--- /dev/null
+/**************************************************************************
+* *
+* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
+* *
+* produced by *
+* *
+* Java Grande Benchmarking Project *
+* *
+* at *
+* *
+* Edinburgh Parallel Computing Centre *
+* *
+* email: epcc-javagrande@epcc.ed.ac.uk *
+* *
+* Original version of this code by *
+* Gabriel Zachmann (zach@igd.fhg.de) *
+* *
+* This version copyright (c) The University of Edinburgh, 2001. *
+* All rights reserved. *
+* *
+**************************************************************************/
+/**************************************************************************
+* Ported for DSTM Benchmark *
+**************************************************************************/
+
+
+/**
+* Class IDEATest
+*
+* This test performs IDEA encryption then decryption. IDEA stands
+* for International Data Encryption Algorithm. The test is based
+* on code presented in Applied Cryptography by Bruce Schnier,
+* which was based on code developed by Xuejia Lai and James L.
+* Massey.
+
+**/
+
+package crypt;
+
+import java.util.*;
+import jgfutil.*;
+
+class IDEATest
+{
+
+// Declare class data. Byte buffer plain1 holds the original
+// data for encryption, crypt1 holds the encrypted data, and
+// plain2 holds the decrypted data, which should match plain1
+// byte for byte.
+
+int array_rows;
+
+byte [] plain1; // Buffer for plaintext data.
+byte [] crypt1; // Buffer for encrypted data.
+byte [] plain2; // Buffer for decrypted data.
+
+short [] userkey; // Key for encryption/decryption.
+int [] Z; // Encryption subkey (userkey derived).
+int [] DK; // Decryption subkey (userkey derived).
+
+
+
+void Do()
+{
+
+ IDEARunner th[] = new IDEARunner [JGFCryptBench.nthreads];
+
+ // Start the stopwatch.
+ JGFInstrumentor.startTimer("Section2:Crypt:Kernel");
+
+ // Encrypt plain1.
+ for(int i=1;i<JGFCryptBench.nthreads;i++) {
+ th[i] = new IDEARunner(i,plain1,crypt1,Z);
+ th[i].start();
+ }
+
+ th[0] = new IDEARunner(0,plain1,crypt1,Z);
+ th[0].start();
+
+
+ for(int i=1;i<JGFCryptBench.nthreads;i++) {
+ th[i].join();
+ }
+
+ // Decrypt.
+ for(int i=1;i<JGFCryptBench.nthreads;i++) {
+ th[i] = new IDEARunner(i,crypt1,plain2,DK);
+ th[i].start();
+ }
+
+ th[0] = new IDEARunner(0,crypt1,plain2,DK);
+ th[0].start();
+
+
+ for(int i=1;i<JGFCryptBench.nthreads;i++) {
+ th[i].join();
+ }
+
+
+ // Stop the stopwatch.
+ JGFInstrumentor.stopTimer("Section2:Crypt:Kernel");
+
+}
+
+/*
+* buildTestData
+*
+* Builds the data used for the test -- each time the test is run.
+*/
+
+void buildTestData()
+{
+
+
+ // Create three byte arrays that will be used (and reused) for
+ // encryption/decryption operations.
+
+ plain1 = new byte [array_rows];
+ crypt1 = new byte [array_rows];
+ plain2 = new byte [array_rows];
+
+
+ Random rndnum = new Random(136506717L); // Create random number generator.
+
+
+ // Allocate three arrays to hold keys: userkey is the 128-bit key.
+ // Z is the set of 16-bit encryption subkeys derived from userkey,
+ // while DK is the set of 16-bit decryption subkeys also derived
+ // from userkey. NOTE: The 16-bit values are stored here in
+ // 32-bit int arrays so that the values may be used in calculations
+ // as if they are unsigned. Each 64-bit block of plaintext goes
+ // through eight processing rounds involving six of the subkeys
+ // then a final output transform with four of the keys; (8 * 6)
+ // + 4 = 52 subkeys.
