SDOperand N3, ISD::CondCode CC);
SDOperand SimplifySetCC(MVT::ValueType VT, SDOperand N0, SDOperand N1,
ISD::CondCode Cond, bool foldBooleans = true);
+
+ SDOperand BuildSDIV(SDNode *N);
+ SDOperand BuildUDIV(SDNode *N);
public:
DAGCombiner(SelectionDAG &D)
: DAG(D), TLI(D.getTargetLoweringInfo()), AfterLegalize(false) {}
};
}
+struct ms {
+ int64_t m; // magic number
+ int64_t s; // shift amount
+};
+
+struct mu {
+ uint64_t m; // magic number
+ int64_t a; // add indicator
+ int64_t s; // shift amount
+};
+
+/// magic - calculate the magic numbers required to codegen an integer sdiv as
+/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
+/// or -1.
+static ms magic32(int32_t d) {
+ int32_t p;
+ uint32_t ad, anc, delta, q1, r1, q2, r2, t;
+ const uint32_t two31 = 0x80000000U;
+ struct ms mag;
+
+ ad = abs(d);
+ t = two31 + ((uint32_t)d >> 31);
+ anc = t - 1 - t%ad; // absolute value of nc
+ p = 31; // initialize p
+ q1 = two31/anc; // initialize q1 = 2p/abs(nc)
+ r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
+ q2 = two31/ad; // initialize q2 = 2p/abs(d)
+ r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
+ do {
+ p = p + 1;
+ q1 = 2*q1; // update q1 = 2p/abs(nc)
+ r1 = 2*r1; // update r1 = rem(2p/abs(nc))
+ if (r1 >= anc) { // must be unsigned comparison
+ q1 = q1 + 1;
+ r1 = r1 - anc;
+ }
+ q2 = 2*q2; // update q2 = 2p/abs(d)
+ r2 = 2*r2; // update r2 = rem(2p/abs(d))
+ if (r2 >= ad) { // must be unsigned comparison
+ q2 = q2 + 1;
+ r2 = r2 - ad;
+ }
+ delta = ad - r2;
+ } while (q1 < delta || (q1 == delta && r1 == 0));
+
+ mag.m = (int32_t)(q2 + 1); // make sure to sign extend
+ if (d < 0) mag.m = -mag.m; // resulting magic number
+ mag.s = p - 32; // resulting shift
+ return mag;
+}
+
+/// magicu - calculate the magic numbers required to codegen an integer udiv as
+/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
+static mu magicu32(uint32_t d) {
+ int32_t p;
+ uint32_t nc, delta, q1, r1, q2, r2;
+ struct mu magu;
+ magu.a = 0; // initialize "add" indicator
+ nc = - 1 - (-d)%d;
+ p = 31; // initialize p
+ q1 = 0x80000000/nc; // initialize q1 = 2p/nc
+ r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
+ q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
+ r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
+ do {
+ p = p + 1;
+ if (r1 >= nc - r1 ) {
+ q1 = 2*q1 + 1; // update q1
+ r1 = 2*r1 - nc; // update r1
+ }
+ else {
+ q1 = 2*q1; // update q1
+ r1 = 2*r1; // update r1
+ }
+ if (r2 + 1 >= d - r2) {
+ if (q2 >= 0x7FFFFFFF) magu.a = 1;
+ q2 = 2*q2 + 1; // update q2
+ r2 = 2*r2 + 1 - d; // update r2
+ }
+ else {
+ if (q2 >= 0x80000000) magu.a = 1;
+ q2 = 2*q2; // update q2
+ r2 = 2*r2 + 1; // update r2
+ }
+ delta = d - 1 - r2;
+ } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
+ magu.m = q2 + 1; // resulting magic number
+ magu.s = p - 32; // resulting shift
+ return magu;
+}
+
+/// magic - calculate the magic numbers required to codegen an integer sdiv as
+/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
+/// or -1.
