
+  printConstantPool(MF.getConstantPool());
+
+  // Print out labels for the function.
+  O << "\t.text\n"; 
+  O << "\t.globl\t" << CurrentFnName << "\n";
+  O << "\t.align 5\n";
+  O << CurrentFnName << ":\n";
+
+  // Number each basic block so that we can consistently refer to them
+  // in PC-relative references.
+  NumberForBB.clear();
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+       I != E; ++I) {
+    NumberForBB[I->getBasicBlock()] = BBNumber++;
+  }
+
+  // Print out code for the function.
+  for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
+       I != E; ++I) {
+    // Print a label for the basic block.
+    O << "L" << NumberForBB[I->getBasicBlock()] << ":\t# "
+      << I->getBasicBlock()->getName() << "\n";
+    for (MachineBasicBlock::const_iterator II = I->begin(), E = I->end();
+        II != E; ++II) {
+      // Print the assembly for the instruction.
+      O << "\t";
+      printMachineInstruction(II);
+    }
+  }
+
+  // We didn't modify anything.
+  return false;
+}
+
+
+
+void Printer::printOp(const MachineOperand &MO,
+                     bool elideOffsetKeyword /* = false */) {
+  const MRegisterInfo &RI = *TM.getRegisterInfo();
+  int new_symbol;
+  
+  switch (MO.getType()) {
+  case MachineOperand::MO_VirtualRegister:
+    if (Value *V = MO.getVRegValueOrNull()) {
+      O << "<" << V->getName() << ">";
+      return;
+    }
+    // FALLTHROUGH
+  case MachineOperand::MO_MachineRegister:
+      O << RI.get(MO.getReg()).Name;
+      return;
+
+  case MachineOperand::MO_SignExtendedImmed:
+  case MachineOperand::MO_UnextendedImmed:
+    O << (int)MO.getImmedValue();
+    return;
+  case MachineOperand::MO_MachineBasicBlock: {
+    MachineBasicBlock *MBBOp = MO.getMachineBasicBlock();
+    O << ".LBB" << Mang->getValueName(MBBOp->getParent()->getFunction())
+      << "_" << MBBOp->getNumber () << "\t# "
+      << MBBOp->getBasicBlock ()->getName ();
+    return;
+  }
+  case MachineOperand::MO_PCRelativeDisp:
+    std::cerr << "Shouldn't use addPCDisp() when building PPC MachineInstrs";
+    abort ();
+    return;
+  case MachineOperand::MO_GlobalAddress:
+    if (!elideOffsetKeyword) {
+               if(isa<Function>(MO.getGlobal())) {
+                       Stubs.insert(Mang->getValueName(MO.getGlobal()));
+                       O << "L" << Mang->getValueName(MO.getGlobal()) << "$stub";
+               } else {
+                       O << Mang->getValueName(MO.getGlobal());
+               }
+    }
+    return;
+  case MachineOperand::MO_ExternalSymbol:
+    O << MO.getSymbolName();
+    return;
+  default:
+    O << "<unknown operand type>"; return;    
+  }
+}
+
+#if 0
+static inline
+unsigned int ValidOpcodes(const MachineInstr *MI, unsigned int ArgType[5]) {
+       int i;
+       unsigned int retval = 1;
+       
+       for(i = 0; i<5; i++) {
+               switch(ArgType[i]) {
+                       case none:
+                               break;
+                       case Gpr:
+                       case Gpr0:
+                               Type::UIntTy
+                       case Simm16:
+                       case Zimm16:
+                       case PCRelimm24:
+                       case Imm24:
+                       case Imm5:
+                       case PCRelimm14:
+                       case Imm14:
+                       case Imm2:
+                       case Crf:
+                       case Imm3:
+                       case Imm1:
+                       case Fpr:
+                       case Imm4:
+                       case Imm8:
+                       case Disimm16:
+                       case Spr:
+                       case Sgr:
+       };
+               
+               }
+       }
+}
+#endif
+
+/// printMachineInstruction -- Print out a single PPC32 LLVM instruction
+/// MI in Darwin syntax to the current output stream.
+///
+void Printer::printMachineInstruction(const MachineInstr *MI) {
+  unsigned Opcode = MI->getOpcode();
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  const TargetInstrDescriptor &Desc = TII.get(Opcode);
+  unsigned int i;
+  
+  unsigned int ArgCount = Desc.TSFlags & PPC32II::ArgCountMask;
+  unsigned int ArgType[5];
+
+
+  ArgType[0] = (Desc.TSFlags>>PPC32II::Arg0TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[1] = (Desc.TSFlags>>PPC32II::Arg1TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[2] = (Desc.TSFlags>>PPC32II::Arg2TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[3] = (Desc.TSFlags>>PPC32II::Arg3TypeShift) & PPC32II::ArgTypeMask;
+  ArgType[4] = (Desc.TSFlags>>PPC32II::Arg4TypeShift) & PPC32II::ArgTypeMask;
+  
+  assert ( ((Desc.TSFlags & PPC32II::VMX) == 0) && "Instruction requires VMX support");
+  assert ( ((Desc.TSFlags & PPC32II::PPC64) == 0) && "Instruction requires 64 bit support");
+  //assert ( ValidOpcodes(MI, ArgType) && "Instruction has invalid inputs");
+  ++EmittedInsts;
+
+  if(Opcode == PPC32::MovePCtoLR) {
+    O << "mflr r0\n";
+    O << "bcl 20,31,L" << CurrentFnName << "$pb\n";
+    O  << "L" << CurrentFnName << "$pb:\n";
+    return;
+  }
+
+  O << TII.getName(MI->getOpcode()) << " ";
+  std::cout << TII.getName(MI->getOpcode()) << " expects " << ArgCount << " args\n";
+
+  if(Opcode == PPC32::LOADLoAddr) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << ", lo16(";
+    printOp(MI->getOperand(2));
+    O << "-L" << CurrentFnName << "$pb)\n";
+    return;
+  }
+
+  if(Opcode == PPC32::LOADHiAddr) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << ", ha16(" ;
+    printOp(MI->getOperand(2));
+     O << "-L" << CurrentFnName << "$pb)\n";
+    return;
+  }
+  
+  if( (ArgCount == 3) && (ArgType[1] == PPC32II::Disimm16) ) {
+    printOp(MI->getOperand(0));
+    O << ", ";
+    printOp(MI->getOperand(1));
+    O << "(";
+    if((ArgType[2] == PPC32II::Gpr0) && (MI->getOperand(2).getReg() == PPC32::R0)) {
+       O << "0";
+    } else {
+       printOp(MI->getOperand(2));
+    }
+    O << ")\n";
+  } else {
+    for(i = 0; i< ArgCount; i++) {
+        if( (ArgType[i] == PPC32II::Gpr0) && ((MI->getOperand(i).getReg()) == PPC32::R0)) {
+            O << "0";
+        } else {
+               //std::cout << "DEBUG " << (*(TM.getRegisterInfo())).get(MI->getOperand(i).getReg()).Name << "\n";
+            printOp(MI->getOperand(i));
+        }
+        if( ArgCount - 1 == i) {
+            O << "\n";
+        } else {
+            O << ", ";
+        }
+    }
+  }
+  
+  return;  
+}
+
+bool Printer::doInitialization(Module &M) {
+  // Tell gas we are outputting Intel syntax (not AT&T syntax) assembly.
+  //
+  // Bug: gas in `intel_syntax noprefix' mode interprets the symbol `Sp' in an
+  // instruction as a reference to the register named sp, and if you try to
+  // reference a symbol `Sp' (e.g. `mov ECX, OFFSET Sp') then it gets lowercased
+  // before being looked up in the symbol table. This creates spurious
+  // `undefined symbol' errors when linking. Workaround: Do not use `noprefix'
+  // mode, and decorate all register names with percent signs.
+ // O << "\t.intel_syntax\n";
+  Mang = new Mangler(M, true);
+  return false; // success
+}
+
+// SwitchSection - Switch to the specified section of the executable if we are
+// not already in it!
+//
+static void SwitchSection(std::ostream &OS, std::string &CurSection,
+                          const char *NewSection) {
+  if (CurSection != NewSection) {
+    CurSection = NewSection;
+    if (!CurSection.empty())
+      OS << "\t" << NewSection << "\n";
+  }
+}
+
+bool Printer::doFinalization(Module &M) {
+  const TargetData &TD = TM.getTargetData();
+  std::string CurSection;
+
+  // Print out module-level global variables here.
+  for (Module::const_giterator I = M.gbegin(), E = M.gend(); I != E; ++I)
+    if (I->hasInitializer()) {   // External global require no code
+      O << "\n\n";
+      std::string name = Mang->getValueName(I);
+      Constant *C = I->getInitializer();
+      unsigned Size = TD.getTypeSize(C->getType());
+      unsigned Align = TD.getTypeAlignment(C->getType());
+
+      if (C->isNullValue() && 
+          (I->hasLinkOnceLinkage() || I->hasInternalLinkage() ||
+           I->hasWeakLinkage() /* FIXME: Verify correct */)) {
+        SwitchSection(O, CurSection, ".data");
+        if (I->hasInternalLinkage())
+          O << "\t.local " << name << "\n";
+        
+        O << "\t.comm " << name << "," << TD.getTypeSize(C->getType())
+          << "," << (unsigned)TD.getTypeAlignment(C->getType());
+        O << "\t\t# ";
+        WriteAsOperand(O, I, true, true, &M);
+        O << "\n";
+      } else {
+        switch (I->getLinkage()) {
+        case GlobalValue::LinkOnceLinkage:
+        case GlobalValue::WeakLinkage:   // FIXME: Verify correct for weak.
+          // Nonnull linkonce -> weak
+          O << "\t.weak " << name << "\n";
+          SwitchSection(O, CurSection, "");
+          O << "\t.section\t.llvm.linkonce.d." << name << ",\"aw\",@progbits\n";
+          break;
+        
+        case GlobalValue::AppendingLinkage:
+          // FIXME: appending linkage variables should go into a section of
+          // their name or something.  For now, just emit them as external.
+        case GlobalValue::ExternalLinkage:
+          // If external or appending, declare as a global symbol
+          O << "\t.globl " << name << "\n";
+          // FALL THROUGH
+        case GlobalValue::InternalLinkage:
+          if (C->isNullValue())
+            SwitchSection(O, CurSection, ".bss");
+          else
+            SwitchSection(O, CurSection, ".data");
+          break;
+        }
+
+        O << "\t.align " << Align << "\n";
+        O << name << ":\t\t\t\t# ";
+        WriteAsOperand(O, I, true, true, &M);
+        O << " = ";
+        WriteAsOperand(O, C, false, false, &M);
+        O << "\n";
+        emitGlobalConstant(C);
+      }
+    }
+        
+    for(std::set<std::string>::iterator i = Stubs.begin(); i != Stubs.end(); ++i) {
+       O << ".data\n";     
+               O << ".section __TEXT,__picsymbolstub1,symbol_stubs,pure_instructions,32\n";
+               O << "\t.align 2\n";
+       O << "L" << *i << "$stub:\n";
+       O << "\t.indirect_symbol " << *i << "\n";
+       O << "\tmflr r0\n";
+       O << "\tbcl 20,31,L0$" << *i << "\n";
+       O << "L0$" << *i << ":\n";
+       O << "\tmflr r11\n";
+       O << "\taddis r11,r11,ha16(L" << *i << "$lazy_ptr-L0$" << *i << ")\n";
+       O << "\tmtlr r0\n";
+       O << "\tlwzu r12,lo16(L" << *i << "$lazy_ptr-L0$" << *i << ")(r11)\n";
+       O << "\tmtctr r12\n";
+       O << "\tbctr\n";
+       O << ".data\n";
+               O << ".lazy_symbol_pointer\n";
+               O << "L" << *i << "$lazy_ptr:\n";
+        O << ".indirect_symbol " << *i << "\n";
+        O << ".long dyld_stub_binding_helper\n";
+
+       }
+
+  delete Mang;
+  return false; // success
+}
+
+} // End llvm namespace
diff --git a/lib/Target/PowerPC/PowerPCCodeEmitter.cpp b/lib/Target/PowerPC/PowerPCCodeEmitter.cpp
new file mode 100644 (file)
index 0000000..3c423e5
--- /dev/null
@@ -0,0 +1,43 @@
+//===-- PowerPCCodeEmitter.cpp - JIT Code Emitter for PowerPC -----*- C++ -*-=//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+// 
+//
+//===----------------------------------------------------------------------===//
+
+#include "PowerPCTargetMachine.h"
+
+namespace llvm {
+
+/// addPassesToEmitMachineCode - Add passes to the specified pass manager to get
+/// machine code emitted.  This uses a MachineCodeEmitter object to handle
+/// actually outputting the machine code and resolving things like the address
+/// of functions.  This method should returns true if machine code emission is
+/// not supported.
+///
+bool PowerPCTargetMachine::addPassesToEmitMachineCode(FunctionPassManager &PM,
+                                                      MachineCodeEmitter &MCE) {
+  return true;
+  // It should go something like this:
+  // PM.add(new Emitter(MCE));  // Machine code emitter pass for PowerPC
+  // Delete machine code for this function after emitting it:
+  // PM.add(createMachineCodeDeleter());
+}
+
+void *PowerPCJITInfo::getJITStubForFunction(Function *F,
+                                            MachineCodeEmitter &MCE) {
+  assert (0 && "PowerPCJITInfo::getJITStubForFunction not implemented");
+  return 0;
+}
+
+void PowerPCJITInfo::replaceMachineCodeForFunction (void *Old, void *New) {
+  assert (0 && "PowerPCJITInfo::replaceMachineCodeForFunction not implemented");
+}
+
+} // end llvm namespace
+
diff --git a/lib/Target/PowerPC/PowerPCISelSimple.cpp b/lib/Target/PowerPC/PowerPCISelSimple.cpp
new file mode 100644 (file)
index 0000000..c9c0e2d
--- /dev/null
@@ -0,0 +1,2621 @@
+//===-- InstSelectSimple.cpp - A simple instruction selector for PowerPC --===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+
+#include "PowerPC.h"
+#include "PowerPCInstrBuilder.h"
+#include "PowerPCInstrInfo.h"
+#include "llvm/Constants.h"
+#include "llvm/DerivedTypes.h"
+#include "llvm/Function.h"
+#include "llvm/Instructions.h"
+#include "llvm/IntrinsicLowering.h"
+#include "llvm/Pass.h"
+#include "llvm/CodeGen/MachineConstantPool.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/SSARegMap.h"
+#include "llvm/Target/MRegisterInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/InstVisitor.h"
+using namespace llvm;
+
+namespace {
+  /// TypeClass - Used by the PowerPC backend to group LLVM types by their basic PPC
+  /// Representation.
+  ///
+  enum TypeClass {
+    cByte, cShort, cInt, cFP, cLong
+  };
+}
+
+/// getClass - Turn a primitive type into a "class" number which is based on the
+/// size of the type, and whether or not it is floating point.
+///
+static inline TypeClass getClass(const Type *Ty) {
+  switch (Ty->getPrimitiveID()) {
+  case Type::SByteTyID:
+  case Type::UByteTyID:   return cByte;      // Byte operands are class #0
+  case Type::ShortTyID:
+  case Type::UShortTyID:  return cShort;     // Short operands are class #1
+  case Type::IntTyID:
+  case Type::UIntTyID:
+  case Type::PointerTyID: return cInt;       // Int's and pointers are class #2
+
+  case Type::FloatTyID:
+  case Type::DoubleTyID:  return cFP;        // Floating Point is #3
+
+  case Type::LongTyID:
+  case Type::ULongTyID:   return cLong;      // Longs are class #4
+  default:
+    assert(0 && "Invalid type to getClass!");
+    return cByte;  // not reached
+  }
+}
+
+// getClassB - Just like getClass, but treat boolean values as ints.
+static inline TypeClass getClassB(const Type *Ty) {
+  if (Ty == Type::BoolTy) return cInt;
+  return getClass(Ty);
+}
+
+namespace {
+  struct ISel : public FunctionPass, InstVisitor<ISel> {
+    TargetMachine &TM;
+    MachineFunction *F;                 // The function we are compiling into
+    MachineBasicBlock *BB;              // The current MBB we are compiling
+    int VarArgsFrameIndex;              // FrameIndex for start of varargs area
+    int ReturnAddressIndex;             // FrameIndex for the return address
+
+    std::map<Value*, unsigned> RegMap;  // Mapping between Val's and SSA Regs
+
+    // MBBMap - Mapping between LLVM BB -> Machine BB
+    std::map<const BasicBlock*, MachineBasicBlock*> MBBMap;
+
+    // AllocaMap - Mapping from fixed sized alloca instructions to the
+    // FrameIndex for the alloca.
+    std::map<AllocaInst*, unsigned> AllocaMap;
+
+    ISel(TargetMachine &tm) : TM(tm), F(0), BB(0) {}
+
+    /// runOnFunction - Top level implementation of instruction selection for
+    /// the entire function.
+    ///
+    bool runOnFunction(Function &Fn) {
+      // First pass over the function, lower any unknown intrinsic functions
+      // with the IntrinsicLowering class.
+      LowerUnknownIntrinsicFunctionCalls(Fn);
+
+      F = &MachineFunction::construct(&Fn, TM);
+
+      // Create all of the machine basic blocks for the function...
+      for (Function::iterator I = Fn.begin(), E = Fn.end(); I != E; ++I)
+        F->getBasicBlockList().push_back(MBBMap[I] = new MachineBasicBlock(I));
+
+      BB = &F->front();
+
+      // Set up a frame object for the return address.  This is used by the
+      // llvm.returnaddress & llvm.frameaddress intrinisics.
+      ReturnAddressIndex = F->getFrameInfo()->CreateFixedObject(4, -4);
+
+      // Copy incoming arguments off of the stack...
+      LoadArgumentsToVirtualRegs(Fn);
+
+      // Instruction select everything except PHI nodes
+      visit(Fn);
+
+      // Select the PHI nodes
+      SelectPHINodes();
+
+      RegMap.clear();
+      MBBMap.clear();
+      AllocaMap.clear();
+      F = 0;
+      // We always build a machine code representation for the function
+      return true;
+    }
+
+    virtual const char *getPassName() const {
+      return "PowerPC Simple Instruction Selection";
+    }
+
+    /// visitBasicBlock - This method is called when we are visiting a new basic
+    /// block.  This simply creates a new MachineBasicBlock to emit code into
+    /// and adds it to the current MachineFunction.  Subsequent visit* for
+    /// instructions will be invoked for all instructions in the basic block.