+
+ userkey = new short [8]; // User key has 8 16-bit shorts.
+ Z = new int [52]; // Encryption subkey (user key derived).
+ DK = new int [52]; // Decryption subkey (user key derived).
+
+ // Generate user key randomly; eight 16-bit values in an array.
+
+ for (int i = 0; i < 8; i++)
+ {
+ // Again, the random number function returns int. Converting
+ // to a short type preserves the bit pattern in the lower 16
+ // bits of the int and discards the rest.
+
+ userkey[i] = (short) rndnum.nextInt();
+ }
+
+ // Compute encryption and decryption subkeys.
+
+ calcEncryptKey();
+ calcDecryptKey();
+
+ // Fill plain1 with "text."
+ for (int i = 0; i < array_rows; i++)
+ {
+ plain1[i] = (byte) i;
+
+ // Converting to a byte
+ // type preserves the bit pattern in the lower 8 bits of the
+ // int and discards the rest.
+ }
+}
+
+/*
+* calcEncryptKey
+*
+* Builds the 52 16-bit encryption subkeys Z[] from the user key and
+* stores in 32-bit int array. The routing corrects an error in the
+* source code in the Schnier book. Basically, the sense of the 7-
+* and 9-bit shifts are reversed. It still works reversed, but would
+* encrypted code would not decrypt with someone else's IDEA code.
+*/
+
+private void calcEncryptKey()
+{
+ int j; // Utility variable.
+
+ for (int i = 0; i < 52; i++) // Zero out the 52-int Z array.
+ Z[i] = 0;
+
+ for (int i = 0; i < 8; i++) // First 8 subkeys are userkey itself.
+ {
+ Z[i] = userkey[i] & 0xffff; // Convert "unsigned"
+ // short to int.
+ }
+
+ // Each set of 8 subkeys thereafter is derived from left rotating
+ // the whole 128-bit key 25 bits to left (once between each set of
+ // eight keys and then before the last four). Instead of actually
+ // rotating the whole key, this routine just grabs the 16 bits
+ // that are 25 bits to the right of the corresponding subkey
+ // eight positions below the current subkey. That 16-bit extent
+ // straddles two array members, so bits are shifted left in one
+ // member and right (with zero fill) in the other. For the last
+ // two subkeys in any group of eight, those 16 bits start to
+ // wrap around to the first two members of the previous eight.
+
+ for (int i = 8; i < 52; i++)
+ {
+ j = i % 8;
+ if (j < 6)
+ {
+ Z[i] = ((Z[i -7]>>>9) | (Z[i-6]<<7)) // Shift and combine.
+ & 0xFFFF; // Just 16 bits.
+ continue; // Next iteration.
+ }
+
+ if (j == 6) // Wrap to beginning for second chunk.
+ {
+ Z[i] = ((Z[i -7]>>>9) | (Z[i-14]<<7))
+ & 0xFFFF;
+ continue;
+ }
+
+ // j == 7 so wrap to beginning for both chunks.
+
+ Z[i] = ((Z[i -15]>>>9) | (Z[i-14]<<7))
+ & 0xFFFF;
+ }
+}
+
+/*
+* calcDecryptKey
+*
+* Builds the 52 16-bit encryption subkeys DK[] from the encryption-
+* subkeys Z[]. DK[] is a 32-bit int array holding 16-bit values as
+* unsigned.
+*/
+
+private void calcDecryptKey()
+{
+ int j, k; // Index counters.
+ int t1, t2, t3; // Temps to hold decrypt subkeys.
+
+ t1 = inv(Z[0]); // Multiplicative inverse (mod x10001).
+ t2 = - Z[1] & 0xffff; // Additive inverse, 2nd encrypt subkey.
+ t3 = - Z[2] & 0xffff; // Additive inverse, 3rd encrypt subkey.