+static ms magic64(int64_t d) {
+ int64_t p;
+ uint64_t ad, anc, delta, q1, r1, q2, r2, t;
+ const uint64_t two63 = 9223372036854775808ULL; // 2^63
+ struct ms mag;
+
+ ad = llabs(d);
+ t = two63 + ((uint64_t)d >> 63);
+ anc = t - 1 - t%ad; // absolute value of nc
+ p = 63; // initialize p
+ q1 = two63/anc; // initialize q1 = 2p/abs(nc)
+ r1 = two63 - q1*anc; // initialize r1 = rem(2p,abs(nc))
+ q2 = two63/ad; // initialize q2 = 2p/abs(d)
+ r2 = two63 - q2*ad; // initialize r2 = rem(2p,abs(d))
+ do {
+ p = p + 1;
+ q1 = 2*q1; // update q1 = 2p/abs(nc)
+ r1 = 2*r1; // update r1 = rem(2p/abs(nc))
+ if (r1 >= anc) { // must be unsigned comparison
+ q1 = q1 + 1;
+ r1 = r1 - anc;
+ }
+ q2 = 2*q2; // update q2 = 2p/abs(d)
+ r2 = 2*r2; // update r2 = rem(2p/abs(d))
+ if (r2 >= ad) { // must be unsigned comparison
+ q2 = q2 + 1;
+ r2 = r2 - ad;
+ }
+ delta = ad - r2;
+ } while (q1 < delta || (q1 == delta && r1 == 0));
+
+ mag.m = q2 + 1;
+ if (d < 0) mag.m = -mag.m; // resulting magic number
+ mag.s = p - 64; // resulting shift
+ return mag;
+}
+
+/// magicu - calculate the magic numbers required to codegen an integer udiv as
+/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
+static mu magicu64(uint64_t d)
+{
+ int64_t p;
+ uint64_t nc, delta, q1, r1, q2, r2;
+ struct mu magu;
+ magu.a = 0; // initialize "add" indicator
+ nc = - 1 - (-d)%d;
+ p = 63; // initialize p
+ q1 = 0x8000000000000000ull/nc; // initialize q1 = 2p/nc
+ r1 = 0x8000000000000000ull - q1*nc; // initialize r1 = rem(2p,nc)
+ q2 = 0x7FFFFFFFFFFFFFFFull/d; // initialize q2 = (2p-1)/d
+ r2 = 0x7FFFFFFFFFFFFFFFull - q2*d; // initialize r2 = rem((2p-1),d)
+ do {
+ p = p + 1;
+ if (r1 >= nc - r1 ) {
+ q1 = 2*q1 + 1; // update q1
+ r1 = 2*r1 - nc; // update r1
+ }
+ else {
+ q1 = 2*q1; // update q1
+ r1 = 2*r1; // update r1
+ }
+ if (r2 + 1 >= d - r2) {
+ if (q2 >= 0x7FFFFFFFFFFFFFFFull) magu.a = 1;
+ q2 = 2*q2 + 1; // update q2
+ r2 = 2*r2 + 1 - d; // update r2
+ }
+ else {
+ if (q2 >= 0x8000000000000000ull) magu.a = 1;
+ q2 = 2*q2; // update q2
+ r2 = 2*r2 + 1; // update r2
+ }
+ delta = d - 1 - r2;
+ } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
+ magu.m = q2 + 1; // resulting magic number
+ magu.s = p - 64; // resulting shift
+ return magu;
+}
+
/// MaskedValueIsZero - Return true if 'Op & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Op and Mask are known to
/// be the same type.
if (MaskedValueIsZero(N1, SignBit, TLI) &&
MaskedValueIsZero(N0, SignBit, TLI))
return DAG.getNode(ISD::UDIV, N1.getValueType(), N0, N1);
+ // if integer divide is expensive and we satisfy the requirements, emit an
+ // alternate sequence.
+ // FIXME: This currently opts out powers of two, since targets can often be
+ // more clever in those cases. In an idea world, we would have some way to
+ // detect that too.
+ if (N1C && !isPowerOf2_64(N1C->getSignExtended()) &&
+ (N1C->getSignExtended() < -1 || N1C->getSignExtended() > 1) &&
+ TLI.isOperationLegal(ISD::MULHS, VT) && TLI.isIntDivExpensive()) {
+ return BuildSDIV(N);
+ }
return SDOperand();
}
SDOperand DAGCombiner::visitUDIV(SDNode *N) {
SDOperand N0 = N->getOperand(0);
SDOperand N1 = N->getOperand(1);
+ MVT::ValueType VT = N->getValueType(0);
ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0.Val);
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.Val);
return DAG.getNode(ISD::SRL, N->getValueType(0), N0,
DAG.getConstant(Log2_64(N1C->getValue()),
TLI.getShiftAmountTy()));
+ // fold (udiv x, c) -> alternate
+ if (N1C && N1C->getValue() && TLI.isOperationLegal(ISD::MULHU, VT) &&
+ TLI.isIntDivExpensive())
+ return BuildUDIV(N);
return SDOperand();
}
return SDOperand();
}
+/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number. See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand DAGCombiner::BuildSDIV(SDNode *N) {
+ MVT::ValueType VT = N->getValueType(0);
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "BuildSDIV only operates on i32 or i64!");
+
+ int64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
+ ms magics = (VT == MVT::i32) ? magic32(d) : magic64(d);
+
+ // Multiply the numerator (operand 0) by the magic value
+ SDOperand Q = DAG.getNode(ISD::MULHS, VT, N->getOperand(0),
+ DAG.getConstant(magics.m, VT));
+ // If d > 0 and m < 0, add the numerator
+ if (d > 0 && magics.m < 0) {
+ Q = DAG.getNode(ISD::ADD, VT, Q, N->getOperand(0));
+ WorkList.push_back(Q.Val);
+ }
+ // If d < 0 and m > 0, subtract the numerator.
