return allowUnalignedMemoryAccesses;
}
+ /// This function returns true if the target would benefit from code placement
+ /// optimization.
+ /// @brief Determine if the target should perform code placement optimization.
+ bool shouldOptimizeCodePlacement() const {
+ return benefitFromCodePlacementOpt;
+ }
+
/// getOptimalMemOpType - Returns the target specific optimal type for load
/// and store operations as a result of memset, memcpy, and memmove lowering.
/// It returns MVT::iAny if SelectionDAG should be responsible for
/// operations when copying small arrays and other similar tasks.
/// @brief Indicate whether the target permits unaligned memory accesses.
bool allowUnalignedMemoryAccesses;
+
+ /// This field specifies whether the target can benefit from code placement
+ /// optimization.
+ bool benefitFromCodePlacementOpt;
};
} // end llvm namespace
/// jcc <cond> C, [exit]
///
bool CodePlacementOpt::OptimizeIntraLoopEdges() {
+ if (!TLI->shouldOptimizeCodePlacement())
+ return false;
+
bool Changed = false;
for (unsigned i = 0, e = UncondJmpMBBs.size(); i != e; ++i) {
MachineBasicBlock *MBB = UncondJmpMBBs[i].first;
memset(TargetDAGCombineArray, 0, array_lengthof(TargetDAGCombineArray));
maxStoresPerMemset = maxStoresPerMemcpy = maxStoresPerMemmove = 8;
allowUnalignedMemoryAccesses = false;
+ benefitFromCodePlacementOpt = false;
UseUnderscoreSetJmp = false;
UseUnderscoreLongJmp = false;
SelectIsExpensive = false;
setIfCvtDupBlockSizeLimit(Subtarget->isThumb() ? 0 : 2);
maxStoresPerMemcpy = 1; //// temporary - rewrite interface to use type
+ benefitFromCodePlacementOpt = true;
}
const char *ARMTargetLowering::getTargetNodeName(unsigned Opcode) const {
maxStoresPerMemmove = 3; // For @llvm.memmove -> sequence of stores
allowUnalignedMemoryAccesses = true; // x86 supports it!
setPrefLoopAlignment(16);
+ benefitFromCodePlacementOpt = true;
}