+    ///
+    void visitBasicBlock(BasicBlock &LLVM_BB) {
+      BB = MBBMap[&LLVM_BB];
+    }
+
+    /// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+    /// function, lowering any calls to unknown intrinsic functions into the
+    /// equivalent LLVM code.
+    ///
+    void LowerUnknownIntrinsicFunctionCalls(Function &F);
+
+    /// LoadArgumentsToVirtualRegs - Load all of the arguments to this function
+    /// from the stack into virtual registers.
+    ///
+    void LoadArgumentsToVirtualRegs(Function &F);
+
+    /// SelectPHINodes - Insert machine code to generate phis.  This is tricky
+    /// because we have to generate our sources into the source basic blocks,
+    /// not the current one.
+    ///
+    void SelectPHINodes();
+
+    // Visitation methods for various instructions.  These methods simply emit
+    // fixed PowerPC code for each instruction.
+
+    // Control flow operators
+    void visitReturnInst(ReturnInst &RI);
+    void visitBranchInst(BranchInst &BI);
+
+    struct ValueRecord {
+      Value *Val;
+      unsigned Reg;
+      const Type *Ty;
+      ValueRecord(unsigned R, const Type *T) : Val(0), Reg(R), Ty(T) {}
+      ValueRecord(Value *V) : Val(V), Reg(0), Ty(V->getType()) {}
+    };
+    void doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+                const std::vector<ValueRecord> &Args);
+    void visitCallInst(CallInst &I);
+    void visitIntrinsicCall(Intrinsic::ID ID, CallInst &I);
+
+    // Arithmetic operators
+    void visitSimpleBinary(BinaryOperator &B, unsigned OpcodeClass);
+    void visitAdd(BinaryOperator &B) { visitSimpleBinary(B, 0); }
+    void visitSub(BinaryOperator &B) { visitSimpleBinary(B, 1); }
+    void visitMul(BinaryOperator &B);
+
+    void visitDiv(BinaryOperator &B) { visitDivRem(B); }
+    void visitRem(BinaryOperator &B) { visitDivRem(B); }
+    void visitDivRem(BinaryOperator &B);
+
+    // Bitwise operators
+    void visitAnd(BinaryOperator &B) { visitSimpleBinary(B, 2); }
+    void visitOr (BinaryOperator &B) { visitSimpleBinary(B, 3); }
+    void visitXor(BinaryOperator &B) { visitSimpleBinary(B, 4); }
+
+    // Comparison operators...
+    void visitSetCondInst(SetCondInst &I);
+    unsigned EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+                            MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator MBBI);
+    void visitSelectInst(SelectInst &SI);
+    
+    
+    // Memory Instructions
+    void visitLoadInst(LoadInst &I);
+    void visitStoreInst(StoreInst &I);
+    void visitGetElementPtrInst(GetElementPtrInst &I);
+    void visitAllocaInst(AllocaInst &I);
+    void visitMallocInst(MallocInst &I);
+    void visitFreeInst(FreeInst &I);
+    
+    // Other operators
+    void visitShiftInst(ShiftInst &I);
+    void visitPHINode(PHINode &I) {}      // PHI nodes handled by second pass
+    void visitCastInst(CastInst &I);
+    void visitVANextInst(VANextInst &I);
+    void visitVAArgInst(VAArgInst &I);
+
+    void visitInstruction(Instruction &I) {
+      std::cerr << "Cannot instruction select: " << I;
+      abort();
+    }
+
+    /// promote32 - Make a value 32-bits wide, and put it somewhere.
+    ///
+    void promote32(unsigned targetReg, const ValueRecord &VR);
+
+    /// emitGEPOperation - Common code shared between visitGetElementPtrInst and
+    /// constant expression GEP support.
+    ///
+    void emitGEPOperation(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+                          Value *Src, User::op_iterator IdxBegin,
+                          User::op_iterator IdxEnd, unsigned TargetReg);
+
+    /// emitCastOperation - Common code shared between visitCastInst and
+    /// constant expression cast support.
+    ///
+    void emitCastOperation(MachineBasicBlock *BB,MachineBasicBlock::iterator IP,
+                           Value *Src, const Type *DestTy, unsigned TargetReg);
+
+    /// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+    /// and constant expression support.
+    ///
+    void emitSimpleBinaryOperation(MachineBasicBlock *BB,
+                                   MachineBasicBlock::iterator IP,
+                                   Value *Op0, Value *Op1,
+                                   unsigned OperatorClass, unsigned TargetReg);
+
+    /// emitBinaryFPOperation - This method handles emission of floating point
+    /// Add (0), Sub (1), Mul (2), and Div (3) operations.
+    void emitBinaryFPOperation(MachineBasicBlock *BB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Op0, Value *Op1,
+                               unsigned OperatorClass, unsigned TargetReg);
+
+    void emitMultiply(MachineBasicBlock *BB, MachineBasicBlock::iterator IP,
+                      Value *Op0, Value *Op1, unsigned TargetReg);
+
+    void doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                    unsigned DestReg, const Type *DestTy,
+                    unsigned Op0Reg, unsigned Op1Reg);
+    void doMultiplyConst(MachineBasicBlock *MBB, 
+                         MachineBasicBlock::iterator MBBI,
+                         unsigned DestReg, const Type *DestTy,
+                         unsigned Op0Reg, unsigned Op1Val);
+
+    void emitDivRemOperation(MachineBasicBlock *BB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Op0, Value *Op1, bool isDiv,
+                             unsigned TargetReg);
+
+    /// emitSetCCOperation - Common code shared between visitSetCondInst and
+    /// constant expression support.
+    ///
+    void emitSetCCOperation(MachineBasicBlock *BB,
+                            MachineBasicBlock::iterator IP,
+                            Value *Op0, Value *Op1, unsigned Opcode,
+                            unsigned TargetReg);
+
+    /// emitShiftOperation - Common code shared between visitShiftInst and
+    /// constant expression support.
+    ///
+    void emitShiftOperation(MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator IP,
+                            Value *Op, Value *ShiftAmount, bool isLeftShift,
+                            const Type *ResultTy, unsigned DestReg);
+      
+    /// emitSelectOperation - Common code shared between visitSelectInst and the
+    /// constant expression support.
+    void emitSelectOperation(MachineBasicBlock *MBB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Cond, Value *TrueVal, Value *FalseVal,
+                             unsigned DestReg);
+
+    /// copyConstantToRegister - Output the instructions required to put the
+    /// specified constant into the specified register.
+    ///
+    void copyConstantToRegister(MachineBasicBlock *MBB,
+                                MachineBasicBlock::iterator MBBI,
+                                Constant *C, unsigned Reg);
+
+    void emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                   unsigned LHS, unsigned RHS);
+
+    /// makeAnotherReg - This method returns the next register number we haven't
+    /// yet used.
+    ///
+    /// Long values are handled somewhat specially.  They are always allocated
+    /// as pairs of 32 bit integer values.  The register number returned is the
+    /// lower 32 bits of the long value, and the regNum+1 is the upper 32 bits
+    /// of the long value.
+    ///
+    unsigned makeAnotherReg(const Type *Ty) {
+      assert(dynamic_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo()) &&
+             "Current target doesn't have PPC reg info??");
+      const PowerPCRegisterInfo *MRI =
+        static_cast<const PowerPCRegisterInfo*>(TM.getRegisterInfo());
+      if (Ty == Type::LongTy || Ty == Type::ULongTy) {
+        const TargetRegisterClass *RC = MRI->getRegClassForType(Type::IntTy);
+        // Create the lower part
+        F->getSSARegMap()->createVirtualRegister(RC);
+        // Create the upper part.
+        return F->getSSARegMap()->createVirtualRegister(RC)-1;
+      }
+
+      // Add the mapping of regnumber => reg class to MachineFunction
+      const TargetRegisterClass *RC = MRI->getRegClassForType(Ty);
+      return F->getSSARegMap()->createVirtualRegister(RC);
+    }
+
+    /// getReg - This method turns an LLVM value into a register number.
+    ///
+    unsigned getReg(Value &V) { return getReg(&V); }  // Allow references
+    unsigned getReg(Value *V) {
+      // Just append to the end of the current bb.
+      MachineBasicBlock::iterator It = BB->end();
+      return getReg(V, BB, It);
+    }
+    unsigned getReg(Value *V, MachineBasicBlock *MBB,
+                    MachineBasicBlock::iterator IPt);
+
+    /// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+    /// that is to be statically allocated with the initial stack frame
+    /// adjustment.
+    unsigned getFixedSizedAllocaFI(AllocaInst *AI);
+  };
+}
+
+/// dyn_castFixedAlloca - If the specified value is a fixed size alloca
+/// instruction in the entry block, return it.  Otherwise, return a null
+/// pointer.
+static AllocaInst *dyn_castFixedAlloca(Value *V) {
+  if (AllocaInst *AI = dyn_cast<AllocaInst>(V)) {
+    BasicBlock *BB = AI->getParent();
+    if (isa<ConstantUInt>(AI->getArraySize()) && BB ==&BB->getParent()->front())
+      return AI;
+  }
+  return 0;
+}
+
+/// getReg - This method turns an LLVM value into a register number.
+///
+unsigned ISel::getReg(Value *V, MachineBasicBlock *MBB,
+                      MachineBasicBlock::iterator IPt) {
+  // If this operand is a constant, emit the code to copy the constant into
+  // the register here...
+  //
+  if (Constant *C = dyn_cast<Constant>(V)) {
+    unsigned Reg = makeAnotherReg(V->getType());
+    copyConstantToRegister(MBB, IPt, C, Reg);
+    return Reg;
+  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
+    unsigned Reg1 = makeAnotherReg(V->getType());
+       unsigned Reg2 = makeAnotherReg(V->getType());
+    // Move the address of the global into the register
+    BuildMI(*MBB, IPt, PPC32::LOADHiAddr, 2, Reg1).addReg(PPC32::R0).addGlobalAddress(GV);
+    BuildMI(*MBB, IPt, PPC32::LOADLoAddr, 2, Reg2).addReg(Reg1).addGlobalAddress(GV);
+    return Reg2;
+  } else if (CastInst *CI = dyn_cast<CastInst>(V)) {
+    // Do not emit noop casts at all.
+    if (getClassB(CI->getType()) == getClassB(CI->getOperand(0)->getType()))
+      return getReg(CI->getOperand(0), MBB, IPt);
+  } else if (AllocaInst *AI = dyn_castFixedAlloca(V)) {
+    unsigned Reg = makeAnotherReg(V->getType());
+    unsigned FI = getFixedSizedAllocaFI(AI);
+    addFrameReference(BuildMI(*MBB, IPt, PPC32::ADDI, 2, Reg), FI, 0, false);
+    return Reg;
+  }
+
+  unsigned &Reg = RegMap[V];
+  if (Reg == 0) {
+    Reg = makeAnotherReg(V->getType());
+    RegMap[V] = Reg;
+  }
+
+  return Reg;
+}
+
+/// getFixedSizedAllocaFI - Return the frame index for a fixed sized alloca
+/// that is to be statically allocated with the initial stack frame
+/// adjustment.
+unsigned ISel::getFixedSizedAllocaFI(AllocaInst *AI) {
+  // Already computed this?
+  std::map<AllocaInst*, unsigned>::iterator I = AllocaMap.lower_bound(AI);
+  if (I != AllocaMap.end() && I->first == AI) return I->second;
+
+  const Type *Ty = AI->getAllocatedType();
+  ConstantUInt *CUI = cast<ConstantUInt>(AI->getArraySize());
+  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+  TySize *= CUI->getValue();   // Get total allocated size...
+  unsigned Alignment = TM.getTargetData().getTypeAlignment(Ty);
+      
+  // Create a new stack object using the frame manager...
+  int FrameIdx = F->getFrameInfo()->CreateStackObject(TySize, Alignment);
+  AllocaMap.insert(I, std::make_pair(AI, FrameIdx));
+  return FrameIdx;
+}
+
+
+/// copyConstantToRegister - Output the instructions required to put the
+/// specified constant into the specified register.
+///
+void ISel::copyConstantToRegister(MachineBasicBlock *MBB,
+                                  MachineBasicBlock::iterator IP,
+                                  Constant *C, unsigned R) {
+  if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C)) {
+    unsigned Class = 0;
+    switch (CE->getOpcode()) {
+    case Instruction::GetElementPtr:
+      emitGEPOperation(MBB, IP, CE->getOperand(0),
+                       CE->op_begin()+1, CE->op_end(), R);
+      return;
+    case Instruction::Cast:
+      emitCastOperation(MBB, IP, CE->getOperand(0), CE->getType(), R);
+      return;
+
+    case Instruction::Xor: ++Class; // FALL THROUGH
+    case Instruction::Or:  ++Class; // FALL THROUGH
+    case Instruction::And: ++Class; // FALL THROUGH
+    case Instruction::Sub: ++Class; // FALL THROUGH
+    case Instruction::Add:
+      emitSimpleBinaryOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                                Class, R);
+      return;
+
+    case Instruction::Mul:
+      emitMultiply(MBB, IP, CE->getOperand(0), CE->getOperand(1), R);
+      return;
+
+    case Instruction::Div:
+    case Instruction::Rem:
+      emitDivRemOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                          CE->getOpcode() == Instruction::Div, R);
+      return;
+
+    case Instruction::SetNE:
+    case Instruction::SetEQ:
+    case Instruction::SetLT:
+    case Instruction::SetGT:
+    case Instruction::SetLE:
+    case Instruction::SetGE:
+      emitSetCCOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                         CE->getOpcode(), R);
+      return;
+
+    case Instruction::Shl:
+    case Instruction::Shr:
+      emitShiftOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                         CE->getOpcode() == Instruction::Shl, CE->getType(), R);
+      return;
+
+    case Instruction::Select:
+      emitSelectOperation(MBB, IP, CE->getOperand(0), CE->getOperand(1),
+                          CE->getOperand(2), R);
+      return;
+
+    default:
+      std::cerr << "Offending expr: " << C << "\n";
+      assert(0 && "Constant expression not yet handled!\n");
+    }
+  }
+
+  if (C->getType()->isIntegral()) {
+    unsigned Class = getClassB(C->getType());
+
+    if (Class == cLong) {
+      // Copy the value into the register pair.
+      uint64_t Val = cast<ConstantInt>(C)->getRawValue();
+         unsigned hiTmp = makeAnotherReg(Type::IntTy);
+         unsigned loTmp = makeAnotherReg(Type::IntTy);
+      BuildMI(*MBB, IP, PPC32::ADDIS, 2, loTmp).addReg(PPC32::R0).addImm(Val >> 48);
+      BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(loTmp).addImm((Val >> 32) & 0xFFFF);
+      BuildMI(*MBB, IP, PPC32::ADDIS, 2, hiTmp).addReg(PPC32::R0).addImm((Val >> 16) & 0xFFFF);
+      BuildMI(*MBB, IP, PPC32::ORI, 2, R+1).addReg(hiTmp).addImm(Val & 0xFFFF);
+      return;
+    }
+
+    assert(Class <= cInt && "Type not handled yet!");
+
+    if (C->getType() == Type::BoolTy) {
+      BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(C == ConstantBool::True);
+    } else if (Class == cByte || Class == cShort) {
+      ConstantInt *CI = cast<ConstantInt>(C);
+      BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
+    } else {
+      ConstantInt *CI = cast<ConstantInt>(C);
+      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
+      if (TheVal < 32768 && TheVal >= -32768) {
+               BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(CI->getRawValue());
+         } else {
+               unsigned TmpReg = makeAnotherReg(Type::IntTy);
+               BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(CI->getRawValue() >> 16);
+               BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(TmpReg).addImm(CI->getRawValue() & 0xFFFF);
+         }
+    }
+  } else if (ConstantFP *CFP = dyn_cast<ConstantFP>(C)) {
+      // We need to spill the constant to memory...
+      MachineConstantPool *CP = F->getConstantPool();
+      unsigned CPI = CP->getConstantPoolIndex(CFP);
+      const Type *Ty = CFP->getType();
+
+      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!"); 
+      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
+      addConstantPoolReference(BuildMI(*MBB, IP, LoadOpcode, 2, R), CPI);
+  } else if (isa<ConstantPointerNull>(C)) {
+    // Copy zero (null pointer) to the register.
+    BuildMI(*MBB, IP, PPC32::ADDI, 2, R).addReg(PPC32::R0).addImm(0);
+  } else if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(C)) {
+    BuildMI(*MBB, IP, PPC32::ADDIS, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
+    BuildMI(*MBB, IP, PPC32::ORI, 2, R).addReg(PPC32::R0).addGlobalAddress(CPR->getValue());
+  } else {
+    std::cerr << "Offending constant: " << C << "\n";
+    assert(0 && "Type not handled yet!");
+  }
+}
+
+/// LoadArgumentsToVirtualRegs - Load all of the arguments to this function from
+/// the stack into virtual registers.
+///
+/// FIXME: When we can calculate which args are coming in via registers
+/// source them from there instead.