+ if (d < 0 && magics.m > 0) {
+ Q = DAG.getNode(ISD::SUB, VT, Q, N->getOperand(0));
+ WorkList.push_back(Q.Val);
+ }
+ // Shift right algebraic if shift value is nonzero
+ if (magics.s > 0) {
+ Q = DAG.getNode(ISD::SRA, VT, Q,
+ DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
+ WorkList.push_back(Q.Val);
+ }
+ // Extract the sign bit and add it to the quotient
+ SDOperand T =
+ DAG.getNode(ISD::SRL, MVT::i32, Q,
+ DAG.getConstant(MVT::getSizeInBits(VT)-1,
+ TLI.getShiftAmountTy()));
+ WorkList.push_back(T.Val);
+ return DAG.getNode(ISD::ADD, VT, Q, T);
+}
+
+/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
+/// return a DAG expression to select that will generate the same value by
+/// multiplying by a magic number. See:
+/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
+SDOperand DAGCombiner::BuildUDIV(SDNode *N) {
+ MVT::ValueType VT = N->getValueType(0);
+ assert((VT == MVT::i32 || VT == MVT::i64) &&
+ "BuildUDIV only operates on i32 or i64!");
+
+ uint64_t d = cast<ConstantSDNode>(N->getOperand(1))->getValue();
+ mu magics = (VT == MVT::i32) ? magicu32(d) : magicu64(d);
+
+ // Multiply the numerator (operand 0) by the magic value
+ SDOperand Q = DAG.getNode(ISD::MULHU, VT, N->getOperand(0),
+ DAG.getConstant(magics.m, VT));
+ WorkList.push_back(Q.Val);
+
+ if (magics.a == 0) {
+ return DAG.getNode(ISD::SRL, VT, Q,
+ DAG.getConstant(magics.s, TLI.getShiftAmountTy()));
+ } else {
+ SDOperand NPQ = DAG.getNode(ISD::SUB, VT, N->getOperand(0), Q);
+ WorkList.push_back(NPQ.Val);
+ NPQ = DAG.getNode(ISD::SRL, VT, NPQ,
+ DAG.getConstant(1, TLI.getShiftAmountTy()));
+ WorkList.push_back(NPQ.Val);
+ NPQ = DAG.getNode(ISD::ADD, VT, NPQ, Q);
+ WorkList.push_back(NPQ.Val);
+ return DAG.getNode(ISD::SRL, VT, NPQ,
+ DAG.getConstant(magics.s-1, TLI.getShiftAmountTy()));
+ }
+}
+
// SelectionDAG::Combine - This is the entry point for the file.
//
void SelectionDAG::Combine(bool RunningAfterLegalize) {
return 0;
}
-// Structure used to return the necessary information to codegen an SDIV as
-// a multiply.
-struct ms {
- int m; // magic number
- int s; // shift amount
-};
-
-struct mu {
- unsigned int m; // magic number
- int a; // add indicator
- int s; // shift amount
-};
-
-/// magic - calculate the magic numbers required to codegen an integer sdiv as
-/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
-/// or -1.