+
+ DK[51] = inv(Z[3]); // Multiplicative inverse (mod x10001).
+ DK[50] = t3;
+ DK[49] = t2;
+ DK[48] = t1;
+
+ j = 47; // Indices into temp and encrypt arrays.
+ k = 4;
+ for (int i = 0; i < 7; i++)
+ {
+ t1 = Z[k++];
+ DK[j--] = Z[k++];
+ DK[j--] = t1;
+ t1 = inv(Z[k++]);
+ t2 = -Z[k++] & 0xffff;
+ t3 = -Z[k++] & 0xffff;
+ DK[j--] = inv(Z[k++]);
+ DK[j--] = t2;
+ DK[j--] = t3;
+ DK[j--] = t1;
+ }
+
+ t1 = Z[k++];
+ DK[j--] = Z[k++];
+ DK[j--] = t1;
+ t1 = inv(Z[k++]);
+ t2 = -Z[k++] & 0xffff;
+ t3 = -Z[k++] & 0xffff;
+ DK[j--] = inv(Z[k++]);
+ DK[j--] = t3;
+ DK[j--] = t2;
+ DK[j--] = t1;
+}
+
+
+
+
+
+/*
+* mul
+*
+* Performs multiplication, modulo (2**16)+1. This code is structured
+* on the assumption that untaken branches are cheaper than taken
+* branches, and that the compiler doesn't schedule branches.
+* Java: Must work with 32-bit int and one 64-bit long to keep
+* 16-bit values and their products "unsigned." The routine assumes
+* that both a and b could fit in 16 bits even though they come in
+* as 32-bit ints. Lots of "& 0xFFFF" masks here to keep things 16-bit.
+* Also, because the routine stores mod (2**16)+1 results in a 2**16
+* space, the result is truncated to zero whenever the result would
+* zero, be 2**16. And if one of the multiplicands is 0, the result
+* is not zero, but (2**16) + 1 minus the other multiplicand (sort
+* of an additive inverse mod 0x10001).
+
+* NOTE: The java conversion of this routine works correctly, but
+* is half the speed of using Java's modulus division function (%)
+* on the multiplication with a 16-bit masking of the result--running
+* in the Symantec Caje IDE. So it's not called for now; the test
+* uses Java % instead.
+*/
+
+private int mul(int a, int b)
+{
+ int ret;
+ long p; // Large enough to catch 16-bit multiply
+ // without hitting sign bit.
+ if (a != 0)
+ {
+ if(b != 0)
+ {
+ p = (long) a * b;
+ b = (int) p & 0xFFFF; // Lower 16 bits.
+ a = (int) p >>> 16; // Upper 16 bits.
+ if (b < a)
+ return (b - a + 1) & 0xFFFF;
+ else
+ return (b - a) & 0xFFFF;
+ }
+ else
+ return ((1 - a) & 0xFFFF); // If b = 0, then same as
+ // 0x10001 - a.
+ }
+ else // If a = 0, then return
+ return((1 - b) & 0xFFFF); // same as 0x10001 - b.
+}
+
+/*
+* inv
+*
+* Compute multiplicative inverse of x, modulo (2**16)+1 using
+* extended Euclid's GCD (greatest common divisor) algorithm.
+* It is unrolled twice to avoid swapping the meaning of
+* the registers. And some subtracts are changed to adds.
+* Java: Though it uses signed 32-bit ints, the interpretation
+* of the bits within is strictly unsigned 16-bit.
+*/
+
+private int inv(int x)
+{
+ int t0, t1;
+ int q, y;
+
+ if (x <= 1) // Assumes positive x.
+ return(x); // 0 and 1 are self-inverse.
+
+ t1 = 0x10001 / x; // (2**16+1)/x; x is >= 2, so fits 16 bits.