+void ISel::LoadArgumentsToVirtualRegs(Function &Fn) {
+  unsigned ArgOffset = 0;   // Frame mechanisms handle retaddr slot
+  unsigned GPR_remaining = 8;
+  unsigned FPR_remaining = 13;
+  unsigned GPR_idx = 3;
+  unsigned FPR_idx = 1;
+       
+  MachineFrameInfo *MFI = F->getFrameInfo();
+
+  for (Function::aiterator I = Fn.abegin(), E = Fn.aend(); I != E; ++I) {
+    bool ArgLive = !I->use_empty();
+    unsigned Reg = ArgLive ? getReg(*I) : 0;
+    int FI;          // Frame object index
+
+    switch (getClassB(I->getType())) {
+    case cByte:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(1, ArgOffset);
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LBZ, 2, Reg), FI);
+               }
+         }
+      break;
+    case cShort:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(2, ArgOffset);
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LHZ, 2, Reg), FI);
+               }
+         }
+      break;
+    case cInt:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(4, ArgOffset);
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
+               }
+         }
+      break;
+    case cLong:
+      if (ArgLive) {
+        FI = MFI->CreateFixedObject(8, ArgOffset);
+               if (GPR_remaining > 1) {
+                       BuildMI(BB, PPC32::OR, 2, Reg).addReg(PPC32::R0+GPR_idx).addReg(PPC32::R0+GPR_idx);
+                       BuildMI(BB, PPC32::OR, 2, Reg+1).addReg(PPC32::R0+GPR_idx+1).addReg(PPC32::R0+GPR_idx+1);
+               } else {
+                       addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg), FI);
+                       addFrameReference(BuildMI(BB, PPC32::LWZ, 2, Reg+1), FI, 4);
+               }
+         }
+      ArgOffset += 4;   // longs require 4 additional bytes
+         if (GPR_remaining > 1) {
+               GPR_remaining--;    // uses up 2 GPRs
+               GPR_idx++;
+         }
+      break;
+    case cFP:
+      if (ArgLive) {
+        unsigned Opcode;
+        if (I->getType() == Type::FloatTy) {
+          Opcode = PPC32::LFS;
+          FI = MFI->CreateFixedObject(4, ArgOffset);
+        } else {
+          Opcode = PPC32::LFD;
+          FI = MFI->CreateFixedObject(8, ArgOffset);
+        }
+               if (FPR_remaining > 0) {
+                       BuildMI(BB, PPC32::FMR, 1, Reg).addReg(PPC32::F0+FPR_idx);
+                       FPR_remaining--;
+                       FPR_idx++;
+               } else {
+                       addFrameReference(BuildMI(BB, Opcode, 2, Reg), FI);
+               }
+         }
+      if (I->getType() == Type::DoubleTy) {
+        ArgOffset += 4;   // doubles require 4 additional bytes
+               if (GPR_remaining > 0) {
+                       GPR_remaining--;    // uses up 2 GPRs
+                       GPR_idx++;
+               }
+         }
+      break;
+    default:
+      assert(0 && "Unhandled argument type!");
+    }
+    ArgOffset += 4;  // Each argument takes at least 4 bytes on the stack...
+       if (GPR_remaining > 0) {
+               GPR_remaining--;    // uses up 2 GPRs
+               GPR_idx++;
+       }
+  }
+
+  // If the function takes variable number of arguments, add a frame offset for
+  // the start of the first vararg value... this is used to expand
+  // llvm.va_start.
+  if (Fn.getFunctionType()->isVarArg())
+    VarArgsFrameIndex = MFI->CreateFixedObject(1, ArgOffset);
+}
+
+
+/// SelectPHINodes - Insert machine code to generate phis.  This is tricky
+/// because we have to generate our sources into the source basic blocks, not
+/// the current one.
+///
+void ISel::SelectPHINodes() {
+  const TargetInstrInfo &TII = *TM.getInstrInfo();
+  const Function &LF = *F->getFunction();  // The LLVM function...
+  for (Function::const_iterator I = LF.begin(), E = LF.end(); I != E; ++I) {
+    const BasicBlock *BB = I;
+    MachineBasicBlock &MBB = *MBBMap[I];
+
+    // Loop over all of the PHI nodes in the LLVM basic block...
+    MachineBasicBlock::iterator PHIInsertPoint = MBB.begin();
+    for (BasicBlock::const_iterator I = BB->begin();
+         PHINode *PN = const_cast<PHINode*>(dyn_cast<PHINode>(I)); ++I) {
+
+      // Create a new machine instr PHI node, and insert it.
+      unsigned PHIReg = getReg(*PN);
+      MachineInstr *PhiMI = BuildMI(MBB, PHIInsertPoint,
+                                    PPC32::PHI, PN->getNumOperands(), PHIReg);
+
+      MachineInstr *LongPhiMI = 0;
+      if (PN->getType() == Type::LongTy || PN->getType() == Type::ULongTy)
+        LongPhiMI = BuildMI(MBB, PHIInsertPoint,
+                            PPC32::PHI, PN->getNumOperands(), PHIReg+1);
+
+      // PHIValues - Map of blocks to incoming virtual registers.  We use this
+      // so that we only initialize one incoming value for a particular block,
+      // even if the block has multiple entries in the PHI node.
+      //
+      std::map<MachineBasicBlock*, unsigned> PHIValues;
+
+      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
+        MachineBasicBlock *PredMBB = MBBMap[PN->getIncomingBlock(i)];
+        unsigned ValReg;
+        std::map<MachineBasicBlock*, unsigned>::iterator EntryIt =
+          PHIValues.lower_bound(PredMBB);
+
+        if (EntryIt != PHIValues.end() && EntryIt->first == PredMBB) {
+          // We already inserted an initialization of the register for this
+          // predecessor.  Recycle it.
+          ValReg = EntryIt->second;
+
+        } else {        
+          // Get the incoming value into a virtual register.
+          //
+          Value *Val = PN->getIncomingValue(i);
+
+          // If this is a constant or GlobalValue, we may have to insert code
+          // into the basic block to compute it into a virtual register.
+          if ((isa<Constant>(Val) && !isa<ConstantExpr>(Val)) ||
+              isa<GlobalValue>(Val)) {
+            // Simple constants get emitted at the end of the basic block,
+            // before any terminator instructions.  We "know" that the code to
+            // move a constant into a register will never clobber any flags.
+            ValReg = getReg(Val, PredMBB, PredMBB->getFirstTerminator());
+          } else {
+            // Because we don't want to clobber any values which might be in
+            // physical registers with the computation of this constant (which
+            // might be arbitrarily complex if it is a constant expression),
+            // just insert the computation at the top of the basic block.
+            MachineBasicBlock::iterator PI = PredMBB->begin();
+            
+            // Skip over any PHI nodes though!
+            while (PI != PredMBB->end() && PI->getOpcode() == PPC32::PHI)
+              ++PI;
+            
+            ValReg = getReg(Val, PredMBB, PI);
+          }
+
+          // Remember that we inserted a value for this PHI for this predecessor
+          PHIValues.insert(EntryIt, std::make_pair(PredMBB, ValReg));
+        }
+
+        PhiMI->addRegOperand(ValReg);
+        PhiMI->addMachineBasicBlockOperand(PredMBB);
+        if (LongPhiMI) {
+          LongPhiMI->addRegOperand(ValReg+1);
+          LongPhiMI->addMachineBasicBlockOperand(PredMBB);
+        }
+      }
+
+      // Now that we emitted all of the incoming values for the PHI node, make
+      // sure to reposition the InsertPoint after the PHI that we just added.
+      // This is needed because we might have inserted a constant into this
+      // block, right after the PHI's which is before the old insert point!
+      PHIInsertPoint = LongPhiMI ? LongPhiMI : PhiMI;
+      ++PHIInsertPoint;
+    }
+  }
+}
+
+
+// canFoldSetCCIntoBranchOrSelect - Return the setcc instruction if we can fold
+// it into the conditional branch or select instruction which is the only user
+// of the cc instruction.  This is the case if the conditional branch is the
+// only user of the setcc, and if the setcc is in the same basic block as the
+// conditional branch.  We also don't handle long arguments below, so we reject
+// them here as well.
+//
+static SetCondInst *canFoldSetCCIntoBranchOrSelect(Value *V) {
+  if (SetCondInst *SCI = dyn_cast<SetCondInst>(V))
+    if (SCI->hasOneUse()) {
+      Instruction *User = cast<Instruction>(SCI->use_back());
+      if ((isa<BranchInst>(User) || isa<SelectInst>(User)) &&
+          SCI->getParent() == User->getParent() &&
+          (getClassB(SCI->getOperand(0)->getType()) != cLong ||
+           SCI->getOpcode() == Instruction::SetEQ ||
+           SCI->getOpcode() == Instruction::SetNE))
+        return SCI;
+    }
+  return 0;
+}
+
+// Return a fixed numbering for setcc instructions which does not depend on the
+// order of the opcodes.
+//
+static unsigned getSetCCNumber(unsigned Opcode) {
+  switch(Opcode) {
+  default: assert(0 && "Unknown setcc instruction!");
+  case Instruction::SetEQ: return 0;
+  case Instruction::SetNE: return 1;
+  case Instruction::SetLT: return 2;
+  case Instruction::SetGE: return 3;
+  case Instruction::SetGT: return 4;
+  case Instruction::SetLE: return 5;
+  }
+}
+
+/// emitUCOM - emits an unordered FP compare.
+void ISel::emitUCOM(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+                     unsigned LHS, unsigned RHS) {
+       BuildMI(*MBB, IP, PPC32::FCMPU, 2, PPC32::CR0).addReg(LHS).addReg(RHS);
+}
+
+// EmitComparison - This function emits a comparison of the two operands,
+// returning the extended setcc code to use.
+unsigned ISel::EmitComparison(unsigned OpNum, Value *Op0, Value *Op1,
+                              MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP) {
+  // The arguments are already supposed to be of the same type.
+  const Type *CompTy = Op0->getType();
+  unsigned Class = getClassB(CompTy);
+  unsigned Op0r = getReg(Op0, MBB, IP);
+
+  // Special case handling of: cmp R, i
+  if (isa<ConstantPointerNull>(Op1)) {
+      BuildMI(*MBB, IP, PPC32::CMPI, 2, PPC32::CR0).addReg(Op0r).addImm(0);
+  } else if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    if (Class == cByte || Class == cShort || Class == cInt) {
+      unsigned Op1v = CI->getRawValue();
+
+      // Mask off any upper bits of the constant, if there are any...
+      Op1v &= (1ULL << (8 << Class)) - 1;
+
+         // Compare immediate or promote to reg?
+         if (Op1v <= 32767) {
+               BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMPI : PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(Op0r).addImm(Op1v);
+         } else {
+               unsigned Op1r = getReg(Op1, MBB, IP);
+               BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 3, PPC32::CR0).addImm(0).addReg(Op0r).addReg(Op1r);
+         }
+      return OpNum;
+    } else {
+      assert(Class == cLong && "Unknown integer class!");
+      unsigned LowCst = CI->getRawValue();
+      unsigned HiCst = CI->getRawValue() >> 32;
+      if (OpNum < 2) {    // seteq, setne
+        unsigned LoTmp = Op0r;
+        if (LowCst != 0) {
+                 unsigned LoLow = makeAnotherReg(Type::IntTy);
+          unsigned LoTmp = makeAnotherReg(Type::IntTy);
+          BuildMI(*MBB, IP, PPC32::XORI, 2, LoLow).addReg(Op0r).addImm(LowCst);
+          BuildMI(*MBB, IP, PPC32::XORIS, 2, LoTmp).addReg(LoLow).addImm(LowCst >> 16);
+        }
+        unsigned HiTmp = Op0r+1;
+        if (HiCst != 0) {
+                 unsigned HiLow = makeAnotherReg(Type::IntTy);
+          unsigned HiTmp = makeAnotherReg(Type::IntTy);
+          BuildMI(*MBB, IP, PPC32::XORI, 2, HiLow).addReg(Op0r+1).addImm(HiCst);
+          BuildMI(*MBB, IP, PPC32::XORIS, 2, HiTmp).addReg(HiLow).addImm(HiCst >> 16);
+        }
+        unsigned FinalTmp = makeAnotherReg(Type::IntTy);
+        BuildMI(*MBB, IP, PPC32::ORo, 2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
+        //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
+        return OpNum;
+      } else {
+        // Emit a sequence of code which compares the high and low parts once
+        // each, then uses a conditional move to handle the overflow case.  For
+        // example, a setlt for long would generate code like this:
+        //
+        // AL = lo(op1) < lo(op2)   // Always unsigned comparison
+        // BL = hi(op1) < hi(op2)   // Signedness depends on operands
+        // dest = hi(op1) == hi(op2) ? BL : AL;
+        //
+
+        // FIXME: Not Yet Implemented
+               return OpNum;
+      }
+    }
+  }
+
+  unsigned Op1r = getReg(Op1, MBB, IP);
+  switch (Class) {
+  default: assert(0 && "Unknown type class!");
+  case cByte:
+  case cShort:
+  case cInt:
+       BuildMI(*MBB, IP, CompTy->isSigned() ? PPC32::CMP : PPC32::CMPL, 2, PPC32::CR0).addReg(Op0r).addReg(Op1r);
+    break;
+  case cFP:
+    emitUCOM(MBB, IP, Op0r, Op1r);
+    break;
+
+  case cLong:
+    if (OpNum < 2) {    // seteq, setne
+      unsigned LoTmp = makeAnotherReg(Type::IntTy);
+      unsigned HiTmp = makeAnotherReg(Type::IntTy);
+      unsigned FinalTmp = makeAnotherReg(Type::IntTy);
+      BuildMI(*MBB, IP, PPC32::XOR, 2, LoTmp).addReg(Op0r).addReg(Op1r);
+      BuildMI(*MBB, IP, PPC32::XOR, 2, HiTmp).addReg(Op0r+1).addReg(Op1r+1);
+      BuildMI(*MBB, IP, PPC32::ORo,  2, FinalTmp).addReg(LoTmp).addReg(HiTmp);
+      //BuildMI(*MBB, IP, PPC32::CMPLI, 2, PPC32::CR0).addReg(FinalTmp).addImm(0);
+      break;  // Allow the sete or setne to be generated from flags set by OR
+    } else {
+      // Emit a sequence of code which compares the high and low parts once
+      // each, then uses a conditional move to handle the overflow case.  For
+      // example, a setlt for long would generate code like this:
+      //
+      // AL = lo(op1) < lo(op2)   // Signedness depends on operands
+      // BL = hi(op1) < hi(op2)   // Always unsigned comparison
+      // dest = hi(op1) == hi(op2) ? BL : AL;
+      //
+
+      // FIXME: Not Yet Implemented
+      return OpNum;
+    }
+  }
+  return OpNum;
+}
+
+/// SetCC instructions - Here we just emit boilerplate code to set a byte-sized
+/// register, then move it to wherever the result should be. 
+///
+void ISel::visitSetCondInst(SetCondInst &I) {
+  if (canFoldSetCCIntoBranchOrSelect(&I))
+    return;  // Fold this into a branch or select.
+
+  unsigned DestReg = getReg(I);
+  MachineBasicBlock::iterator MII = BB->end();
+  emitSetCCOperation(BB, MII, I.getOperand(0), I.getOperand(1), I.getOpcode(),DestReg);
+}
+
+/// emitSetCCOperation - Common code shared between visitSetCondInst and
+/// constant expression support.
+///
+/// FIXME: this is wrong.  we should figure out a way to guarantee
+/// TargetReg is a CR and then make it a no-op
+void ISel::emitSetCCOperation(MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Op0, Value *Op1, unsigned Opcode,
+                              unsigned TargetReg) {
+  unsigned OpNum = getSetCCNumber(Opcode);
+  OpNum = EmitComparison(OpNum, Op0, Op1, MBB, IP);
+
+  // The value is already in CR0 at this point, do nothing.
+}
+
+
+void ISel::visitSelectInst(SelectInst &SI) {
+  unsigned DestReg = getReg(SI);
+  MachineBasicBlock::iterator MII = BB->end();
+  emitSelectOperation(BB, MII, SI.getCondition(), SI.getTrueValue(),SI.getFalseValue(), DestReg);
+}
+/// emitSelect - Common code shared between visitSelectInst and the constant
+/// expression support.
+/// FIXME: this is most likely broken in one or more ways.  Namely, PowerPC has
+/// no select instruction.  FSEL only works for comparisons against zero.
+void ISel::emitSelectOperation(MachineBasicBlock *MBB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Cond, Value *TrueVal, Value *FalseVal,
+                               unsigned DestReg) {
+  unsigned SelectClass = getClassB(TrueVal->getType());
+
+  unsigned TrueReg  = getReg(TrueVal, MBB, IP);
+  unsigned FalseReg = getReg(FalseVal, MBB, IP);
+
+  if (TrueReg == FalseReg) {
+       if (SelectClass == cFP) {
+               BuildMI(*MBB, IP, PPC32::FMR, 1, DestReg).addReg(TrueReg);
+       } else {
+               BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TrueReg).addReg(TrueReg);
+       }
+       
+    if (SelectClass == cLong)
+               BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TrueReg+1).addReg(TrueReg+1);
+    return;
+  }
+
+  unsigned CondReg = getReg(Cond, MBB, IP);
+  unsigned numZeros = makeAnotherReg(Type::IntTy);
+  unsigned falseHi = makeAnotherReg(Type::IntTy);
+  unsigned falseAll = makeAnotherReg(Type::IntTy);
+  unsigned trueAll = makeAnotherReg(Type::IntTy);
+  unsigned Temp1 = makeAnotherReg(Type::IntTy);
+  unsigned Temp2 = makeAnotherReg(Type::IntTy);
+
+  BuildMI(*MBB, IP, PPC32::CNTLZW, 1, numZeros).addReg(CondReg);
+  BuildMI(*MBB, IP, PPC32::RLWINM, 4, falseHi).addReg(numZeros).addImm(26).addImm(0).addImm(0);
+  BuildMI(*MBB, IP, PPC32::SRAWI, 2, falseAll).addReg(falseHi).addImm(31);
+  BuildMI(*MBB, IP, PPC32::NOR, 2, trueAll).addReg(falseAll).addReg(falseAll);
+  BuildMI(*MBB, IP, PPC32::AND, 2, Temp1).addReg(TrueReg).addReg(trueAll);
+  BuildMI(*MBB, IP, PPC32::AND, 2, Temp2).addReg(FalseReg).addReg(falseAll);
+  BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Temp1).addReg(Temp2);
+  
+  if (SelectClass == cLong) {
+       unsigned Temp3 = makeAnotherReg(Type::IntTy);
+       unsigned Temp4 = makeAnotherReg(Type::IntTy);
+       BuildMI(*MBB, IP, PPC32::AND, 2, Temp3).addReg(TrueReg+1).addReg(trueAll);
+       BuildMI(*MBB, IP, PPC32::AND, 2, Temp4).addReg(FalseReg+1).addReg(falseAll);
+       BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Temp3).addReg(Temp4);
+  }
+  
+  return;
+}
+
+
+
+/// promote32 - Emit instructions to turn a narrow operand into a 32-bit-wide
+/// operand, in the specified target register.