-static struct ms magic(int d) {
- int p;
- unsigned int ad, anc, delta, q1, r1, q2, r2, t;
- const unsigned int two31 = 0x80000000U;
- struct ms mag;
-
- ad = abs(d);
- t = two31 + ((unsigned int)d >> 31);
- anc = t - 1 - t%ad; // absolute value of nc
- p = 31; // initialize p
- q1 = two31/anc; // initialize q1 = 2p/abs(nc)
- r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
- q2 = two31/ad; // initialize q2 = 2p/abs(d)
- r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
- do {
- p = p + 1;
- q1 = 2*q1; // update q1 = 2p/abs(nc)
- r1 = 2*r1; // update r1 = rem(2p/abs(nc))
- if (r1 >= anc) { // must be unsigned comparison
- q1 = q1 + 1;
- r1 = r1 - anc;
- }
- q2 = 2*q2; // update q2 = 2p/abs(d)
- r2 = 2*r2; // update r2 = rem(2p/abs(d))
- if (r2 >= ad) { // must be unsigned comparison
- q2 = q2 + 1;
- r2 = r2 - ad;
- }
- delta = ad - r2;
- } while (q1 < delta || (q1 == delta && r1 == 0));
-
- mag.m = q2 + 1;
- if (d < 0) mag.m = -mag.m; // resulting magic number
- mag.s = p - 32; // resulting shift
- return mag;
-}
-
-/// magicu - calculate the magic numbers required to codegen an integer udiv as
-/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
-static struct mu magicu(unsigned d)
-{
- int p;
- unsigned int nc, delta, q1, r1, q2, r2;
- struct mu magu;
- magu.a = 0; // initialize "add" indicator
- nc = - 1 - (-d)%d;
- p = 31; // initialize p
- q1 = 0x80000000/nc; // initialize q1 = 2p/nc
- r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
- q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
- r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
- do {
- p = p + 1;
- if (r1 >= nc - r1 ) {
- q1 = 2*q1 + 1; // update q1
- r1 = 2*r1 - nc; // update r1
- }
- else {
- q1 = 2*q1; // update q1
- r1 = 2*r1; // update r1
- }
- if (r2 + 1 >= d - r2) {
- if (q2 >= 0x7FFFFFFF) magu.a = 1;
- q2 = 2*q2 + 1; // update q2
- r2 = 2*r2 + 1 - d; // update r2
- }
- else {
- if (q2 >= 0x80000000) magu.a = 1;
- q2 = 2*q2; // update q2
- r2 = 2*r2 + 1; // update r2
- }
- delta = d - 1 - r2;
- } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
- magu.m = q2 + 1; // resulting magic number
- magu.s = p - 32; // resulting shift
- return magu;
-}
-
-/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDOperand PPCDAGToDAGISel::BuildSDIVSequence(SDNode *N) {
- int d = (int)cast<ConstantSDNode>(N->getOperand(1))->getValue();
- ms magics = magic(d);
- // Multiply the numerator (operand 0) by the magic value
- SDOperand Q = CurDAG->getNode(ISD::MULHS, MVT::i32, N->getOperand(0),
- CurDAG->getConstant(magics.m, MVT::i32));
- // If d > 0 and m < 0, add the numerator
- if (d > 0 && magics.m < 0)
- Q = CurDAG->getNode(ISD::ADD, MVT::i32, Q, N->getOperand(0));
- // If d < 0 and m > 0, subtract the numerator.
- if (d < 0 && magics.m > 0)
- Q = CurDAG->getNode(ISD::SUB, MVT::i32, Q, N->getOperand(0));
- // Shift right algebraic if shift value is nonzero
- if (magics.s > 0)
- Q = CurDAG->getNode(ISD::SRA, MVT::i32, Q,
- CurDAG->getConstant(magics.s, MVT::i32));
- // Extract the sign bit and add it to the quotient
- SDOperand T =
- CurDAG->getNode(ISD::SRL, MVT::i32, Q, CurDAG->getConstant(31, MVT::i32));
- return CurDAG->getNode(ISD::ADD, MVT::i32, Q, T);
-}
-
-/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDOperand PPCDAGToDAGISel::BuildUDIVSequence(SDNode *N) {
- unsigned d = (unsigned)cast<ConstantSDNode>(N->getOperand(1))->getValue();
- mu magics = magicu(d);
- // Multiply the numerator (operand 0) by the magic value
- SDOperand Q = CurDAG->getNode(ISD::MULHU, MVT::i32, N->getOperand(0),
- CurDAG->getConstant(magics.m, MVT::i32));
- if (magics.a == 0) {
- return CurDAG->getNode(ISD::SRL, MVT::i32, Q,
- CurDAG->getConstant(magics.s, MVT::i32));
- } else {
- SDOperand NPQ = CurDAG->getNode(ISD::SUB, MVT::i32, N->getOperand(0), Q);
- NPQ = CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
- CurDAG->getConstant(1, MVT::i32));
- NPQ = CurDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
- return CurDAG->getNode(ISD::SRL, MVT::i32, NPQ,
- CurDAG->getConstant(magics.s-1, MVT::i32));
- }
-}
-
SDOperand PPCDAGToDAGISel::SelectDYNAMIC_STACKALLOC(SDOperand Op) {
SDNode *N = Op.Val;
Op.getValue(1));
CurDAG->SelectNodeTo(N, PPC::NEG, MVT::i32, PT);
return SDOperand(N, 0);
- } else if (Imm) {
- SDOperand Result = Select(BuildSDIVSequence(N));
- CodeGenMap[Op] = Result;
- return Result;
}
}
// Other cases are autogenerated.