+ y = 0x10001 % x;
+ if (y == 1)
+ return((1 - t1) & 0xFFFF);
+
+ t0 = 1;
+ do {
+ q = x / y;
+ x = x % y;
+ t0 += q * t1;
+ if (x == 1) return(t0);
+ q = y / x;
+ y = y % x;
+ t1 += q * t0;
+ } while (y != 1);
+
+ return((1 - t1) & 0xFFFF);
+}
+
+/*
+* freeTestData
+*
+* Nulls arrays and forces garbage collection to free up memory.
+*/
+
+void freeTestData()
+{
+ plain1 = null;
+ crypt1 = null;
+ plain2 = null;
+ userkey = null;
+ Z = null;
+ DK = null;
+
+ //System.gc(); // Force garbage collection.
+}
+
+
+}
+
+
+
+class IDEARunner extends Thread {
+
+ int id,key[];
+ byte text1[],text2[];
+
+ public IDEARunner(int id, byte [] text1, byte [] text2, int [] key) {
+ this.id = id;
+ this.text1=text1;
+ this.text2=text2;
+ this.key=key;
+ }
+/*
+* run()
+*
+* IDEA encryption/decryption algorithm. It processes plaintext in
+* 64-bit blocks, one at a time, breaking the block into four 16-bit
+* unsigned subblocks. It goes through eight rounds of processing
+* using 6 new subkeys each time, plus four for last step. The source
+* text is in array text1, the destination text goes into array text2
+* The routine represents 16-bit subblocks and subkeys as type int so
+* that they can be treated more easily as unsigned. Multiplication
+* modulo 0x10001 interprets a zero sub-block as 0x10000; it must to
+* fit in 16 bits.
+*/
+
+ public void run() {
+ int ilow, iupper, slice, tslice, ttslice;
+
+ tslice = text1.length / 8;
+ ttslice = (tslice + JGFCryptBench.nthreads-1) / JGFCryptBench.nthreads;
+ slice = ttslice*8;
+
+ ilow = id*slice;
+ iupper = (id+1)*slice;
+ if(iupper > text1.length) iupper = text1.length;
+
+int i1 = ilow; // Index into first text array.
+int i2 = ilow; // Index into second text array.
+int ik; // Index into key array.
+int x1, x2, x3, x4, t1, t2; // Four "16-bit" blocks, two temps.
+int r; // Eight rounds of processing.
+
+ for (int i =ilow ; i <iupper ; i +=8)
+{
+
+ ik = 0; // Restart key index.
+ r = 8; // Eight rounds of processing.
+
+ // Load eight plain1 bytes as four 16-bit "unsigned" integers.
+ // Masking with 0xff prevents sign extension with cast to int.
+
+ x1 = text1[i1++] & 0xff; // Build 16-bit x1 from 2 bytes,
+ x1 |= (text1[i1++] & 0xff) << 8; // assuming low-order byte first.
+ x2 = text1[i1++] & 0xff;
+ x2 |= (text1[i1++] & 0xff) << 8;
+ x3 = text1[i1++] & 0xff;
+ x3 |= (text1[i1++] & 0xff) << 8;
+ x4 = text1[i1++] & 0xff;
+ x4 |= (text1[i1++] & 0xff) << 8;
+
+ do {
+ // 1) Multiply (modulo 0x10001), 1st text sub-block
+ // with 1st key sub-block.
+
+ x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 2) Add (modulo 0x10000), 2nd text sub-block
+ // with 2nd key sub-block.
+
+ x2 = x2 + key[ik++] & 0xffff;
+
+ // 3) Add (modulo 0x10000), 3rd text sub-block
+ // with 3rd key sub-block.
+
+ x3 = x3 + key[ik++] & 0xffff;
+
+ // 4) Multiply (modulo 0x10001), 4th text sub-block
+ // with 4th key sub-block.
+
+ x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);
+
+ // 5) XOR results from steps 1 and 3.
+
+ t2 = x1 ^ x3;
+
+ // 6) XOR results from steps 2 and 4.
+ // Included in step 8.