+///
+void ISel::promote32(unsigned targetReg, const ValueRecord &VR) {
+  bool isUnsigned = VR.Ty->isUnsigned() || VR.Ty == Type::BoolTy;
+
+  Value *Val = VR.Val;
+  const Type *Ty = VR.Ty;
+  if (Val) {
+    if (Constant *C = dyn_cast<Constant>(Val)) {
+      Val = ConstantExpr::getCast(C, Type::IntTy);
+      Ty = Type::IntTy;
+    }
+
+    // If this is a simple constant, just emit a load directly to avoid the copy.
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
+      int TheVal = CI->getRawValue() & 0xFFFFFFFF;
+
+      if (TheVal < 32768 && TheVal >= -32768) {
+               BuildMI(BB, PPC32::ADDI, 2, targetReg).addReg(PPC32::R0).addImm(TheVal);
+         } else {
+               unsigned TmpReg = makeAnotherReg(Type::IntTy);
+               BuildMI(BB, PPC32::ADDIS, 2, TmpReg).addReg(PPC32::R0).addImm(TheVal >> 16);
+               BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(TmpReg).addImm(TheVal & 0xFFFF);
+         }
+      return;
+    }
+  }
+
+  // Make sure we have the register number for this value...
+  unsigned Reg = Val ? getReg(Val) : VR.Reg;
+
+  switch (getClassB(Ty)) {
+  case cByte:
+    // Extend value into target register (8->32)
+    if (isUnsigned)
+      BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(24).addZImm(31);
+    else
+      BuildMI(BB, PPC32::EXTSB, 1, targetReg).addReg(Reg);
+    break;
+  case cShort:
+    // Extend value into target register (16->32)
+    if (isUnsigned)
+      BuildMI(BB, PPC32::RLWINM, 4, targetReg).addReg(Reg).addZImm(0).addZImm(16).addZImm(31);
+    else
+      BuildMI(BB, PPC32::EXTSH, 1, targetReg).addReg(Reg);
+    break;
+  case cInt:
+    // Move value into target register (32->32)
+    BuildMI(BB, PPC32::ORI, 2, targetReg).addReg(Reg).addReg(Reg);
+    break;
+  default:
+    assert(0 && "Unpromotable operand class in promote32");
+  }
+}
+
+// just emit blr.
+void ISel::visitReturnInst(ReturnInst &I) {
+  Value *RetVal = I.getOperand(0);
+
+  switch (getClassB(RetVal->getType())) {
+  case cByte:   // integral return values: extend or move into r3 and return
+  case cShort:
+  case cInt:
+    promote32(PPC32::R3, ValueRecord(RetVal));
+    break;
+  case cFP: {   // Floats & Doubles: Return in f1
+    unsigned RetReg = getReg(RetVal);
+    BuildMI(BB, PPC32::FMR, 1, PPC32::F1).addReg(RetReg);
+    break;
+  }
+  case cLong: {
+    unsigned RetReg = getReg(RetVal);
+    BuildMI(BB, PPC32::OR, 2, PPC32::R3).addReg(RetReg).addReg(RetReg);
+    BuildMI(BB, PPC32::OR, 2, PPC32::R4).addReg(RetReg+1).addReg(RetReg+1);
+    break;
+  }
+  default:
+    visitInstruction(I);
+  }
+  BuildMI(BB, PPC32::BLR, 1).addImm(0);
+}
+
+// getBlockAfter - Return the basic block which occurs lexically after the
+// specified one.
+static inline BasicBlock *getBlockAfter(BasicBlock *BB) {
+  Function::iterator I = BB; ++I;  // Get iterator to next block
+  return I != BB->getParent()->end() ? &*I : 0;
+}
+
+/// visitBranchInst - Handle conditional and unconditional branches here.  Note
+/// that since code layout is frozen at this point, that if we are trying to
+/// jump to a block that is the immediate successor of the current block, we can
+/// just make a fall-through (but we don't currently).
+///
+void ISel::visitBranchInst(BranchInst &BI) {
+       // Update machine-CFG edges
+       BB->addSuccessor (MBBMap[BI.getSuccessor(0)]);
+       if (BI.isConditional())
+               BB->addSuccessor (MBBMap[BI.getSuccessor(1)]);
+       
+       BasicBlock *NextBB = getBlockAfter(BI.getParent());  // BB after current one
+       
+       if (!BI.isConditional()) {  // Unconditional branch?
+               if (BI.getSuccessor(0) != NextBB)
+                       BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+               return;
+       }
+       
+  // See if we can fold the setcc into the branch itself...
+  SetCondInst *SCI = canFoldSetCCIntoBranchOrSelect(BI.getCondition());
+  if (SCI == 0) {
+    // Nope, cannot fold setcc into this branch.  Emit a branch on a condition
+    // computed some other way...
+    unsigned condReg = getReg(BI.getCondition());
+       BuildMI(BB, PPC32::CMPLI, 3, PPC32::CR0).addImm(0).addReg(condReg).addImm(0);
+    if (BI.getSuccessor(1) == NextBB) {
+      if (BI.getSuccessor(0) != NextBB)
+        BuildMI(BB, PPC32::BC, 3).addImm(4).addImm(2).addMBB(MBBMap[BI.getSuccessor(0)]);
+    } else {
+         BuildMI(BB, PPC32::BC, 3).addImm(12).addImm(2).addMBB(MBBMap[BI.getSuccessor(1)]);
+      
+      if (BI.getSuccessor(0) != NextBB)
+        BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(0)]);
+    }
+    return;
+  }
+
+
+  unsigned OpNum = getSetCCNumber(SCI->getOpcode());
+  MachineBasicBlock::iterator MII = BB->end();
+  OpNum = EmitComparison(OpNum, SCI->getOperand(0), SCI->getOperand(1), BB,MII);
+
+  const Type *CompTy = SCI->getOperand(0)->getType();
+  bool isSigned = CompTy->isSigned() && getClassB(CompTy) != cFP;
+  
+  // LLVM  -> X86 signed  X86 unsigned
+  // -----    ----------  ------------
+  // seteq -> je          je
+  // setne -> jne         jne
+  // setlt -> jl          jb
+  // setge -> jge         jae
+  // setgt -> jg          ja
+  // setle -> jle         jbe
+
+  static const unsigned BITab[6] = { 2, 2, 0, 0, 1, 1 };
+  unsigned BO_true = (OpNum % 2 == 0) ? 12 : 4;
+  unsigned BO_false = (OpNum % 2 == 0) ? 4 : 12;
+  unsigned BIval = BITab[0];
+
+  if (BI.getSuccessor(0) != NextBB) {
+               BuildMI(BB, PPC32::BC, 3).addImm(BO_true).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(0)]);
+    if (BI.getSuccessor(1) != NextBB)
+               BuildMI(BB, PPC32::B, 1).addMBB(MBBMap[BI.getSuccessor(1)]);
+  } else {
+    // Change to the inverse condition...
+    if (BI.getSuccessor(1) != NextBB) {
+         BuildMI(BB, PPC32::BC, 3).addImm(BO_false).addImm(BIval).addMBB(MBBMap[BI.getSuccessor(1)]);
+    }
+  }
+}
+
+
+/// doCall - This emits an abstract call instruction, setting up the arguments
+/// and the return value as appropriate.  For the actual function call itself,
+/// it inserts the specified CallMI instruction into the stream.
+///
+/// FIXME: See Documentation at the following URL for "correct" behavior
+/// <http://developer.apple.com/documentation/DeveloperTools/Conceptual/MachORuntime/2rt_powerpc_abi/chapter_9_section_5.html>
+void ISel::doCall(const ValueRecord &Ret, MachineInstr *CallMI,
+                  const std::vector<ValueRecord> &Args) {
+  // Count how many bytes are to be pushed on the stack...
+  unsigned NumBytes = 0;
+
+  if (!Args.empty()) {
+    for (unsigned i = 0, e = Args.size(); i != e; ++i)
+      switch (getClassB(Args[i].Ty)) {
+      case cByte: case cShort: case cInt:
+        NumBytes += 4; break;
+      case cLong:
+        NumBytes += 8; break;
+      case cFP:
+        NumBytes += Args[i].Ty == Type::FloatTy ? 4 : 8;
+        break;
+      default: assert(0 && "Unknown class!");
+      }
+
+    // Adjust the stack pointer for the new arguments...
+    BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(NumBytes);
+
+    // Arguments go on the stack in reverse order, as specified by the ABI.
+    unsigned ArgOffset = 0;
+       unsigned GPR_remaining = 8;
+       unsigned FPR_remaining = 13;
+       unsigned GPR_idx = 3;
+       unsigned FPR_idx = 1;
+       
+    for (unsigned i = 0, e = Args.size(); i != e; ++i) {
+      unsigned ArgReg;
+      switch (getClassB(Args[i].Ty)) {
+      case cByte:
+      case cShort:
+        // Promote arg to 32 bits wide into a temporary register...
+        ArgReg = makeAnotherReg(Type::UIntTy);
+        promote32(ArgReg, Args[i]);
+                 
+               // Reg or stack?
+               if (GPR_remaining > 0) {
+                       BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
+               } else {
+                       BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+               }
+               break;
+      case cInt:
+        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+
+               // Reg or stack?
+               if (GPR_remaining > 0) {
+                   BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
+               } else {
+                   BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+               }
+               break;
+      case cLong:
+               ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+
+               // Reg or stack?
+               if (GPR_remaining > 1) {
+                   BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx).addReg(ArgReg).addReg(ArgReg);
+                   BuildMI(BB, PPC32::OR, 2, PPC32::R0 + GPR_idx + 1).addReg(ArgReg+1).addReg(ArgReg+1);
+               } else {
+                   BuildMI(BB, PPC32::STW, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+                   BuildMI(BB, PPC32::STW, 3).addReg(ArgReg+1).addImm(ArgOffset+4).addReg(PPC32::R1);
+               }
+
+        ArgOffset += 4;        // 8 byte entry, not 4.
+               if (GPR_remaining > 0) {
+                       GPR_remaining -= 1;    // uses up 2 GPRs
+                       GPR_idx += 1;
+               }
+        break;
+      case cFP:
+        ArgReg = Args[i].Val ? getReg(Args[i].Val) : Args[i].Reg;
+        if (Args[i].Ty == Type::FloatTy) {
+                       // Reg or stack?
+                       if (FPR_remaining > 0) {
+                               BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
+                               FPR_remaining--;
+                               FPR_idx++;
+                       } else {
+                               BuildMI(BB, PPC32::STFS, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+                       }
+        } else {
+          assert(Args[i].Ty == Type::DoubleTy && "Unknown FP type!");
+                       // Reg or stack?
+                       if (FPR_remaining > 0) {
+                               BuildMI(BB, PPC32::FMR, 1, PPC32::F0 + FPR_idx).addReg(ArgReg);
+                               FPR_remaining--;
+                               FPR_idx++;
+                       } else {
+                               BuildMI(BB, PPC32::STFD, 3).addReg(ArgReg).addImm(ArgOffset).addReg(PPC32::R1);
+                       }
+
+                       ArgOffset += 4;       // 8 byte entry, not 4.
+                       if (GPR_remaining > 0) {
+                               GPR_remaining--;    // uses up 2 GPRs
+                               GPR_idx++;
+                       }
+        }
+        break;
+
+      default: assert(0 && "Unknown class!");
+      }
+      ArgOffset += 4;
+         if (GPR_remaining > 0) {
+               GPR_remaining--;    // uses up 2 GPRs
+               GPR_idx++;
+         }
+    }
+  } else {
+    BuildMI(BB, PPC32::ADJCALLSTACKDOWN, 1).addImm(0);
+  }
+
+  BB->push_back(CallMI);
+
+  BuildMI(BB, PPC32::ADJCALLSTACKUP, 1).addImm(NumBytes);
+
+  // If there is a return value, scavenge the result from the location the call
+  // leaves it in...
+  //
+  if (Ret.Ty != Type::VoidTy) {
+    unsigned DestClass = getClassB(Ret.Ty);
+    switch (DestClass) {
+    case cByte:
+    case cShort:
+    case cInt:
+      // Integral results are in r3
+         BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
+    case cFP:     // Floating-point return values live in f1
+      BuildMI(BB, PPC32::FMR, 1, Ret.Reg).addReg(PPC32::F1);
+      break;
+    case cLong:   // Long values are in r3:r4
+         BuildMI(BB, PPC32::OR, 2, Ret.Reg).addReg(PPC32::R3).addReg(PPC32::R3);
+         BuildMI(BB, PPC32::OR, 2, Ret.Reg+1).addReg(PPC32::R4).addReg(PPC32::R4);
+      break;
+    default: assert(0 && "Unknown class!");
+    }
+  }
+}
+
+
+/// visitCallInst - Push args on stack and do a procedure call instruction.
+void ISel::visitCallInst(CallInst &CI) {
+  MachineInstr *TheCall;
+  if (Function *F = CI.getCalledFunction()) {
+    // Is it an intrinsic function call?
+    if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID()) {
+      visitIntrinsicCall(ID, CI);   // Special intrinsics are not handled here
+      return;
+    }
+
+    // Emit a CALL instruction with PC-relative displacement.
+    TheCall = BuildMI(PPC32::CALLpcrel, 1).addGlobalAddress(F, true);
+  } else {  // Emit an indirect call through the CTR
+    unsigned Reg = getReg(CI.getCalledValue());
+    BuildMI(PPC32::MTSPR, 2).addZImm(9).addReg(Reg);
+    TheCall = BuildMI(PPC32::CALLindirect, 1).addZImm(20).addZImm(0);
+  }
+
+  std::vector<ValueRecord> Args;
+  for (unsigned i = 1, e = CI.getNumOperands(); i != e; ++i)
+    Args.push_back(ValueRecord(CI.getOperand(i)));
+
+  unsigned DestReg = CI.getType() != Type::VoidTy ? getReg(CI) : 0;
+  doCall(ValueRecord(DestReg, CI.getType()), TheCall, Args);
+}         
+
+
+/// dyncastIsNan - Return the operand of an isnan operation if this is an isnan.
+///
+static Value *dyncastIsNan(Value *V) {
+  if (CallInst *CI = dyn_cast<CallInst>(V))
+    if (Function *F = CI->getCalledFunction())
+      if (F->getIntrinsicID() == Intrinsic::isnan)
+        return CI->getOperand(1);
+  return 0;
+}
+
+/// isOnlyUsedByUnorderedComparisons - Return true if this value is only used by
+/// or's whos operands are all calls to the isnan predicate.
+static bool isOnlyUsedByUnorderedComparisons(Value *V) {
+  assert(dyncastIsNan(V) && "The value isn't an isnan call!");
+
+  // Check all uses, which will be or's of isnans if this predicate is true.
+  for (Value::use_iterator UI = V->use_begin(), E = V->use_end(); UI != E;++UI){
+    Instruction *I = cast<Instruction>(*UI);
+    if (I->getOpcode() != Instruction::Or) return false;
+    if (I->getOperand(0) != V && !dyncastIsNan(I->getOperand(0))) return false;
+    if (I->getOperand(1) != V && !dyncastIsNan(I->getOperand(1))) return false;
+  }
+
+  return true;
+}
+
+/// LowerUnknownIntrinsicFunctionCalls - This performs a prepass over the
+/// function, lowering any calls to unknown intrinsic functions into the
+/// equivalent LLVM code.
+///
+void ISel::LowerUnknownIntrinsicFunctionCalls(Function &F) {
+  for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB)
+    for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; )
+      if (CallInst *CI = dyn_cast<CallInst>(I++))
+        if (Function *F = CI->getCalledFunction())
+          switch (F->getIntrinsicID()) {
+          case Intrinsic::not_intrinsic:
+          case Intrinsic::vastart:
+          case Intrinsic::vacopy:
+          case Intrinsic::vaend:
+          case Intrinsic::returnaddress:
+          case Intrinsic::frameaddress:
+          case Intrinsic::isnan:
+            // We directly implement these intrinsics
+            break;
+          case Intrinsic::readio: {
+            // On PPC, memory operations are in-order.  Lower this intrinsic
+            // into a volatile load.
+            Instruction *Before = CI->getPrev();
+            LoadInst * LI = new LoadInst(CI->getOperand(1), "", true, CI);
+            CI->replaceAllUsesWith(LI);
+            BB->getInstList().erase(CI);
+            break;
+          }
+          case Intrinsic::writeio: {
+            // On PPC, memory operations are in-order.  Lower this intrinsic
+            // into a volatile store.
+            Instruction *Before = CI->getPrev();
+            StoreInst *LI = new StoreInst(CI->getOperand(1),
+                                          CI->getOperand(2), true, CI);
+            CI->replaceAllUsesWith(LI);
+            BB->getInstList().erase(CI);
+            break;
+          }
+          default:
+            // All other intrinsic calls we must lower.
+            Instruction *Before = CI->getPrev();
+            TM.getIntrinsicLowering().LowerIntrinsicCall(CI);
+            if (Before) {        // Move iterator to instruction after call
+              I = Before; ++I;
+            } else {
+              I = BB->begin();
+            }
+          }
+}
+
+void ISel::visitIntrinsicCall(Intrinsic::ID ID, CallInst &CI) {
+  unsigned TmpReg1, TmpReg2, TmpReg3;
+  switch (ID) {
+  case Intrinsic::vastart:
+    // Get the address of the first vararg value...
+    TmpReg1 = getReg(CI);
+    addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1), VarArgsFrameIndex);
+    return;
+
+  case Intrinsic::vacopy:
+    TmpReg1 = getReg(CI);
+    TmpReg2 = getReg(CI.getOperand(1));
+    BuildMI(BB, PPC32::OR, 2, TmpReg1).addReg(TmpReg2).addReg(TmpReg2);
+    return;
+  case Intrinsic::vaend: return;
+
+  case Intrinsic::returnaddress:
+  case Intrinsic::frameaddress:
+    TmpReg1 = getReg(CI);
+    if (cast<Constant>(CI.getOperand(1))->isNullValue()) {
+      if (ID == Intrinsic::returnaddress) {
+        // Just load the return address
+        addFrameReference(BuildMI(BB, PPC32::LWZ, 2, TmpReg1),
+                          ReturnAddressIndex);
+      } else {
+        addFrameReference(BuildMI(BB, PPC32::ADDI, 2, TmpReg1),
+                          ReturnAddressIndex, -4, false);
+      }
+    } else {
+      // Values other than zero are not implemented yet.
