commit
e045fec48970df84647a47930fcf7a22ff7229c0 upstream.
There's a small window inside the flush_to_ldisc function,
where the tty is unlocked and calling ldisc's receive_buf
function. If in this window new buffer is added to the tty,
the processing might never leave the flush_to_ldisc function.
This scenario will hog the cpu, causing other tty processing
starving, and making it impossible to interface the computer
via tty.
I was able to exploit this via pty interface by sending only
control characters to the master input, causing the flush_to_ldisc
to be scheduled, but never actually generate any output.
To reproduce, please run multiple instances of following code.
- SNIP
#define _XOPEN_SOURCE
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
int main(int argc, char **argv)
{
int i, slave, master = getpt();
char buf[8192];
sprintf(buf, "%s", ptsname(master));
grantpt(master);
unlockpt(master);
slave = open(buf, O_RDWR);
if (slave < 0) {
perror("open slave failed");
return 1;
}
for(i = 0; i < sizeof(buf); i++)
buf[i] = rand() % 32;
while(1) {
write(master, buf, sizeof(buf));
}
return 0;
}
- SNIP
The attached patch (based on -next tree) fixes this by checking on the
tty buffer tail. Once it's reached, the current work is rescheduled
and another could run.
Signed-off-by: Jiri Olsa <jolsa@redhat.com>
Acked-by: Alan Cox <alan@lxorguk.ukuu.org.uk>
Signed-off-by: Greg Kroah-Hartman <gregkh@suse.de>
spin_lock_irqsave(&tty->buf.lock, flags);
if (!test_and_set_bit(TTY_FLUSHING, &tty->flags)) {
- struct tty_buffer *head;
+ struct tty_buffer *head, *tail = tty->buf.tail;
+ int seen_tail = 0;
while ((head = tty->buf.head) != NULL) {
int count;
char *char_buf;
if (!count) {
if (head->next == NULL)
break;
+ /*
+ There's a possibility tty might get new buffer
+ added during the unlock window below. We could
+ end up spinning in here forever hogging the CPU
+ completely. To avoid this let's have a rest each
+ time we processed the tail buffer.
+ */
+ if (tail == head)
+ seen_tail = 1;
tty->buf.head = head->next;
tty_buffer_free(tty, head);
continue;
line discipline as we want to empty the queue */
if (test_bit(TTY_FLUSHPENDING, &tty->flags))
break;
- if (!tty->receive_room) {
+ if (!tty->receive_room || seen_tail) {
schedule_delayed_work(&tty->buf.work, 1);
break;
}