+
+ // 7) Multiply (modulo 0x10001), result of step 5
+ // with 5th key sub-block.
+
+ t2 = (int) ((long) t2 * key[ik++] % 0x10001L & 0xffff);
+
+ // 8) Add (modulo 0x10000), results of steps 6 and 7.
+
+ t1 = t2 + (x2 ^ x4) & 0xffff;
+
+ // 9) Multiply (modulo 0x10001), result of step 8
+ // with 6th key sub-block.
+
+ t1 = (int) ((long) t1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 10) Add (modulo 0x10000), results of steps 7 and 9.
+
+ t2 = t1 + t2 & 0xffff;
+
+ // 11) XOR results from steps 1 and 9.
+
+ x1 ^= t1;
+
+ // 14) XOR results from steps 4 and 10. (Out of order).
+
+ x4 ^= t2;
+
+ // 13) XOR results from steps 2 and 10. (Out of order).
+
+ t2 ^= x2;
+
+ // 12) XOR results from steps 3 and 9. (Out of order).
+
+ x2 = x3 ^ t1;
+
+ x3 = t2; // Results of x2 and x3 now swapped.
+
+ } while(--r != 0); // Repeats seven more rounds.
+
+ // Final output transform (4 steps).
+
+ // 1) Multiply (modulo 0x10001), 1st text-block
+ // with 1st key sub-block.
+
+ x1 = (int) ((long) x1 * key[ik++] % 0x10001L & 0xffff);
+
+ // 2) Add (modulo 0x10000), 2nd text sub-block
+ // with 2nd key sub-block. It says x3, but that is to undo swap
+ // of subblocks 2 and 3 in 8th processing round.
+
+ x3 = x3 + key[ik++] & 0xffff;
+
+ // 3) Add (modulo 0x10000), 3rd text sub-block
+ // with 3rd key sub-block. It says x2, but that is to undo swap
+ // of subblocks 2 and 3 in 8th processing round.
+
+ x2 = x2 + key[ik++] & 0xffff;
+
+ // 4) Multiply (modulo 0x10001), 4th text-block
+ // with 4th key sub-block.
+
+ x4 = (int) ((long) x4 * key[ik++] % 0x10001L & 0xffff);
+
+ // Repackage from 16-bit sub-blocks to 8-bit byte array text2.
+
+ text2[i2++] = (byte) x1;
+ text2[i2++] = (byte) (x1 >>> 8);
+ text2[i2++] = (byte) x3; // x3 and x2 are switched
+ text2[i2++] = (byte) (x3 >>> 8); // only in name.
+ text2[i2++] = (byte) x2;
+ text2[i2++] = (byte) (x2 >>> 8);
+ text2[i2++] = (byte) x4;
+ text2[i2++] = (byte) (x4 >>> 8);
+
+} // End for loop.
+
+ } // End routine.