+      BuildMI(BB, PPC32::ADDI, 2, TmpReg1).addReg(PPC32::R0).addImm(0);
+    }
+    return;
+
+  case Intrinsic::isnan:
+    // If this is only used by 'isunordered' style comparisons, don't emit it.
+    if (isOnlyUsedByUnorderedComparisons(&CI)) return;
+    TmpReg1 = getReg(CI.getOperand(1));
+    emitUCOM(BB, BB->end(), TmpReg1, TmpReg1);
+       TmpReg2 = makeAnotherReg(Type::IntTy);
+       BuildMI(BB, PPC32::MFCR, TmpReg2);
+    TmpReg3 = getReg(CI);
+    BuildMI(BB, PPC32::RLWINM, 4, TmpReg3).addReg(TmpReg2).addImm(4).addImm(31).addImm(31);
+    return;
+
+  default: assert(0 && "Error: unknown intrinsics should have been lowered!");
+  }
+}
+
+/// visitSimpleBinary - Implement simple binary operators for integral types...
+/// OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for Or, 4 for
+/// Xor.
+///
+void ISel::visitSimpleBinary(BinaryOperator &B, unsigned OperatorClass) {
+  unsigned DestReg = getReg(B);
+  MachineBasicBlock::iterator MI = BB->end();
+  Value *Op0 = B.getOperand(0), *Op1 = B.getOperand(1);
+  unsigned Class = getClassB(B.getType());
+
+  emitSimpleBinaryOperation(BB, MI, Op0, Op1, OperatorClass, DestReg);
+}
+
+/// emitBinaryFPOperation - This method handles emission of floating point
+/// Add (0), Sub (1), Mul (2), and Div (3) operations.
+void ISel::emitBinaryFPOperation(MachineBasicBlock *BB,
+                                 MachineBasicBlock::iterator IP,
+                                 Value *Op0, Value *Op1,
+                                 unsigned OperatorClass, unsigned DestReg) {
+
+  // Special case: op Reg, <const fp>
+  if (ConstantFP *Op1C = dyn_cast<ConstantFP>(Op1)) {
+      // Create a constant pool entry for this constant.
+      MachineConstantPool *CP = F->getConstantPool();
+      unsigned CPI = CP->getConstantPoolIndex(Op1C);
+      const Type *Ty = Op1->getType();
+
+      static const unsigned OpcodeTab[][4] = {
+        { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },   // Float
+        { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV },   // Double
+      };
+
+      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+         unsigned TempReg = makeAnotherReg(Ty);
+      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
+      addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
+
+      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+      unsigned Op0r = getReg(Op0, BB, IP);
+         BuildMI(*BB, IP, Opcode, DestReg).addReg(Op0r).addReg(TempReg);
+      return;
+    }
+  
+  // Special case: R1 = op <const fp>, R2
+  if (ConstantFP *CFP = dyn_cast<ConstantFP>(Op0))
+    if (CFP->isExactlyValue(-0.0) && OperatorClass == 1) {
+      // -0.0 - X === -X
+      unsigned op1Reg = getReg(Op1, BB, IP);
+      BuildMI(*BB, IP, PPC32::FNEG, 1, DestReg).addReg(op1Reg);
+      return;
+    } else {
+      // R1 = op CST, R2  -->  R1 = opr R2, CST
+
+      // Create a constant pool entry for this constant.
+      MachineConstantPool *CP = F->getConstantPool();
+      unsigned CPI = CP->getConstantPoolIndex(CFP);
+      const Type *Ty = CFP->getType();
+
+      static const unsigned OpcodeTab[][4] = {
+        { PPC32::FADDS, PPC32::FSUBS, PPC32::FMULS, PPC32::FDIVS },   // Float
+        { PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV },   // Double
+      };
+
+      assert(Ty == Type::FloatTy || Ty == Type::DoubleTy && "Unknown FP type!");
+         unsigned TempReg = makeAnotherReg(Ty);
+      unsigned LoadOpcode = Ty == Type::FloatTy ? PPC32::LFS : PPC32::LFD;
+      addConstantPoolReference(BuildMI(*BB, IP, LoadOpcode, 2, TempReg), CPI);
+
+      unsigned Opcode = OpcodeTab[Ty != Type::FloatTy][OperatorClass];
+      unsigned Op1r = getReg(Op1, BB, IP);
+         BuildMI(*BB, IP, Opcode, DestReg).addReg(TempReg).addReg(Op1r);
+      return;
+    }
+
+  // General case.
+  static const unsigned OpcodeTab[4] = {
+    PPC32::FADD, PPC32::FSUB, PPC32::FMUL, PPC32::FDIV
+  };
+
+  unsigned Opcode = OpcodeTab[OperatorClass];
+  unsigned Op0r = getReg(Op0, BB, IP);
+  unsigned Op1r = getReg(Op1, BB, IP);
+  BuildMI(*BB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+}
+
+/// emitSimpleBinaryOperation - Implement simple binary operators for integral
+/// types...  OperatorClass is one of: 0 for Add, 1 for Sub, 2 for And, 3 for
+/// Or, 4 for Xor.
+///
+/// emitSimpleBinaryOperation - Common code shared between visitSimpleBinary
+/// and constant expression support.
+///
+void ISel::emitSimpleBinaryOperation(MachineBasicBlock *MBB,
+                                     MachineBasicBlock::iterator IP,
+                                     Value *Op0, Value *Op1,
+                                     unsigned OperatorClass, unsigned DestReg) {
+  unsigned Class = getClassB(Op0->getType());
+
+    // Arithmetic and Bitwise operators
+    static const unsigned OpcodeTab[5] = {
+         PPC32::ADD, PPC32::SUB, PPC32::AND, PPC32::OR, PPC32::XOR
+       };
+    // Otherwise, code generate the full operation with a constant.
+    static const unsigned BottomTab[] = {
+      PPC32::ADDC, PPC32::SUBC, PPC32::AND, PPC32::OR, PPC32::XOR
+    };
+    static const unsigned TopTab[] = {
+      PPC32::ADDE, PPC32::SUBFE, PPC32::AND, PPC32::OR, PPC32::XOR
+    };
+  
+  if (Class == cFP) {
+    assert(OperatorClass < 2 && "No logical ops for FP!");
+    emitBinaryFPOperation(MBB, IP, Op0, Op1, OperatorClass, DestReg);
+    return;
+  }
+
+  if (Op0->getType() == Type::BoolTy) {
+    if (OperatorClass == 3)
+      // If this is an or of two isnan's, emit an FP comparison directly instead
+      // of or'ing two isnan's together.
+      if (Value *LHS = dyncastIsNan(Op0))
+        if (Value *RHS = dyncastIsNan(Op1)) {
+          unsigned Op0Reg = getReg(RHS, MBB, IP), Op1Reg = getReg(LHS, MBB, IP);
+                 unsigned TmpReg = makeAnotherReg(Type::IntTy);
+          emitUCOM(MBB, IP, Op0Reg, Op1Reg);
+                 BuildMI(*MBB, IP, PPC32::MFCR, TmpReg);
+                 BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(TmpReg).addImm(4).addImm(31).addImm(31);
+          return;
+        }
+  }
+
+  // sub 0, X -> neg X
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op0))
+    if (OperatorClass == 1 && CI->isNullValue()) {
+      unsigned op1Reg = getReg(Op1, MBB, IP);
+      BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg).addReg(op1Reg);
+      
+      if (Class == cLong) {
+               unsigned zeroes = makeAnotherReg(Type::IntTy);
+               unsigned overflow = makeAnotherReg(Type::IntTy);
+        unsigned T = makeAnotherReg(Type::IntTy);
+               BuildMI(*MBB, IP, PPC32::CNTLZW, 1, zeroes).addReg(op1Reg);
+               BuildMI(*MBB, IP, PPC32::RLWINM, 4, overflow).addReg(zeroes).addImm(27).addImm(5).addImm(31);
+               BuildMI(*MBB, IP, PPC32::ADD, 2, T).addReg(op1Reg+1).addReg(overflow);
+               BuildMI(*MBB, IP, PPC32::NEG, 1, DestReg+1).addReg(T);
+      }
+      return;
+    }
+
+  // Special case: op Reg, <const int>
+  if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
+    unsigned Op0r = getReg(Op0, MBB, IP);
+
+    // xor X, -1 -> not X
+    if (OperatorClass == 4 && Op1C->isAllOnesValue()) {
+      BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+      if (Class == cLong)  // Invert the top part too
+        BuildMI(*MBB, IP, PPC32::NOR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
+      return;
+    }
+
+    unsigned Opcode = OpcodeTab[OperatorClass];
+    unsigned Op1r = getReg(Op1, MBB, IP);
+
+    if (Class != cLong) {
+      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+      return;
+    }
+    
+    // If the constant is zero in the low 32-bits, just copy the low part
+    // across and apply the normal 32-bit operation to the high parts.  There
+    // will be no carry or borrow into the top.
+    if (cast<ConstantInt>(Op1C)->getRawValue() == 0) {
+      if (OperatorClass != 2) // All but and...
+        BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(Op0r).addReg(Op0r);
+      else
+        BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+         BuildMI(*MBB, IP, Opcode, 2, DestReg+1).addReg(Op0r+1).addReg(Op1r+1);
+      return;
+    }
+    
+    // If this is a long value and the high or low bits have a special
+    // property, emit some special cases.
+    unsigned Op1h = cast<ConstantInt>(Op1C)->getRawValue() >> 32LL;
+    
+    // If this is a logical operation and the top 32-bits are zero, just
+    // operate on the lower 32.
+    if (Op1h == 0 && OperatorClass > 1) {
+      BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+      if (OperatorClass != 2)  // All but and
+        BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(Op0r+1).addReg(Op0r+1);
+      else
+        BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
+      return;
+    }
+    
+    // TODO: We could handle lots of other special cases here, such as AND'ing
+    // with 0xFFFFFFFF00000000 -> noop, etc.
+    
+    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
+    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
+    return;
+  }
+
+  unsigned Op0r = getReg(Op0, MBB, IP);
+  unsigned Op1r = getReg(Op1, MBB, IP);
+
+  if (Class != cLong) {
+       unsigned Opcode = OpcodeTab[OperatorClass];
+       BuildMI(*MBB, IP, Opcode, 2, DestReg).addReg(Op0r).addReg(Op1r);
+  } else {
+    BuildMI(*MBB, IP, BottomTab[OperatorClass], 2, DestReg).addReg(Op0r).addImm(Op1r);
+    BuildMI(*MBB, IP, TopTab[OperatorClass], 2, DestReg+1).addReg(Op0r+1).addImm(Op1r+1);
+  }
+  return;
+}
+
+/// doMultiply - Emit appropriate instructions to multiply together the
+/// registers op0Reg and op1Reg, and put the result in DestReg.  The type of the
+/// result should be given as DestTy.
+///
+void ISel::doMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator MBBI,
+                      unsigned DestReg, const Type *DestTy,
+                      unsigned op0Reg, unsigned op1Reg) {
+  unsigned Class = getClass(DestTy);
+  switch (Class) {
+  case cLong:
+    BuildMI(*MBB, MBBI, PPC32::MULHW, 2, DestReg+1).addReg(op0Reg+1).addReg(op1Reg+1);
+  case cInt:
+  case cShort:
+  case cByte:
+    BuildMI(*MBB, MBBI, PPC32::MULLW, 2, DestReg).addReg(op0Reg).addReg(op1Reg);
+    return;
+  default:
+       assert(0 && "doMultiply cannot operate on unknown type!");
+  }
+}
+
+// ExactLog2 - This function solves for (Val == 1 << (N-1)) and returns N.  It
+// returns zero when the input is not exactly a power of two.
+static unsigned ExactLog2(unsigned Val) {
+  if (Val == 0 || (Val & (Val-1))) return 0;
+  unsigned Count = 0;
+  while (Val != 1) {
+    Val >>= 1;
+    ++Count;
+  }
+  return Count+1;
+}
+
+
+/// doMultiplyConst - This function is specialized to efficiently codegen an 8,
+/// 16, or 32-bit integer multiply by a constant.
+void ISel::doMultiplyConst(MachineBasicBlock *MBB,
+                           MachineBasicBlock::iterator IP,
+                           unsigned DestReg, const Type *DestTy,
+                           unsigned op0Reg, unsigned ConstRHS) {
+  unsigned Class = getClass(DestTy);
+  // Handle special cases here.
+  switch (ConstRHS) {
+  case 0:
+    BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+    return;
+  case 1:
+    BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(op0Reg).addReg(op0Reg);
+    return;
+  case 2:
+    BuildMI(*MBB, IP, PPC32::ADD, 2,DestReg).addReg(op0Reg).addReg(op0Reg);
+    return;
+  }
+
+  // If the element size is exactly a power of 2, use a shift to get it.
+  if (unsigned Shift = ExactLog2(ConstRHS)) {
+    switch (Class) {
+    default: assert(0 && "Unknown class for this function!");
+    case cByte:
+    case cShort:
+    case cInt:
+      BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(op0Reg).addImm(Shift-1).addImm(0).addImm(31-Shift-1);
+      return;
+    }
+  }
+  
+  // Most general case, emit a normal multiply...
+  unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
+  unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
+  BuildMI(*MBB, IP, PPC32::ADDIS, 2, TmpReg1).addReg(PPC32::R0).addImm(ConstRHS >> 16);
+  BuildMI(*MBB, IP, PPC32::ORI, 2, TmpReg2).addReg(TmpReg1).addImm(ConstRHS);
+  
+  // Emit a MUL to multiply the register holding the index by
+  // elementSize, putting the result in OffsetReg.
+  doMultiply(MBB, IP, DestReg, DestTy, op0Reg, TmpReg2);
+}
+
+void ISel::visitMul(BinaryOperator &I) {
+  unsigned ResultReg = getReg(I);
+
+  Value *Op0 = I.getOperand(0);
+  Value *Op1 = I.getOperand(1);
+
+  MachineBasicBlock::iterator IP = BB->end();
+  emitMultiply(BB, IP, Op0, Op1, ResultReg);
+}
+
+void ISel::emitMultiply(MachineBasicBlock *MBB, MachineBasicBlock::iterator IP,
+                        Value *Op0, Value *Op1, unsigned DestReg) {
+  MachineBasicBlock &BB = *MBB;
+  TypeClass Class = getClass(Op0->getType());
+
+  // Simple scalar multiply?
+  unsigned Op0Reg  = getReg(Op0, &BB, IP);
+  switch (Class) {
+  case cByte:
+  case cShort:
+  case cInt:
+    if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+      unsigned Val = (unsigned)CI->getRawValue(); // Isn't a 64-bit constant
+      doMultiplyConst(&BB, IP, DestReg, Op0->getType(), Op0Reg, Val);
+    } else {
+      unsigned Op1Reg  = getReg(Op1, &BB, IP);
+      doMultiply(&BB, IP, DestReg, Op1->getType(), Op0Reg, Op1Reg);
+    }
+    return;
+  case cFP:
+    emitBinaryFPOperation(MBB, IP, Op0, Op1, 2, DestReg);
+    return;
+  case cLong:
+    break;
+  }
+
+  // Long value.  We have to do things the hard way...
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Op1)) {
+    unsigned CLow = CI->getRawValue();
+    unsigned CHi  = CI->getRawValue() >> 32;
+    
+    if (CLow == 0) {
+      // If the low part of the constant is all zeros, things are simple.
+      BuildMI(BB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+      doMultiplyConst(&BB, IP, DestReg+1, Type::UIntTy, Op0Reg, CHi);
+      return;
+    }
+    
+    // Multiply the two low parts
+    unsigned OverflowReg = 0;
+    if (CLow == 1) {
+      BuildMI(BB, IP, PPC32::OR, 2, DestReg).addReg(Op0Reg).addReg(Op0Reg);
+    } else {
+         unsigned TmpRegL = makeAnotherReg(Type::UIntTy);
+      unsigned Op1RegL = makeAnotherReg(Type::UIntTy);
+      OverflowReg = makeAnotherReg(Type::UIntTy);
+         BuildMI(BB, IP, PPC32::ADDIS, 2, TmpRegL).addReg(PPC32::R0).addImm(CLow >> 16);
+         BuildMI(BB, IP, PPC32::ORI, 2, Op1RegL).addReg(TmpRegL).addImm(CLow);
+         BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1RegL);
+         BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1RegL);
+    }
+    
+    unsigned AHBLReg = makeAnotherReg(Type::UIntTy);
+    doMultiplyConst(&BB, IP, AHBLReg, Type::UIntTy, Op0Reg+1, CLow);
+    
+    unsigned AHBLplusOverflowReg;
+    if (OverflowReg) {
+      AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
+      BuildMI(BB, IP, PPC32::ADD, 2,                // AH*BL+(AL*BL >> 32)
+              AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
+    } else {
+      AHBLplusOverflowReg = AHBLReg;
+    }
+    
+    if (CHi == 0) {
+      BuildMI(BB, IP, PPC32::OR, 2, DestReg+1).addReg(AHBLplusOverflowReg).addReg(AHBLplusOverflowReg);
+    } else {
+      unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
+      doMultiplyConst(&BB, IP, ALBHReg, Type::UIntTy, Op0Reg, CHi);
+      
+      BuildMI(BB, IP, PPC32::ADD, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
+              DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
+    }
+    return;
+  }
+
+  // General 64x64 multiply
+
+  unsigned Op1Reg  = getReg(Op1, &BB, IP);
+  
+  // Multiply the two low parts... capturing carry into EDX
+  BuildMI(BB, IP, PPC32::MULLW, 2, DestReg).addReg(Op0Reg).addReg(Op1Reg);  // AL*BL
+  
+  unsigned OverflowReg = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, IP, PPC32::MULHW, 2, OverflowReg).addReg(Op0Reg).addReg(Op1Reg); // AL*BL >> 32
+  
+  unsigned AHBLReg = makeAnotherReg(Type::UIntTy);   // AH*BL
+  BuildMI(BB, IP, PPC32::MULLW, 2, AHBLReg).addReg(Op0Reg+1).addReg(Op1Reg);
+  
+  unsigned AHBLplusOverflowReg = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, IP, PPC32::ADD, 2,                // AH*BL+(AL*BL >> 32)
+          AHBLplusOverflowReg).addReg(AHBLReg).addReg(OverflowReg);
+  
+  unsigned ALBHReg = makeAnotherReg(Type::UIntTy); // AL*BH
+  BuildMI(BB, IP, PPC32::MULLW, 2, ALBHReg).addReg(Op0Reg).addReg(Op1Reg+1);
+  
+  BuildMI(BB, IP, PPC32::ADD, 2,      // AL*BH + AH*BL + (AL*BL >> 32)
+          DestReg+1).addReg(AHBLplusOverflowReg).addReg(ALBHReg);
+}
+
+
+/// visitDivRem - Handle division and remainder instructions... these
+/// instruction both require the same instructions to be generated, they just
+/// select the result from a different register.  Note that both of these
+/// instructions work differently for signed and unsigned operands.
