if (Ty == Type::FloatTy || Ty == Type::DoubleTy) {
Record.push_back(CFP->getValueAPF().convertToAPInt().getZExtValue());
} else if (Ty == Type::X86_FP80Ty) {
- const uint64_t *p = CFP->getValueAPF().convertToAPInt().getRawData();
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().convertToAPInt();
+ const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back((uint16_t)p[1]);
} else if (Ty == Type::FP128Ty) {
- const uint64_t *p = CFP->getValueAPF().convertToAPInt().getRawData();
+ APInt api = CFP->getValueAPF().convertToAPInt();
+ const uint64_t *p = api.getRawData();
Record.push_back(p[0]);
Record.push_back(p[1]);
} else if (Ty == Type::PPC_FP128Ty) {
return;
} else if (CFP->getType() == Type::X86_FP80Ty) {
// all long double variants are printed as hex
- const uint64_t *p = CFP->getValueAPF().convertToAPInt().getRawData();
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().convertToAPInt();
+ const uint64_t *p = api.getRawData();
if (TD->isBigEndian()) {
O << TAI->getData16bitsDirective() << uint16_t(p[0] >> 48)
<< "\t" << TAI->getCommentString()
<< " = 0x" << std::hex << i << std::dec
<< "U; /* " << Val << " */\n";
} else if (FPC->getType() == Type::X86_FP80Ty) {
- const uint64_t *p = FPC->getValueAPF().convertToAPInt().getRawData();
+ // api needed to prevent premature destruction
+ APInt api = FPC->getValueAPF().convertToAPInt();
+ const uint64_t *p = api.getRawData();
Out << "static const ConstantFP80Ty FPConstant" << FPCounter++
<< " = { 0x" << std::hex
<< ((uint16_t)p[1] | (p[0] & 0xffffffffffffLL)<<16)
Out << 'L';
else
assert(0 && "Unsupported floating point type");
- const uint64_t* p = CFP->getValueAPF().convertToAPInt().getRawData();
+ // api needed to prevent premature destruction
+ APInt api = CFP->getValueAPF().convertToAPInt();
+ const uint64_t* p = api.getRawData();
uint64_t word = *p;
int shiftcount=60;
int width = CFP->getValueAPF().convertToAPInt().getBitWidth();