break;
}
- case ISD::UDIV: {
- // If this is a divide by constant, we can emit code using some magic
- // constants to implement it as a multiply instead.
- unsigned Imm;
- if (isIntImmediate(N->getOperand(1), Imm) && Imm) {
- SDOperand Result = Select(BuildUDIVSequence(N));
- CodeGenMap[Op] = Result;
- return Result;
- }
-
- // Other cases are autogenerated.
- break;
- }
case ISD::AND: {
unsigned Imm;
// If this is an and of a value rotated between 0 and 31 bits and then and'd
// Fold away setcc operations if possible.
setSetCCIsExpensive();
+ // Fold constant integer div/rem into an alternate sequence of instructions
+ setIntDivIsExpensive();
// Use _setjmp/_longjmp instead of setjmp/longjmp.
setUseUnderscoreSetJmpLongJmp(true);
}
return 0;
}
-
-// Structure used to return the necessary information to codegen an SDIV as
-// a multiply.
-struct ms {
- int m; // magic number
- int s; // shift amount
-};
-
-struct mu {
- unsigned int m; // magic number
- int a; // add indicator
- int s; // shift amount
-};
-
-/// magic - calculate the magic numbers required to codegen an integer sdiv as
-/// a sequence of multiply and shifts. Requires that the divisor not be 0, 1,
-/// or -1.
-static struct ms magic(int d) {
- int p;
- unsigned int ad, anc, delta, q1, r1, q2, r2, t;
- const unsigned int two31 = 0x80000000U;
- struct ms mag;
-
- ad = abs(d);
- t = two31 + ((unsigned int)d >> 31);
- anc = t - 1 - t%ad; // absolute value of nc
- p = 31; // initialize p
- q1 = two31/anc; // initialize q1 = 2p/abs(nc)
- r1 = two31 - q1*anc; // initialize r1 = rem(2p,abs(nc))
- q2 = two31/ad; // initialize q2 = 2p/abs(d)
- r2 = two31 - q2*ad; // initialize r2 = rem(2p,abs(d))
- do {
- p = p + 1;
- q1 = 2*q1; // update q1 = 2p/abs(nc)
- r1 = 2*r1; // update r1 = rem(2p/abs(nc))
- if (r1 >= anc) { // must be unsigned comparison
- q1 = q1 + 1;
- r1 = r1 - anc;
- }
- q2 = 2*q2; // update q2 = 2p/abs(d)
- r2 = 2*r2; // update r2 = rem(2p/abs(d))
- if (r2 >= ad) { // must be unsigned comparison
- q2 = q2 + 1;
- r2 = r2 - ad;
- }
- delta = ad - r2;
- } while (q1 < delta || (q1 == delta && r1 == 0));
-
- mag.m = q2 + 1;
- if (d < 0) mag.m = -mag.m; // resulting magic number
- mag.s = p - 32; // resulting shift
- return mag;
-}
-
-/// magicu - calculate the magic numbers required to codegen an integer udiv as
-/// a sequence of multiply, add and shifts. Requires that the divisor not be 0.