+///
+void ISel::visitDivRem(BinaryOperator &I) {
+  unsigned ResultReg = getReg(I);
+  Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+  MachineBasicBlock::iterator IP = BB->end();
+  emitDivRemOperation(BB, IP, Op0, Op1, I.getOpcode() == Instruction::Div, ResultReg);
+}
+
+void ISel::emitDivRemOperation(MachineBasicBlock *BB,
+                               MachineBasicBlock::iterator IP,
+                               Value *Op0, Value *Op1, bool isDiv,
+                               unsigned ResultReg) {
+  const Type *Ty = Op0->getType();
+  unsigned Class = getClass(Ty);
+  switch (Class) {
+  case cFP:              // Floating point divide
+    if (isDiv) {
+      emitBinaryFPOperation(BB, IP, Op0, Op1, 3, ResultReg);
+      return;
+    } else {               // Floating point remainder...
+      unsigned Op0Reg = getReg(Op0, BB, IP);
+      unsigned Op1Reg = getReg(Op1, BB, IP);
+      MachineInstr *TheCall =
+        BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("fmod", true);
+      std::vector<ValueRecord> Args;
+      Args.push_back(ValueRecord(Op0Reg, Type::DoubleTy));
+      Args.push_back(ValueRecord(Op1Reg, Type::DoubleTy));
+      doCall(ValueRecord(ResultReg, Type::DoubleTy), TheCall, Args);
+    }
+    return;
+  case cLong: {
+    static const char *FnName[] =
+      { "__moddi3", "__divdi3", "__umoddi3", "__udivdi3" };
+    unsigned Op0Reg = getReg(Op0, BB, IP);
+    unsigned Op1Reg = getReg(Op1, BB, IP);
+    unsigned NameIdx = Ty->isUnsigned()*2 + isDiv;
+    MachineInstr *TheCall =
+      BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol(FnName[NameIdx], true);
+
+    std::vector<ValueRecord> Args;
+    Args.push_back(ValueRecord(Op0Reg, Type::LongTy));
+    Args.push_back(ValueRecord(Op1Reg, Type::LongTy));
+    doCall(ValueRecord(ResultReg, Type::LongTy), TheCall, Args);
+    return;
+  }
+  case cByte: case cShort: case cInt:
+    break;          // Small integrals, handled below...
+  default: assert(0 && "Unknown class!");
+  }
+
+  // Special case signed division by power of 2.
+  if (isDiv)
+    if (ConstantSInt *CI = dyn_cast<ConstantSInt>(Op1)) {
+      assert(Class != cLong && "This doesn't handle 64-bit divides!");
+      int V = CI->getValue();
+
+      if (V == 1) {       // X /s 1 => X
+        unsigned Op0Reg = getReg(Op0, BB, IP);
+        BuildMI(*BB, IP, PPC32::OR, 2, ResultReg).addReg(Op0Reg).addReg(Op0Reg);
+        return;
+      }
+
+      if (V == -1) {      // X /s -1 => -X
+        unsigned Op0Reg = getReg(Op0, BB, IP);
+        BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(Op0Reg);
+        return;
+      }
+
+      bool isNeg = false;
+      if (V < 0) {         // Not a positive power of 2?
+        V = -V;
+        isNeg = true;      // Maybe it's a negative power of 2.
+      }
+      if (unsigned Log = ExactLog2(V)) {
+        --Log;
+        unsigned Op0Reg = getReg(Op0, BB, IP);
+        unsigned TmpReg = makeAnotherReg(Op0->getType());
+        if (Log != 1) 
+          BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg).addReg(Op0Reg).addImm(Log-1);
+        else
+          BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(Op0Reg).addReg(Op0Reg);
+
+        unsigned TmpReg2 = makeAnotherReg(Op0->getType());
+        BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg2).addReg(TmpReg).addImm(Log).addImm(32-Log).addImm(31);
+
+        unsigned TmpReg3 = makeAnotherReg(Op0->getType());
+        BuildMI(*BB, IP, PPC32::ADD, 2, TmpReg3).addReg(Op0Reg).addReg(TmpReg2);
+
+        unsigned TmpReg4 = isNeg ? makeAnotherReg(Op0->getType()) : ResultReg;
+        BuildMI(*BB, IP, PPC32::SRAWI, 2, TmpReg4).addReg(Op0Reg).addImm(Log);
+
+        if (isNeg)
+          BuildMI(*BB, IP, PPC32::NEG, 1, ResultReg).addReg(TmpReg4);
+        return;
+      }
+    }
+
+  unsigned Op0Reg = getReg(Op0, BB, IP);
+  unsigned Op1Reg = getReg(Op1, BB, IP);
+
+  if (isDiv) {
+       if (Ty->isSigned()) {
+               BuildMI(*BB, IP, PPC32::DIVW, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
+       } else {
+               BuildMI(*BB, IP, PPC32::DIVWU, 2, ResultReg).addReg(Op0Reg).addReg(Op1Reg);
+       }
+  } else { // Remainder
+       unsigned TmpReg1 = makeAnotherReg(Op0->getType());
+       unsigned TmpReg2 = makeAnotherReg(Op0->getType());
+       
+       if (Ty->isSigned()) {
+               BuildMI(*BB, IP, PPC32::DIVW, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
+       } else {
+               BuildMI(*BB, IP, PPC32::DIVWU, 2, TmpReg1).addReg(Op0Reg).addReg(Op1Reg);
+       }
+       BuildMI(*BB, IP, PPC32::MULLW, 2, TmpReg2).addReg(TmpReg1).addReg(Op1Reg);
+       BuildMI(*BB, IP, PPC32::SUBF, 2, ResultReg).addReg(TmpReg2).addReg(Op0Reg);
+  }
+}
+
+
+/// Shift instructions: 'shl', 'sar', 'shr' - Some special cases here
+/// for constant immediate shift values, and for constant immediate
+/// shift values equal to 1. Even the general case is sort of special,
+/// because the shift amount has to be in CL, not just any old register.
+///
+void ISel::visitShiftInst(ShiftInst &I) {
+  MachineBasicBlock::iterator IP = BB->end ();
+  emitShiftOperation (BB, IP, I.getOperand (0), I.getOperand (1),
+                      I.getOpcode () == Instruction::Shl, I.getType (),
+                      getReg (I));
+}
+
+/// emitShiftOperation - Common code shared between visitShiftInst and
+/// constant expression support.
+void ISel::emitShiftOperation(MachineBasicBlock *MBB,
+                              MachineBasicBlock::iterator IP,
+                              Value *Op, Value *ShiftAmount, bool isLeftShift,
+                              const Type *ResultTy, unsigned DestReg) {
+  unsigned SrcReg = getReg (Op, MBB, IP);
+  bool isSigned = ResultTy->isSigned ();
+  unsigned Class = getClass (ResultTy);
+  
+  // Longs, as usual, are handled specially...
+  if (Class == cLong) {
+    // If we have a constant shift, we can generate much more efficient code
+    // than otherwise...
+    //
+    if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+      unsigned Amount = CUI->getValue();
+      if (Amount < 32) {
+        if (isLeftShift) {
+                 // FIXME: RLWIMI is a use-and-def of DestReg+1, but that violates SSA
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(Amount).addImm(0).addImm(31-Amount);
+          BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg+1).addReg(SrcReg).addImm(Amount).addImm(32-Amount).addImm(31);
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
+        } else {
+                 // FIXME: RLWIMI is a use-and-def of DestReg, but that violates SSA
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
+          BuildMI(*MBB, IP, PPC32::RLWIMI, 5).addReg(DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(0).addImm(Amount-1);
+          BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
+        }
+      } else {                 // Shifting more than 32 bits
+        Amount -= 32;
+        if (isLeftShift) {
+          if (Amount != 0) {
+                       BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg+1).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
+          } else {
+            BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg).addReg(SrcReg);
+          }
+          BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg).addReg(PPC32::R0).addImm(0);
+        } else {
+          if (Amount != 0) {
+                       if (isSigned)
+                               BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg+1).addImm(Amount);
+                       else
+                               BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg+1).addImm(32-Amount).addImm(Amount).addImm(31);
+          } else {
+            BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg+1).addReg(SrcReg+1);
+          }
+          BuildMI(*MBB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
+        }
+      }
+    } else {
+      unsigned TmpReg1 = makeAnotherReg(Type::IntTy);
+      unsigned TmpReg2 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg3 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg4 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg5 = makeAnotherReg(Type::IntTy);
+         unsigned TmpReg6 = makeAnotherReg(Type::IntTy);
+         unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+         
+      if (isLeftShift) {
+               BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
+               BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg2).addReg(SrcReg+1).addReg(ShiftAmountReg);
+               BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg3).addReg(SrcReg).addReg(TmpReg1);
+               BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+               BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
+               BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg6).addReg(SrcReg).addReg(TmpReg5);
+               BuildMI(*MBB, IP, PPC32::OR, 2, DestReg+1).addReg(TmpReg4).addReg(TmpReg6);
+               BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
+         } else {
+               if (isSigned) {
+                       // FIXME: Unimplmented
+                       // Page C-3 of the PowerPC 32bit Programming Environments Manual
+               } else {
+                       BuildMI(*MBB, IP, PPC32::SUBFIC, 2, TmpReg1).addReg(ShiftAmountReg).addImm(32);
+                       BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg2).addReg(SrcReg).addReg(ShiftAmountReg);
+                       BuildMI(*MBB, IP, PPC32::SLW, 2, TmpReg3).addReg(SrcReg+1).addReg(TmpReg1);
+                       BuildMI(*MBB, IP, PPC32::OR, 2, TmpReg4).addReg(TmpReg2).addReg(TmpReg3);
+                       BuildMI(*MBB, IP, PPC32::ADDI, 2, TmpReg5).addReg(ShiftAmountReg).addImm(-32);
+                       BuildMI(*MBB, IP, PPC32::SRW, 2, TmpReg6).addReg(SrcReg+1).addReg(TmpReg5);
+                       BuildMI(*MBB, IP, PPC32::OR, 2, DestReg).addReg(TmpReg4).addReg(TmpReg6);
+                       BuildMI(*MBB, IP, PPC32::SRW, 2, DestReg+1).addReg(SrcReg+1).addReg(ShiftAmountReg);
+               }
+         }
+    }
+    return;
+  }
+
+  if (ConstantUInt *CUI = dyn_cast<ConstantUInt>(ShiftAmount)) {
+    // The shift amount is constant, guaranteed to be a ubyte. Get its value.
+    assert(CUI->getType() == Type::UByteTy && "Shift amount not a ubyte?");
+    unsigned Amount = CUI->getValue();
+
+       if (isLeftShift) {
+               BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(Amount).addImm(0).addImm(31-Amount);
+       } else {
+               if (isSigned) {
+                       BuildMI(*MBB, IP, PPC32::SRAWI, 2, DestReg).addReg(SrcReg).addImm(Amount);
+               } else {
+                       BuildMI(*MBB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addImm(32-Amount).addImm(Amount).addImm(31);
+               }
+       }
+  } else {                  // The shift amount is non-constant.
+    unsigned ShiftAmountReg = getReg (ShiftAmount, MBB, IP);
+
+       if (isLeftShift) {
+               BuildMI(*MBB, IP, PPC32::SLW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
+       } else {
+               BuildMI(*MBB, IP, isSigned ? PPC32::SRAW : PPC32::SRW, 2, DestReg).addReg(SrcReg).addReg(ShiftAmountReg);
+       }
+  }
+}
+
+
+/// visitLoadInst - Implement LLVM load instructions
+///
+void ISel::visitLoadInst(LoadInst &I) {
+  static const unsigned Opcodes[] = { PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS };
+  unsigned Class = getClassB(I.getType());
+  unsigned Opcode = Opcodes[Class];
+  if (I.getType() == Type::DoubleTy) Opcode = PPC32::LFD;
+
+  unsigned DestReg = getReg(I);
+
+  if (AllocaInst *AI = dyn_castFixedAlloca(I.getOperand(0))) {
+       unsigned FI = getFixedSizedAllocaFI(AI);
+    if (Class == cLong) {
+               addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg), FI);
+               addFrameReference(BuildMI(BB, PPC32::LWZ, 2, DestReg+1), FI, 4);
+    } else {
+               addFrameReference(BuildMI(BB, Opcode, 2, DestReg), FI);
+       }
+  } else {
+       unsigned SrcAddrReg = getReg(I.getOperand(0));
+    
+    if (Class == cLong) {
+      BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(SrcAddrReg);
+      BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(SrcAddrReg);
+    } else {
+      BuildMI(BB, Opcode, 2, DestReg).addImm(0).addReg(SrcAddrReg);
+    }
+  }
+}
+
+/// visitStoreInst - Implement LLVM store instructions
+///
+void ISel::visitStoreInst(StoreInst &I) {
+  unsigned ValReg      = getReg(I.getOperand(0));
+  unsigned AddressReg  = getReg(I.getOperand(1));
+  const Type *ValTy = I.getOperand(0)->getType();
+  unsigned Class = getClassB(ValTy);
+
+  if (Class == cLong) {
+       BuildMI(BB, PPC32::STW, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
+       BuildMI(BB, PPC32::STW, 3).addReg(ValReg+1).addImm(4).addReg(AddressReg);
+    return;
+  }
+
+  static const unsigned Opcodes[] = {
+    PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS
+  };
+  unsigned Opcode = Opcodes[Class];
+  if (ValTy == Type::DoubleTy) Opcode = PPC32::STFD;
+  BuildMI(BB, Opcode, 3).addReg(ValReg).addImm(0).addReg(AddressReg);
+}
+
+
+/// visitCastInst - Here we have various kinds of copying with or without sign
+/// extension going on.
+///
+void ISel::visitCastInst(CastInst &CI) {
+  Value *Op = CI.getOperand(0);
+
+  unsigned SrcClass = getClassB(Op->getType());
+  unsigned DestClass = getClassB(CI.getType());
+  // Noop casts are not emitted: getReg will return the source operand as the
+  // register to use for any uses of the noop cast.
+  if (DestClass == SrcClass)
+    return;
+
+  // If this is a cast from a 32-bit integer to a Long type, and the only uses
+  // of the case are GEP instructions, then the cast does not need to be
+  // generated explicitly, it will be folded into the GEP.
+  if (DestClass == cLong && SrcClass == cInt) {
+    bool AllUsesAreGEPs = true;
+    for (Value::use_iterator I = CI.use_begin(), E = CI.use_end(); I != E; ++I)
+      if (!isa<GetElementPtrInst>(*I)) {
+        AllUsesAreGEPs = false;
+        break;
+      }        
+
+    // No need to codegen this cast if all users are getelementptr instrs...
+    if (AllUsesAreGEPs) return;
+  }
+
+  unsigned DestReg = getReg(CI);
+  MachineBasicBlock::iterator MI = BB->end();
+  emitCastOperation(BB, MI, Op, CI.getType(), DestReg);
+}
+
+/// emitCastOperation - Common code shared between visitCastInst and constant
+/// expression cast support.
+///
+void ISel::emitCastOperation(MachineBasicBlock *BB,
+                             MachineBasicBlock::iterator IP,
+                             Value *Src, const Type *DestTy,
+                             unsigned DestReg) {
+  const Type *SrcTy = Src->getType();
+  unsigned SrcClass = getClassB(SrcTy);
+  unsigned DestClass = getClassB(DestTy);
+  unsigned SrcReg = getReg(Src, BB, IP);
+
+  // Implement casts to bool by using compare on the operand followed by set if
+  // not zero on the result.
+  if (DestTy == Type::BoolTy) {
+    switch (SrcClass) {
+    case cByte:
+       case cShort:
+    case cInt: {
+      unsigned TmpReg = makeAnotherReg(Type::IntTy);
+         BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg).addImm(-1);
+         BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg);
+      break;
+    }
+    case cLong: {
+      unsigned TmpReg = makeAnotherReg(Type::IntTy);
+      unsigned SrcReg2 = makeAnotherReg(Type::IntTy);
+      BuildMI(*BB, IP, PPC32::OR, 2, SrcReg2).addReg(SrcReg).addReg(SrcReg+1);
+         BuildMI(*BB, IP, PPC32::ADDIC, 2, TmpReg).addReg(SrcReg2).addImm(-1);
+         BuildMI(*BB, IP, PPC32::SUBFE, 2, DestReg).addReg(TmpReg).addReg(SrcReg2);
+      break;
+    }
+    case cFP:
+      // FIXME
+         // Load -0.0
+         // Compare
+         // move to CR1
+         // Negate -0.0
+         // Compare
+         // CROR
+         // MFCR
+         // Left-align
+         // SRA ?
+      break;
+    }
+    return;
+  }
+
+  // Implement casts between values of the same type class (as determined by
+  // getClass) by using a register-to-register move.
