#endif
+/*
+ * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
+ * A waker of many should wake a different task than the one last awakened
+ * at a frequency roughly N times higher than one of its wakees. In order
+ * to determine whether we should let the load spread vs consolodating to
+ * shared cache, we look for a minimum 'flip' frequency of llc_size in one
+ * partner, and a factor of lls_size higher frequency in the other. With
+ * both conditions met, we can be relatively sure that the relationship is
+ * non-monogamous, with partner count exceeding socket size. Waker/wakee
+ * being client/server, worker/dispatcher, interrupt source or whatever is
+ * irrelevant, spread criteria is apparent partner count exceeds socket size.
+ */
static int wake_wide(struct task_struct *p)
{
+ unsigned int master = current->wakee_flips;
+ unsigned int slave = p->wakee_flips;
int factor = this_cpu_read(sd_llc_size);
- /*
- * Yeah, it's the switching-frequency, could means many wakee or
- * rapidly switch, use factor here will just help to automatically
- * adjust the loose-degree, so bigger node will lead to more pull.
- */
- if (p->wakee_flips > factor) {
- /*
- * wakee is somewhat hot, it needs certain amount of cpu
- * resource, so if waker is far more hot, prefer to leave
- * it alone.
- */
- if (current->wakee_flips > (factor * p->wakee_flips))
- return 1;
- }
-
- return 0;
+ if (master < slave)
+ swap(master, slave);
+ if (slave < factor || master < slave * factor)
+ return 0;
+ return 1;
}
static int wake_affine(struct sched_domain *sd, struct task_struct *p, int sync)
unsigned long weight;
int balanced;
- /*
- * If we wake multiple tasks be careful to not bounce
- * ourselves around too much.
- */
- if (wake_wide(p))
- return 0;
-
idx = sd->wake_idx;
this_cpu = smp_processor_id();
prev_cpu = task_cpu(p);
{
struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
int cpu = smp_processor_id();
- int new_cpu = cpu;
+ int new_cpu = prev_cpu;
int want_affine = 0;
int sync = wake_flags & WF_SYNC;
if (sd_flag & SD_BALANCE_WAKE)
- want_affine = cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
+ want_affine = !wake_wide(p) && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
rcu_read_lock();
for_each_domain(cpu, tmp) {
if (!(tmp->flags & SD_LOAD_BALANCE))
- continue;
+ break;
/*
* If both cpu and prev_cpu are part of this domain,
if (tmp->flags & sd_flag)
sd = tmp;
+ else if (!want_affine)
+ break;
}
- if (affine_sd && cpu != prev_cpu && wake_affine(affine_sd, p, sync))
- prev_cpu = cpu;
-
- if (sd_flag & SD_BALANCE_WAKE) {
- new_cpu = select_idle_sibling(p, prev_cpu);
- goto unlock;
+ if (affine_sd) {
+ sd = NULL; /* Prefer wake_affine over balance flags */
+ if (cpu != prev_cpu && wake_affine(affine_sd, p, sync))
+ new_cpu = cpu;
}
- while (sd) {
+ if (!sd) {
+ if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
+ new_cpu = select_idle_sibling(p, new_cpu);
+
+ } else while (sd) {
struct sched_group *group;
int weight;
}
/* while loop will break here if sd == NULL */
}
-unlock:
rcu_read_unlock();
return new_cpu;