-static struct mu magicu(unsigned d)
-{
- int p;
- unsigned int nc, delta, q1, r1, q2, r2;
- struct mu magu;
- magu.a = 0; // initialize "add" indicator
- nc = - 1 - (-d)%d;
- p = 31; // initialize p
- q1 = 0x80000000/nc; // initialize q1 = 2p/nc
- r1 = 0x80000000 - q1*nc; // initialize r1 = rem(2p,nc)
- q2 = 0x7FFFFFFF/d; // initialize q2 = (2p-1)/d
- r2 = 0x7FFFFFFF - q2*d; // initialize r2 = rem((2p-1),d)
- do {
- p = p + 1;
- if (r1 >= nc - r1 ) {
- q1 = 2*q1 + 1; // update q1
- r1 = 2*r1 - nc; // update r1
- }
- else {
- q1 = 2*q1; // update q1
- r1 = 2*r1; // update r1
- }
- if (r2 + 1 >= d - r2) {
- if (q2 >= 0x7FFFFFFF) magu.a = 1;
- q2 = 2*q2 + 1; // update q2
- r2 = 2*r2 + 1 - d; // update r2
- }
- else {
- if (q2 >= 0x80000000) magu.a = 1;
- q2 = 2*q2; // update q2
- r2 = 2*r2 + 1; // update r2
- }
- delta = d - 1 - r2;
- } while (p < 64 && (q1 < delta || (q1 == delta && r1 == 0)));
- magu.m = q2 + 1; // resulting magic number
- magu.s = p - 32; // resulting shift
- return magu;
-}
-}
-
-/// BuildSDIVSequence - Given an ISD::SDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDOperand ISel::BuildSDIVSequence(SDOperand N) {
- int d = (int)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
- ms magics = magic(d);
- // Multiply the numerator (operand 0) by the magic value
- SDOperand Q = ISelDAG->getNode(ISD::MULHS, MVT::i32, N.getOperand(0),
- ISelDAG->getConstant(magics.m, MVT::i32));
- // If d > 0 and m < 0, add the numerator
- if (d > 0 && magics.m < 0)
- Q = ISelDAG->getNode(ISD::ADD, MVT::i32, Q, N.getOperand(0));
- // If d < 0 and m > 0, subtract the numerator.
- if (d < 0 && magics.m > 0)
- Q = ISelDAG->getNode(ISD::SUB, MVT::i32, Q, N.getOperand(0));
- // Shift right algebraic if shift value is nonzero
- if (magics.s > 0)
- Q = ISelDAG->getNode(ISD::SRA, MVT::i32, Q,
- ISelDAG->getConstant(magics.s, MVT::i32));
- // Extract the sign bit and add it to the quotient
- SDOperand T =
- ISelDAG->getNode(ISD::SRL, MVT::i32, Q, ISelDAG->getConstant(31, MVT::i32));
- return ISelDAG->getNode(ISD::ADD, MVT::i32, Q, T);
-}
-
-/// BuildUDIVSequence - Given an ISD::UDIV node expressing a divide by constant,
-/// return a DAG expression to select that will generate the same value by
-/// multiplying by a magic number. See:
-/// <http://the.wall.riscom.net/books/proc/ppc/cwg/code2.html>
-SDOperand ISel::BuildUDIVSequence(SDOperand N) {
- unsigned d =
- (unsigned)cast<ConstantSDNode>(N.getOperand(1))->getSignExtended();
- mu magics = magicu(d);
- // Multiply the numerator (operand 0) by the magic value
- SDOperand Q = ISelDAG->getNode(ISD::MULHU, MVT::i32, N.getOperand(0),
- ISelDAG->getConstant(magics.m, MVT::i32));
- if (magics.a == 0) {
- Q = ISelDAG->getNode(ISD::SRL, MVT::i32, Q,
- ISelDAG->getConstant(magics.s, MVT::i32));
- } else {
- SDOperand NPQ = ISelDAG->getNode(ISD::SUB, MVT::i32, N.getOperand(0), Q);
- NPQ = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ,
- ISelDAG->getConstant(1, MVT::i32));
- NPQ = ISelDAG->getNode(ISD::ADD, MVT::i32, NPQ, Q);
- Q = ISelDAG->getNode(ISD::SRL, MVT::i32, NPQ,
- ISelDAG->getConstant(magics.s-1, MVT::i32));
- }
- return Q;
}
/// getGlobalBaseReg - Output the instructions required to put the
BuildMI(BB, PPC::ADDZE, 1, Tmp4).addReg(Tmp1);
BuildMI(BB, PPC::NEG, 1, Result).addReg(Tmp4);
return Result;
- } else if (Tmp3) {
- ExprMap.erase(N);
- return SelectExpr(BuildSDIVSequence(N));
}
}
// fall thru
case ISD::UDIV:
- // If this is a divide by constant, we can emit code using some magic
- // constants to implement it as a multiply instead.
- if (isIntImmediate(N.getOperand(1), Tmp3) && Tmp3) {
- ExprMap.erase(N);
- return SelectExpr(BuildUDIVSequence(N));
- }
Tmp1 = SelectExpr(N.getOperand(0));
Tmp2 = SelectExpr(N.getOperand(1));
Opc = (ISD::UDIV == opcode) ? PPC::DIVWU : PPC::DIVW; break;