+  if (SrcClass == DestClass) {
+       if (SrcClass <= cInt) {
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       } else if (SrcClass == cFP && SrcTy == DestTy) {
+      BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
+    } else if (SrcClass == cFP) {
+      if (SrcTy == Type::FloatTy) {  // float -> double
+        assert(DestTy == Type::DoubleTy && "Unknown cFP member!");
+        BuildMI(*BB, IP, PPC32::FMR, 1, DestReg).addReg(SrcReg);
+      } else {                       // double -> float
+        assert(SrcTy == Type::DoubleTy && DestTy == Type::FloatTy &&
+               "Unknown cFP member!");
+               BuildMI(*BB, IP, PPC32::FRSP, 1, DestReg).addReg(SrcReg);
+      }
+    } else if (SrcClass == cLong) {
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg+1).addReg(SrcReg+1).addReg(SrcReg+1);
+    } else {
+      assert(0 && "Cannot handle this type of cast instruction!");
+      abort();
+    }
+    return;
+  }
+
+  // Handle cast of SMALLER int to LARGER int using a move with sign extension
+  // or zero extension, depending on whether the source type was signed.
+  if (SrcClass <= cInt && (DestClass <= cInt || DestClass == cLong) &&
+      SrcClass < DestClass) {
+    bool isLong = DestClass == cLong;
+    if (isLong) DestClass = cInt;
+
+    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+    if (SrcClass < cInt) {
+      if (isUnsigned) {
+       unsigned shift = (SrcClass == cByte) ? 24 : 16;
+       BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
+      } else {
+        BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
+         }
+       } else {
+         BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       }
+
+    if (isLong) {  // Handle upper 32 bits as appropriate...
+      if (isUnsigned)     // Zero out top bits...
+        BuildMI(*BB, IP, PPC32::ADDI, 2, DestReg+1).addReg(PPC32::R0).addImm(0);
+      else                // Sign extend bottom half...
+        BuildMI(*BB, IP, PPC32::SRAWI, 2, DestReg+1).addReg(DestReg).addImm(31);
+    }
+    return;
+  }
+
+  // Special case long -> int ...
+  if (SrcClass == cLong && DestClass == cInt) {
+    BuildMI(*BB, IP, PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+    return;
+  }
+  
+  // Handle cast of LARGER int to SMALLER int with a clear or sign extend
+  if ((SrcClass <= cInt || SrcClass == cLong) && DestClass <= cInt
+      && SrcClass > DestClass) {
+    bool isUnsigned = SrcTy->isUnsigned() || SrcTy == Type::BoolTy;
+       if (isUnsigned) {
+       unsigned shift = (SrcClass == cByte) ? 24 : 16;
+       BuildMI(*BB, IP, PPC32::RLWINM, 4, DestReg).addReg(SrcReg).addZImm(0).addImm(shift).addImm(31);
+       } else {
+        BuildMI(*BB, IP, (SrcClass == cByte) ? PPC32::EXTSB : PPC32::EXTSH, 1, DestReg).addReg(SrcReg);
+       }
+    return;
+  }
+
+  // Handle casts from integer to floating point now...
+  if (DestClass == cFP) {
+
+       // Emit a library call for long to float conversion
+       if (SrcClass == cLong) {
+               std::vector<ValueRecord> Args;
+               Args.push_back(ValueRecord(SrcReg, SrcTy));
+               MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__floatdidf", true);
+               doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
+               return;
+       }
+
+    unsigned TmpReg = makeAnotherReg(Type::IntTy);
+    switch (SrcTy->getPrimitiveID()) {
+    case Type::BoolTyID:
+    case Type::SByteTyID:
+      BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
+      break;
+    case Type::UByteTyID:
+         BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(24).addImm(31);
+      break;
+    case Type::ShortTyID:
+      BuildMI(*BB, IP, PPC32::EXTSB, 1, TmpReg).addReg(SrcReg);
+      break;
+    case Type::UShortTyID:
+         BuildMI(*BB, IP, PPC32::RLWINM, 4, TmpReg).addReg(SrcReg).addZImm(0).addImm(16).addImm(31);
+      break;
+       case Type::IntTyID:
+         BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
+         break;
+       case Type::UIntTyID:
+         BuildMI(*BB, IP, PPC32::OR, 2, TmpReg).addReg(SrcReg).addReg(SrcReg);
+         break;
+    default:  // No promotion needed...
+      break;
+    }
+    
+    SrcReg = TmpReg;
+       
+    // Spill the integer to memory and reload it from there.
+       // Also spill room for a special conversion constant
+       int ConstantFrameIndex = 
+      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+    int ValueFrameIdx =
+      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+
+       unsigned constantHi = makeAnotherReg(Type::IntTy);
+       unsigned constantLo = makeAnotherReg(Type::IntTy);
+       unsigned ConstF = makeAnotherReg(Type::DoubleTy);
+       unsigned TempF = makeAnotherReg(Type::DoubleTy);
+       
+    if (!SrcTy->isSigned()) {
+               BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
+               BuildMI(*BB, IP, PPC32::ADDI, 2, constantLo).addReg(PPC32::R0).addImm(0);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(SrcReg), ValueFrameIdx, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
+               BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+       } else {
+               unsigned TempLo = makeAnotherReg(Type::IntTy);
+               BuildMI(*BB, IP, PPC32::ADDIS, 2, constantHi).addReg(PPC32::R0).addImm(0x4330);
+               BuildMI(*BB, IP, PPC32::ADDIS, 2, constantLo).addReg(PPC32::R0).addImm(0x8000);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantLo), ConstantFrameIndex, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(constantHi), ValueFrameIdx);
+               BuildMI(*BB, IP, PPC32::XORIS, 2, TempLo).addReg(SrcReg).addImm(0x8000);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STW, 3).addReg(TempLo), ValueFrameIdx, 4);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, ConstF), ConstantFrameIndex);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LFD, 2, TempF), ValueFrameIdx);
+               BuildMI(*BB, IP, PPC32::FSUB, 2, DestReg).addReg(TempF).addReg(ConstF);
+       }
+    return;
+  }
+
+  // Handle casts from floating point to integer now...
+  if (SrcClass == cFP) {
+
+       // emit library call
+       if (DestClass == cLong) {
+               std::vector<ValueRecord> Args;
+               Args.push_back(ValueRecord(SrcReg, SrcTy));
+               MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("__fixdfdi", true);
+               doCall(ValueRecord(DestReg, DestTy), TheCall, Args);
+               return;
+       }
+
+    int ValueFrameIdx =
+      F->getFrameInfo()->CreateStackObject(Type::DoubleTy, TM.getTargetData());
+
+       // load into 32 bit value, and then truncate as necessary
+       // FIXME: This is wrong for unsigned dest types
+       //if (DestTy->isSigned()) {
+               unsigned TempReg = makeAnotherReg(Type::DoubleTy);
+               BuildMI(*BB, IP, PPC32::FCTIWZ, 1, TempReg).addReg(SrcReg);
+               addFrameReference(BuildMI(*BB, IP, PPC32::STFD, 3).addReg(TempReg), ValueFrameIdx);
+               addFrameReference(BuildMI(*BB, IP, PPC32::LWZ, 2, DestReg), ValueFrameIdx+4);
+       //} else {
+       //}
+       
+       // FIXME: Truncate return value
+    return;
+  }
+
+  // Anything we haven't handled already, we can't (yet) handle at all.
+  assert(0 && "Unhandled cast instruction!");
+  abort();
+}
+
+/// visitVANextInst - Implement the va_next instruction...
+///
+void ISel::visitVANextInst(VANextInst &I) {
+  unsigned VAList = getReg(I.getOperand(0));
+  unsigned DestReg = getReg(I);
+
+  unsigned Size;
+  switch (I.getArgType()->getPrimitiveID()) {
+  default:
+    std::cerr << I;
+    assert(0 && "Error: bad type for va_next instruction!");
+    return;
+  case Type::PointerTyID:
+  case Type::UIntTyID:
+  case Type::IntTyID:
+    Size = 4;
+    break;
+  case Type::ULongTyID:
+  case Type::LongTyID:
+  case Type::DoubleTyID:
+    Size = 8;
+    break;
+  }
+
+  // Increment the VAList pointer...
+  BuildMI(BB, PPC32::ADDI, 2, DestReg).addReg(VAList).addImm(Size);
+}
+
+void ISel::visitVAArgInst(VAArgInst &I) {
+  unsigned VAList = getReg(I.getOperand(0));
+  unsigned DestReg = getReg(I);
+
+  switch (I.getType()->getPrimitiveID()) {
+  default:
+    std::cerr << I;
+    assert(0 && "Error: bad type for va_next instruction!");
+    return;
+  case Type::PointerTyID:
+  case Type::UIntTyID:
+  case Type::IntTyID:
+    BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
+    break;
+  case Type::ULongTyID:
+  case Type::LongTyID:
+    BuildMI(BB, PPC32::LWZ, 2, DestReg).addImm(0).addReg(VAList);
+    BuildMI(BB, PPC32::LWZ, 2, DestReg+1).addImm(4).addReg(VAList);
+    break;
+  case Type::DoubleTyID:
+    BuildMI(BB, PPC32::LFD, 2, DestReg).addImm(0).addReg(VAList);
+    break;
+  }
+}
+
+/// visitGetElementPtrInst - instruction-select GEP instructions
+///
+void ISel::visitGetElementPtrInst(GetElementPtrInst &I) {
+  unsigned outputReg = getReg(I);
+  emitGEPOperation(BB, BB->end(), I.getOperand(0),I.op_begin()+1, I.op_end(), outputReg);
+}
+
+void ISel::emitGEPOperation(MachineBasicBlock *MBB,
+                            MachineBasicBlock::iterator IP,
+                            Value *Src, User::op_iterator IdxBegin,
+                            User::op_iterator IdxEnd, unsigned TargetReg) {
+  const TargetData &TD = TM.getTargetData();
+  if (ConstantPointerRef *CPR = dyn_cast<ConstantPointerRef>(Src))
+    Src = CPR->getValue();
+
+  std::vector<Value*> GEPOps;
+  GEPOps.resize(IdxEnd-IdxBegin+1);
+  GEPOps[0] = Src;
+  std::copy(IdxBegin, IdxEnd, GEPOps.begin()+1);
+  
+  std::vector<const Type*> GEPTypes;
+  GEPTypes.assign(gep_type_begin(Src->getType(), IdxBegin, IdxEnd),
+                  gep_type_end(Src->getType(), IdxBegin, IdxEnd));
+
+  // Keep emitting instructions until we consume the entire GEP instruction.
+  while (!GEPOps.empty()) {
+      // It's an array or pointer access: [ArraySize x ElementType].
+      const SequentialType *SqTy = cast<SequentialType>(GEPTypes.back());
+      Value *idx = GEPOps.back();
+      GEPOps.pop_back();        // Consume a GEP operand
+      GEPTypes.pop_back();
+
+      // Many GEP instructions use a [cast (int/uint) to LongTy] as their
+      // operand on X86.  Handle this case directly now...
+      if (CastInst *CI = dyn_cast<CastInst>(idx))
+        if (CI->getOperand(0)->getType() == Type::IntTy ||
+            CI->getOperand(0)->getType() == Type::UIntTy)
+          idx = CI->getOperand(0);
+
+      // We want to add BaseReg to(idxReg * sizeof ElementType). First, we
+      // must find the size of the pointed-to type (Not coincidentally, the next
+      // type is the type of the elements in the array).
+      const Type *ElTy = SqTy->getElementType();
+      unsigned elementSize = TD.getTypeSize(ElTy);
+
+     if (elementSize == 1) {
+        // If the element size is 1, we don't have to multiply, just add
+        unsigned idxReg = getReg(idx, MBB, IP);
+        unsigned Reg = makeAnotherReg(Type::UIntTy);
+        BuildMI(*MBB, IP, PPC32::ADD, 2,TargetReg).addReg(Reg).addReg(idxReg);
+        --IP;            // Insert the next instruction before this one.
+        TargetReg = Reg; // Codegen the rest of the GEP into this
+      } else {
+        unsigned idxReg = getReg(idx, MBB, IP);
+        unsigned OffsetReg = makeAnotherReg(Type::UIntTy);
+
+        // Make sure we can back the iterator up to point to the first
+        // instruction emitted.
+        MachineBasicBlock::iterator BeforeIt = IP;
+        if (IP == MBB->begin())
+          BeforeIt = MBB->end();
+        else
+          --BeforeIt;
+        doMultiplyConst(MBB, IP, OffsetReg, Type::IntTy, idxReg, elementSize);
+
+        // Emit an ADD to add OffsetReg to the basePtr.
+        unsigned Reg = makeAnotherReg(Type::UIntTy);
+        BuildMI(*MBB, IP, PPC32::ADD, 2, TargetReg).addReg(Reg).addReg(OffsetReg);
+
+        // Step to the first instruction of the multiply.
+        if (BeforeIt == MBB->end())
+          IP = MBB->begin();
+        else
+          IP = ++BeforeIt;
+
+        TargetReg = Reg; // Codegen the rest of the GEP into this
+      }
+    }
+}
+
+/// visitAllocaInst - If this is a fixed size alloca, allocate space from the
+/// frame manager, otherwise do it the hard way.
+///
+void ISel::visitAllocaInst(AllocaInst &I) {
+  // If this is a fixed size alloca in the entry block for the function, we
+  // statically stack allocate the space, so we don't need to do anything here.
+  //
+  if (dyn_castFixedAlloca(&I)) return;
+  
+  // Find the data size of the alloca inst's getAllocatedType.
+  const Type *Ty = I.getAllocatedType();
+  unsigned TySize = TM.getTargetData().getTypeSize(Ty);
+
+  // Create a register to hold the temporary result of multiplying the type size
+  // constant by the variable amount.
+  unsigned TotalSizeReg = makeAnotherReg(Type::UIntTy);
+  unsigned SrcReg1 = getReg(I.getArraySize());
+  
+  // TotalSizeReg = mul <numelements>, <TypeSize>
+  MachineBasicBlock::iterator MBBI = BB->end();
+  doMultiplyConst(BB, MBBI, TotalSizeReg, Type::UIntTy, SrcReg1, TySize);
+
+  // AddedSize = add <TotalSizeReg>, 15
+  unsigned AddedSizeReg = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, PPC32::ADD, 2, AddedSizeReg).addReg(TotalSizeReg).addImm(15);
+
+  // AlignedSize = and <AddedSize>, ~15
+  unsigned AlignedSize = makeAnotherReg(Type::UIntTy);
+  BuildMI(BB, PPC32::RLWNM, 4, AlignedSize).addReg(AddedSizeReg).addImm(0).addImm(0).addImm(27);
+  
+  // Subtract size from stack pointer, thereby allocating some space.
+  BuildMI(BB, PPC32::SUB, 2, PPC32::R1).addReg(PPC32::R1).addReg(AlignedSize);
+
+  // Put a pointer to the space into the result register, by copying
+  // the stack pointer.
+  BuildMI(BB, PPC32::OR, 2, getReg(I)).addReg(PPC32::R1).addReg(PPC32::R1);
+
+  // Inform the Frame Information that we have just allocated a variable-sized
+  // object.
+  F->getFrameInfo()->CreateVariableSizedObject();
+}
+
+/// visitMallocInst - Malloc instructions are code generated into direct calls
+/// to the library malloc.
+///
+void ISel::visitMallocInst(MallocInst &I) {
+  unsigned AllocSize = TM.getTargetData().getTypeSize(I.getAllocatedType());
+  unsigned Arg;
+
+  if (ConstantUInt *C = dyn_cast<ConstantUInt>(I.getOperand(0))) {
+    Arg = getReg(ConstantUInt::get(Type::UIntTy, C->getValue() * AllocSize));
+  } else {
+    Arg = makeAnotherReg(Type::UIntTy);
+    unsigned Op0Reg = getReg(I.getOperand(0));
+    MachineBasicBlock::iterator MBBI = BB->end();
+    doMultiplyConst(BB, MBBI, Arg, Type::UIntTy, Op0Reg, AllocSize);
+  }
+
+  std::vector<ValueRecord> Args;
+  Args.push_back(ValueRecord(Arg, Type::UIntTy));
+  MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("malloc", true);
+  doCall(ValueRecord(getReg(I), I.getType()), TheCall, Args);
+}
+
+
+/// visitFreeInst - Free instructions are code gen'd to call the free libc
+/// function.
+///
+void ISel::visitFreeInst(FreeInst &I) {
+  std::vector<ValueRecord> Args;
+  Args.push_back(ValueRecord(I.getOperand(0)));
+  MachineInstr *TheCall = BuildMI(PPC32::CALLpcrel, 1).addExternalSymbol("free", true);
+  doCall(ValueRecord(0, Type::VoidTy), TheCall, Args);
+}
+   
+/// createPPC32SimpleInstructionSelector - This pass converts an LLVM function
+/// into a machine code representation is a very simple peep-hole fashion.  The
+/// generated code sucks but the implementation is nice and simple.