+
+} // End of class
+
+
+
+
+
+
+
+
+
--- /dev/null
+/**************************************************************************
+* *
+* Java Grande Forum Benchmark Suite - Thread Version 1.0 *
+* *
+* produced by *
+* *
+* Java Grande Benchmarking Project *
+* *
+* at *
+* *
+* Edinburgh Parallel Computing Centre *
+* *
+* email: epcc-javagrande@epcc.ed.ac.uk *
+* *
+* *
+* This version copyright (c) The University of Edinburgh, 1999. *
+* All rights reserved. *
+* *
+**************************************************************************/
+/**************************************************************************
+* Ported for DSTM Benchmark *
+**************************************************************************/
+
+
+package jgfutil;
+
+import java.util.*;
+
+public class JGFInstrumentor{
+
+ private HashMap timers;
+ private HashMap data;
+
+ public JGFIntrumentor()
+ {
+ timers = new HashMap();
+ data = new HashMap();
+ }
+
+ public void addTimer (String name){
+
+ if (timers.containsKey(name)) {
+ System.printString("JGFInstrumentor.addTimer: warning - timer " + name +
+ " already exists");
+ }
+ else {
+ timers.put(name, new JGFTimer(name));
+ }
+ }
+
+ public void addTimer (String name, String opname){
+
+ if (timers.containsKey(name)) {
+ System.printString("JGFInstrumentor.addTimer: warning - timer " + name +
+ " already exists");
+ }
+ else {
+ timers.put(name, new JGFTimer(name,opname));
+ }
+
+ }
+
+ public void addTimer (String name, String opname, int size){
+
+ if (timers.containsKey(name)) {
+ System.printString("JGFInstrumentor.addTimer: warning - timer " + name +
+ " already exists");
+ }
+ else {
+ timers.put(name, new JGFTimer(name,opname,size));
+ }
+
+ }
+
+ public void startTimer(String name){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).start();
+ }
+ else {
+ System.printString("JGFInstrumentor.startTimer: failed - timer " + name +
+ " does not exist");
+ }
+
+ }
+
+ public void stopTimer(String name){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).stop();
+ }
+ else {
+ System.printString("JGFInstrumentor.stopTimer: failed - timer " + name +
+ " does not exist");
+ }
+ }
+
+ public void addOpsToTimer(String name, double count){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).addops(count);
+ }
+ else {
+ System.printString("JGFInstrumentor.addOpsToTimer: failed - timer " + name +
+ " does not exist");
+ }
+ }
+
+ public void addTimeToTimer(String name, double added_time){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).addtime(added_time);
+ }
+ else {
+ System.printString("JGFInstrumentor.addTimeToTimer: failed - timer " + name +
+ " does not exist");
+ }
+
+
+
+ }
+
+ public double readTimer(String name){
+ double time;
+ if (timers.containsKey(name)) {
+ time = ((JGFTimer) timers.get(name)).time;
+ }
+ else {
+ System.printString("JGFInstrumentor.readTimer: failed - timer " + name +
+ " does not exist");
+ time = 0.0;
+ }
+ return time;
+ }
+
+ public void resetTimer(String name){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).reset();
+ }
+ else {
+ System.printString("JGFInstrumentor.resetTimer: failed - timer " + name +
+ " does not exist");
+ }
+ }
+
+ public void printTimer(String name){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).print();
+ }
+ else {
+ System.printString("JGFInstrumentor.printTimer: failed - timer " + name +
+ " does not exist");
+ }
+ }
+
+ public void printperfTimer(String name){
+ if (timers.containsKey(name)) {
+ ((JGFTimer) timers.get(name)).printperf();
+ }
+ else {
+ System.printString("JGFInstrumentor.printTimer: failed - timer " + name +
+ " does not exist");
+ }
+ }
+
+ public void storeData(String name, Object obj){
+ data.put(name,obj);
+ }
+
+ public void retrieveData(String name, Object obj){
+ obj = data.get(name);
+ }
+
+ public static void printHeader(int section, int size,int nthreads) {
+
+ String header, base;
+
+ header = "";
+ base = "Java Grande Forum Thread Benchmark Suite - Version 1.0 - Section ";
+
+ if (section == 1)
+ {
+ header = base + "1";
+ }
+ else if (section == 2)
+ {
+ if (size == 0)
+ header = base + "2 - Size A";
+ else if (size == 1)
+ header = base + "2 - Size B";
+ else if (size == 2)
+ header = base + "2 - Size C";
+ }
+ else if (section == 3)
+ {
+ if (size == 0)
+ header = base + "3 - Size A";
+ else if (size == 1)
+ header = base + "3 - Size B";
+ }
+
+ System.printString(header);
+
+ if (nthreads == 1) {
+ System.printString("Executing on " + nthreads + " thread");
+ }
+ else {
+ System.printString("Executing on " + nthreads + " threads");
+ }
+
+ System.printString("");
+
+ }
+
+}