+///
+FunctionPass *llvm::createPPCSimpleInstructionSelector(TargetMachine &TM) {
+  return new ISel(TM);
+}
diff --git a/lib/Target/PowerPC/PowerPCInstrInfo.cpp b/lib/Target/PowerPC/PowerPCInstrInfo.cpp
new file mode 100644 (file)
index 0000000..8340e78
--- /dev/null
@@ -0,0 +1,22 @@
+//===- PowerPCInstrInfo.cpp - PowerPC Instruction Information ---*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PowerPCInstrInfo.h"
+#include "PowerPC.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "PowerPCGenInstrInfo.inc"
+using namespace llvm;
+
+PowerPCInstrInfo::PowerPCInstrInfo()
+  : TargetInstrInfo(PowerPCInsts, sizeof(PowerPCInsts)/sizeof(PowerPCInsts[0])){
+}
diff --git a/lib/Target/PowerPC/PowerPCInstrInfo.h b/lib/Target/PowerPC/PowerPCInstrInfo.h
new file mode 100644 (file)
index 0000000..d50e05e
--- /dev/null
@@ -0,0 +1,78 @@
+//===- PowerPCInstrInfo.h - PowerPC Instruction Information -----*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the TargetInstrInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPCINSTRUCTIONINFO_H
+#define POWERPCINSTRUCTIONINFO_H
+
+#include "llvm/Target/TargetInstrInfo.h"
+#include "PowerPCRegisterInfo.h"
+
+namespace llvm {
+
+namespace PPC32II {
+       enum {
+               ArgCountShift = 0,
+               ArgCountMask = 7,
+               
+               Arg0TypeShift = 3,
+               Arg1TypeShift = 8,
+               Arg2TypeShift = 13,
+               Arg3TypeShift = 18,
+               Arg4TypeShift = 23,
+               VMX = 1<<28,
+               PPC64 = 1<<29,
+               ArgTypeMask = 31
+       };
+       
+       enum {
+               None = 0,
+               Gpr = 1,
+               Gpr0 = 2,
+               Simm16 = 3,
+               Zimm16 = 4,
+               PCRelimm24 = 5,
+               Imm24 = 6,
+               Imm5 = 7,
+               PCRelimm14 = 8,
+               Imm14 = 9,
+               Imm2 = 10,
+               Crf = 11,
+               Imm3 = 12,
+               Imm1 = 13,
+               Fpr = 14,
+               Imm4 = 15,
+               Imm8 = 16,
+               Disimm16 = 17,
+               Disimm14 = 18,
+               Spr = 19,
+               Sgr = 20,
+               Imm15 = 21,
+               Vpr = 22
+       };
+}
+
+class PowerPCInstrInfo : public TargetInstrInfo {
+  const PowerPCRegisterInfo RI;
+public:
+  PowerPCInstrInfo();
+
+  /// getRegisterInfo - TargetInstrInfo is a superset of MRegister info.  As
+  /// such, whenever a client has an instance of instruction info, it should
+  /// always be able to get register info as well (through this method).
+  ///
+  virtual const MRegisterInfo &getRegisterInfo() const { return RI; }
+};
+
+}
+
+#endif
diff --git a/lib/Target/PowerPC/PowerPCRegisterInfo.cpp b/lib/Target/PowerPC/PowerPCRegisterInfo.cpp
new file mode 100644 (file)
index 0000000..45dcf74
--- /dev/null
@@ -0,0 +1,268 @@
+//===- PowerPCRegisterInfo.cpp - PowerPC Register Information ---*- C++ -*-===//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the MRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#include "PowerPC.h"
+#include "PowerPCRegisterInfo.h"
+#include "PowerPCInstrBuilder.h"
+#include "llvm/Constants.h"
+#include "llvm/Type.h"
+#include "llvm/CodeGen/ValueTypes.h"
+#include "llvm/CodeGen/MachineInstrBuilder.h"
+#include "llvm/CodeGen/MachineFunction.h"
+#include "llvm/CodeGen/MachineFrameInfo.h"
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "Support/CommandLine.h"
+#include "Support/STLExtras.h"
+using namespace llvm;
+
+namespace {
+  cl::opt<bool>
+  NoFPElim("disable-fp-elim",cl::desc("Disable frame pointer elimination optimization"));
+}
+
+PowerPCRegisterInfo::PowerPCRegisterInfo()
+  : PowerPCGenRegisterInfo(PPC32::ADJCALLSTACKDOWN,
+                           PPC32::ADJCALLSTACKUP) {}
+
+static unsigned getIdx(const TargetRegisterClass *RC) {
+       if (RC == PowerPC::GPRCRegisterClass) {
+               switch (RC->getSize()) {
+                       default: assert(0 && "Invalid data size!");
+                       case 1:  return 0;
+                       case 2:  return 1;
+                       case 4:  return 2;
+               }
+       }
+       else if (RC == PowerPC::FPRCRegisterClass) {
+               switch (RC->getSize()) {
+                       default: assert(0 && "Invalid data size!");
+                       case 4:  return 3;
+                       case 8:  return 4;
+               }
+       }
+       abort();
+}
+
+int PowerPCRegisterInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
+                                         MachineBasicBlock::iterator MI,
+                                         unsigned SrcReg, int FrameIdx,
+                                         const TargetRegisterClass *RC) const {
+       static const unsigned Opcode[] = 
+       { PPC32::STB, PPC32::STH, PPC32::STW, PPC32::STFS, PPC32::STFD };
+
+       unsigned OC = Opcode[getIdx(RC)];
+       MBB.insert(MI, addFrameReference(BuildMI(OC, 3).addReg(SrcReg),FrameIdx));
+       return 1;
+}
+
+int PowerPCRegisterInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
+                                          MachineBasicBlock::iterator MI,
+                                          unsigned DestReg, int FrameIdx,
+                                          const TargetRegisterClass *RC) const{
+       static const unsigned Opcode[] =
+
+       { PPC32::LBZ, PPC32::LHZ, PPC32::LWZ, PPC32::LFS, PPC32::LFD };
+       unsigned OC = Opcode[getIdx(RC)];
+       MBB.insert(MI, addFrameReference(BuildMI(OC, 2, DestReg), FrameIdx));
+       return 1;
+}
+
+int PowerPCRegisterInfo::copyRegToReg(MachineBasicBlock &MBB,
+                                  MachineBasicBlock::iterator MI,
+                                  unsigned DestReg, unsigned SrcReg,
+                                  const TargetRegisterClass *RC) const {
+       MachineInstr *I;
+
+       if(RC == PowerPC::GPRCRegisterClass) {
+               I = BuildMI(PPC32::OR, 2, DestReg).addReg(SrcReg).addReg(SrcReg);
+       } else if (RC == PowerPC::FPRCRegisterClass) {
+               I = BuildMI(PPC32::FMR, 1, DestReg).addReg(SrcReg);
+       } else { 
+               std::cerr << "Attempt to copy register that is not GPR or FPR";
+               abort();
+       }
+       MBB.insert(MI, I);
+       return 1;
+}
+
+//===----------------------------------------------------------------------===//
+// Stack Frame Processing methods
+//===----------------------------------------------------------------------===//
+
+// hasFP - Return true if the specified function should have a dedicated frame
+// pointer register.  This is true if the function has variable sized allocas or
+// if frame pointer elimination is disabled.
+//
+static bool hasFP(MachineFunction &MF) {
+       return NoFPElim || MF.getFrameInfo()->hasVarSizedObjects();
+}
+
+void PowerPCRegisterInfo::
+eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
+                              MachineBasicBlock::iterator I) const {
+       if (hasFP(MF)) {
+               // If we have a frame pointer, turn the adjcallstackdown instruction into a
+               // 'sub r1, r1, <amt>' and the adjcallstackup instruction into 'add r1, r1, <amt>'
+               MachineInstr *Old = I;
+               int Amount = Old->getOperand(0).getImmedValue();
+               if (Amount != 0) {
+                       // We need to keep the stack aligned properly.  To do this, we round the
+                       // amount of space needed for the outgoing arguments up to the next
+                       // alignment boundary.
+                       unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
+                       Amount = (Amount+Align-1)/Align*Align;
+                       
+                       MachineInstr *New;
+                       if (Old->getOpcode() == PPC32::ADJCALLSTACKDOWN) {
+                               New=BuildMI(PPC32::ADDI, 2, PPC32::R1).addReg(PPC32::R1).addSImm(-Amount);
+                       } else {
+                               assert(Old->getOpcode() == PPC32::ADJCALLSTACKUP);
+                               New=BuildMI(PPC32::ADDI, 2, PPC32::R1).addReg(PPC32::R1).addSImm(Amount);
+                       }
+                       
+                       // Replace the pseudo instruction with a new instruction...
+                       MBB.insert(I, New);
+               }
+       }
+       
+       MBB.erase(I);
+}
+
+void
+PowerPCRegisterInfo::eliminateFrameIndex(MachineFunction &MF,
+                                         MachineBasicBlock::iterator II) const {
+  unsigned i = 0;
+  MachineInstr &MI = *II;
+  while (!MI.getOperand(i).isFrameIndex()) {
+    ++i;
+    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
+  }
+
+  int FrameIndex = MI.getOperand(i).getFrameIndex();
+
+  // This must be part of a four operand memory reference.  Replace the
+  // FrameIndex with base register with GPR1.
+  MI.SetMachineOperandReg(i, PPC32::R1);
+
+  // Take into account whether its an add or mem instruction
+  if (i == 2) i--;
+
+  // Now add the frame object offset to the offset from r1.
+  int Offset = MF.getFrameInfo()->getObjectOffset(FrameIndex) +
+               MI.getOperand(i).getImmedValue()+4;
+
+  if (!hasFP(MF))
+    Offset += MF.getFrameInfo()->getStackSize();
+
+  MI.SetMachineOperandConst(i-1, MachineOperand::MO_SignExtendedImmed, Offset);
+  std::cout << "offset = " << Offset << std::endl;
+}
+
+
+void PowerPCRegisterInfo::processFunctionBeforeFrameFinalized(
+    MachineFunction &MF) const {
+       // Do Nothing
+}
+
+void PowerPCRegisterInfo::emitPrologue(MachineFunction &MF) const {
+       MachineBasicBlock &MBB = MF.front();   // Prolog goes in entry BB
+       MachineBasicBlock::iterator MBBI = MBB.begin();
+       MachineFrameInfo *MFI = MF.getFrameInfo();
+       MachineInstr *MI;
+       
+       // Get the number of bytes to allocate from the FrameInfo
+       unsigned NumBytes = MFI->getStackSize();
+       
+    if (MFI->hasCalls()) {
+               // When we have no frame pointer, we reserve argument space for call sites
+               // in the function immediately on entry to the current function.  This
+               // eliminates the need for add/sub brackets around call sites.
+               //
+               NumBytes += MFI->getMaxCallFrameSize();
+               
+               // Round the size to a multiple of the alignment (don't forget the 4 byte
+               // offset though).
+               unsigned Align = MF.getTarget().getFrameInfo()->getStackAlignment();
+               NumBytes = ((NumBytes+4)+Align-1)/Align*Align - 4;
+
+               // Store the incoming LR so it is preserved across calls
+               MI= BuildMI(PPC32::MovePCtoLR, 0, PPC32::LR).addReg(PPC32::LR);
+               MBB.insert(MBBI, MI);
+               MI= BuildMI(PPC32::MFSPR, 1, PPC32::R0).addImm(8);
+               MBB.insert(MBBI, MI);
+               MI= BuildMI(PPC32::STW, 3).addReg(PPC32::R0).addSImm(8).addReg(PPC32::R1);
+               MBB.insert(MBBI, MI);
+    }
+       
+    // Update frame info to pretend that this is part of the stack...
+    MFI->setStackSize(NumBytes);
+       
+       // adjust stack pointer: r1 -= numbytes
+       if (NumBytes) {
+               MI= BuildMI(PPC32::STWU, 2, PPC32::R1).addImm(-NumBytes).addReg(PPC32::R1);
+               MBB.insert(MBBI, MI);
+    }
+}
+
+void PowerPCRegisterInfo::emitEpilogue(MachineFunction &MF,
+                                       MachineBasicBlock &MBB) const {
+       const MachineFrameInfo *MFI = MF.getFrameInfo();
+       MachineBasicBlock::iterator MBBI = prior(MBB.end());
+       MachineInstr *MI;
+       assert(MBBI->getOpcode() == PPC32::BLR &&
+                  "Can only insert epilog into returning blocks");
+       
+       // Get the number of bytes allocated from the FrameInfo...
+    unsigned NumBytes = MFI->getStackSize();
+
+    // adjust stack pointer back: r1 += numbytes
+    if (NumBytes) {
+               MI =BuildMI(PPC32::ADDI, 2, PPC32::R1)
+               .addReg(PPC32::R1)
+               .addSImm(NumBytes);
+               MBB.insert(MBBI, MI);
+    }
+       
+       // If we have calls, restore the LR value before we branch to it
+    if (MFI->hasCalls()) {
+               MI = BuildMI(PPC32::LWZ, 2, PPC32::R0).addSImm(8).addReg(PPC32::R1);
+               MBB.insert(MBBI, MI);
+               MI = BuildMI(PPC32::MTLR, 1).addReg(PPC32::R0);
+               MBB.insert(MBBI, MI);
+       }
+}
+
+
+#include "PowerPCGenRegisterInfo.inc"
+
+const TargetRegisterClass*
+PowerPCRegisterInfo::getRegClassForType(const Type* Ty) const {
+       switch (Ty->getPrimitiveID()) {
+               case Type::LongTyID:
+               case Type::ULongTyID: assert(0 && "Long values can't fit in registers!");
+               default:              assert(0 && "Invalid type to getClass!");
+               case Type::BoolTyID:
+               case Type::SByteTyID:
+               case Type::UByteTyID:
+               case Type::ShortTyID:
+               case Type::UShortTyID:
+               case Type::IntTyID:
+               case Type::UIntTyID:
+               case Type::PointerTyID: return &GPRCInstance;
+                       
+               case Type::FloatTyID:
+               case Type::DoubleTyID: return &FPRCInstance;
+       }
+}
+
diff --git a/lib/Target/PowerPC/PowerPCRegisterInfo.h b/lib/Target/PowerPC/PowerPCRegisterInfo.h
new file mode 100644 (file)
index 0000000..5cb39d4
--- /dev/null
@@ -0,0 +1,58 @@
+//===- PowerPCRegisterInfo.h - PowerPC Register Information Impl -*- C++ -*-==//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+//
+// This file contains the PowerPC implementation of the MRegisterInfo class.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPCREGISTERINFO_H
+#define POWERPCREGISTERINFO_H
+
+#include "llvm/Target/MRegisterInfo.h"
+#include "PowerPCGenRegisterInfo.h.inc"
+
+namespace llvm {
+
+class Type;
+
+struct PowerPCRegisterInfo : public PowerPCGenRegisterInfo {
+  PowerPCRegisterInfo();
+  const TargetRegisterClass* getRegClassForType(const Type* Ty) const;
+
+  /// Code Generation virtual methods...
+  int storeRegToStackSlot(MachineBasicBlock &MBB,
+                          MachineBasicBlock::iterator MBBI,
+                          unsigned SrcReg, int FrameIndex,
+                          const TargetRegisterClass *RC) const;
+
+  int loadRegFromStackSlot(MachineBasicBlock &MBB,
+                           MachineBasicBlock::iterator MBBI,
+                           unsigned DestReg, int FrameIndex,
+                           const TargetRegisterClass *RC) const;
+  
+  int copyRegToReg(MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
+                  unsigned DestReg, unsigned SrcReg,
+                  const TargetRegisterClass *RC) const;
+
+  void eliminateCallFramePseudoInstr(MachineFunction &MF,
+                                     MachineBasicBlock &MBB,
+                                     MachineBasicBlock::iterator I) const;
+
+  void eliminateFrameIndex(MachineFunction &MF,
+                           MachineBasicBlock::iterator II) const;
+
+  void processFunctionBeforeFrameFinalized(MachineFunction &MF) const;
+
+  void emitPrologue(MachineFunction &MF) const;
+  void emitEpilogue(MachineFunction &MF, MachineBasicBlock &MBB) const;
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/PowerPC/PowerPCTargetMachine.h b/lib/Target/PowerPC/PowerPCTargetMachine.h
new file mode 100644 (file)
index 0000000..8c2b731
--- /dev/null
@@ -0,0 +1,57 @@
+//===-- PowerPCTargetMachine.h - Define TargetMachine for PowerPC -*- C++ -*-=//
+// 
+//                     The LLVM Compiler Infrastructure
+//
+// This file was developed by the LLVM research group and is distributed under
+// the University of Illinois Open Source License. See LICENSE.TXT for details.
+// 
+//===----------------------------------------------------------------------===//
+// 
+// This file declares the PowerPC specific subclass of TargetMachine.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef POWERPCTARGETMACHINE_H
+#define POWERPCTARGETMACHINE_H
+
+#include "llvm/Target/TargetMachine.h"
+#include "llvm/Target/TargetFrameInfo.h"
+#include "llvm/PassManager.h"
+#include "PowerPCInstrInfo.h"
+#include "PowerPCJITInfo.h"
+
+namespace llvm {
+
+class IntrinsicLowering;
+
+class PowerPCTargetMachine : public TargetMachine {
+  PowerPCInstrInfo InstrInfo;
+  TargetFrameInfo FrameInfo;
+  PowerPCJITInfo JITInfo;
+public:
+  PowerPCTargetMachine(const Module &M, IntrinsicLowering *IL);
+
+  virtual const PowerPCInstrInfo *getInstrInfo() const { return &InstrInfo; }
+  virtual const TargetFrameInfo  *getFrameInfo() const { return &FrameInfo; }
+  virtual const MRegisterInfo *getRegisterInfo() const {
+    return &InstrInfo.getRegisterInfo();
+  }
+  virtual TargetJITInfo *getJITInfo() {
+    return &JITInfo;
+  }
+
+  /// addPassesToEmitMachineCode - Add passes to the specified pass manager to
+  /// get machine code emitted.  This uses a MachineCodeEmitter object to handle
+  /// actually outputting the machine code and resolving things like the address
+  /// of functions.  This method should returns true if machine code emission is
+  /// not supported.
+  ///
+  virtual bool addPassesToEmitMachineCode(FunctionPassManager &PM,
+                                          MachineCodeEmitter &MCE);
+  
+  virtual bool addPassesToEmitAssembly(PassManager &PM, std::ostream &Out);
+};
+
+} // end namespace llvm
+
+#endif
diff --git a/lib/Target/PowerPC/README.txt b/lib/Target/PowerPC/README.txt
new file mode 100644 (file)
index 0000000..06fc979
--- /dev/null
@@ -0,0 +1,26 @@
+
+PowerPC backend skeleton
+------------------------
+
+Someday we'd like to have a PowerPC backend. Unfortunately, this
+is not yet that day.
+
+This directory contains mainly stubs and placeholders; there is no
+binary machine code emitter, no assembly writer, and no instruction
+selector here.  Most of the functions in these files call abort()
+or fail assertions on purpose, just to reinforce the fact that they
+don't work.
+
+If you want to use LLVM on the PowerPC *today*, use the C Backend
+(llc -march=c).  It generates C code that you can compile with the
+native GCC compiler and run.  A distant second choice would be the
+Interpreter (lli --force-interpreter=true).
+
+A few things *are* really here, including:
+ * PowerPC register file definition in TableGen format
+ * PowerPC definitions of TargetMachine and other target-specific classes 
+
+"Patches," as they say, "are accepted."
+
+$Date$
+