#include <linux/mfd/syscon.h>
#include <linux/regmap.h>
#include <linux/math64.h>
+#include <linux/property.h>
/* Register Map */
#define REG_CON_LASTACK BIT(5) /* 1: send NACK after last received byte */
#define REG_CON_ACTACK BIT(6) /* 1: stop if NACK is received */
+#define REG_CON_SDA_CNT(cnt) ((cnt) << 8)
+#define REG_CON_STA_CNT(cnt) ((cnt) << 12)
+#define REG_CON_STO_CNT(cnt) ((cnt) << 14)
+
/* REG_MRXADDR bits */
#define REG_MRXADDR_VALID(x) BIT(24 + (x)) /* [x*8+7:x*8] of MRX[R]ADDR valid */
STATE_STOP
};
+struct rk3x_i2c;
+
+/**
+ * struct rk3x_i2c_calced_timings:
+ * @div_low: Divider output for low
+ * @div_high: Divider output for high
+ * @sda_update_cfg: Used to config sda change state when scl is low,
+ * used to adjust setup/hold time
+ * @stp_sta_cfg: Start setup config for setup start time and hold start time
+ * @stp_sto_cfg: Stop setup config for setup stop time
+ */
+struct rk3x_i2c_calced_timings {
+ unsigned long div_low;
+ unsigned long div_high;
+ unsigned int sda_update_cfg;
+ unsigned int stp_sta_cfg;
+ unsigned int stp_sto_cfg;
+};
+
/**
* @grf_offset: offset inside the grf regmap for setting the i2c type
*/
struct rk3x_i2c_soc_data {
int grf_offset;
+
+ int (*clk_init)(struct rk3x_i2c *, unsigned long *);
+ int (*calc_timings)(unsigned long, struct i2c_timings *,
+ struct rk3x_i2c_calced_timings *);
};
struct rk3x_i2c {
/* Hardware resources */
void __iomem *regs;
- struct clk *clk;
+ struct clk *pclk; /* APB clock */
+ struct clk *clk; /* Func clk for rk3399 or Func & APB clks for others */
struct notifier_block clk_rate_nb;
/* Settings */
struct i2c_timings t;
+ struct rk3x_i2c_calced_timings t_calc;
/* Synchronization & notification */
spinlock_t lock;
return readl(i2c->regs + offset);
}
+static inline u32 rk3x_i2c_get_con_count(struct rk3x_i2c *i2c)
+{
+ return REG_CON_SDA_CNT(i2c->t_calc.sda_update_cfg) |
+ REG_CON_STA_CNT(i2c->t_calc.stp_sta_cfg) |
+ REG_CON_STO_CNT(i2c->t_calc.stp_sto_cfg);
+}
+
/* Reset all interrupt pending bits */
static inline void rk3x_i2c_clean_ipd(struct rk3x_i2c *i2c)
{
*/
static void rk3x_i2c_start(struct rk3x_i2c *i2c)
{
- u32 val;
+ u32 val = rk3x_i2c_get_con_count(i2c);
rk3x_i2c_clean_ipd(i2c);
i2c_writel(i2c, REG_INT_START, REG_IEN);
/* enable adapter with correct mode, send START condition */
- val = REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
+ val = val | REG_CON_EN | REG_CON_MOD(i2c->mode) | REG_CON_START;
/* if we want to react to NACK, set ACTACK bit */
if (!(i2c->msg->flags & I2C_M_IGNORE_NAK))
* get the intended effect by resetting its internal state
* and issuing an ordinary START.
*/
- i2c_writel(i2c, 0, REG_CON);
+ i2c_writel(i2c, rk3x_i2c_get_con_count(i2c), REG_CON);
/* signal that we are finished with the current msg */
wake_up(&i2c->wait);
}
/**
- * Calculate divider values for desired SCL frequency
+ * Calculate timing values for desired SCL frequency
*
* @clk_rate: I2C input clock rate
* @t: Known I2C timing information.
* @div_low: Divider output for low
* @div_high: Divider output for high
+ * @t_calc: Caculated rk3x private timings that would
+ * be written into regs
*
* Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
* a best-effort divider value is returned in divs. If the target rate is
* too high, we silently use the highest possible rate.
*/
-static int rk3x_i2c_calc_divs(unsigned long clk_rate,
- struct i2c_timings *t,
- unsigned long *div_low,
- unsigned long *div_high)
+static int rk3x_i2c_v0_calc_timings(unsigned long clk_rate,
+ struct i2c_timings *t,
+ struct rk3x_i2c_calced_timings *t_calc)
{
unsigned long spec_min_low_ns, spec_min_high_ns;
unsigned long spec_setup_start, spec_max_data_hold_ns;
* Time needed to meet hold requirements is important.
* Just use that.
*/
- *div_low = min_low_div;
- *div_high = min_high_div;
+ t_calc->div_low = min_low_div;
+ t_calc->div_high = min_high_div;
} else {
/*
* We've got to distribute some time among the low and high
/* Give low the "ideal" and give high whatever extra is left */
extra_low_div = ideal_low_div - min_low_div;
- *div_low = ideal_low_div;
- *div_high = min_high_div + (extra_div - extra_low_div);
+ t_calc->div_low = ideal_low_div;
+ t_calc->div_high = min_high_div + (extra_div - extra_low_div);
}
/*
* Adjust to the fact that the hardware has an implicit "+1".
* NOTE: Above calculations always produce div_low > 0 and div_high > 0.
*/
- *div_low = *div_low - 1;
- *div_high = *div_high - 1;
+ t_calc->div_low -= 1;
+ t_calc->div_high -= 1;
/* Maximum divider supported by hw is 0xffff */
- if (*div_low > 0xffff) {
- *div_low = 0xffff;
+ if (t_calc->div_low > 0xffff) {
+ t_calc->div_low = 0xffff;
+ ret = -EINVAL;
+ }
+
+ if (t_calc->div_high > 0xffff) {
+ t_calc->div_high = 0xffff;
ret = -EINVAL;
}
- if (*div_high > 0xffff) {
- *div_high = 0xffff;
+ return ret;
+}
+
+/**
+ * Calculate timing values for desired SCL frequency
+ *
+ * @clk_rate: I2C input clock rate
+ * @t: Known I2C timing information
+ * @t_calc: Caculated rk3x private timings that would
+ * be written into regs
+ * Returns: 0 on success, -EINVAL if the goal SCL rate is too slow. In that case
+ * a best-effort divider value is returned in divs. If the target rate is
+ * too high, we silently use the highest possible rate.
+ * The following formulas are v1's method to calculate timings.
+ *
+ * l = divl + 1;
+ * h = divh + 1;
+ * s = sda_update_config + 1;
+ * u = start_setup_config + 1;
+ * p = stop_setup_config + 1;
+ * T = Tclk_i2c;
+
+ * tHigh = 8 * h * T;
+ * tLow = 8 * l * T;
+
+ * tHD;sda = (l * s + 1) * T;
+ * tSU;sda = [(8 - s) * l + 1] * T;
+ * tI2C = 8 * (l + h) * T;
+
+ * tSU;sta = (8h * u + 1) * T;
+ * tHD;sta = [8h * (u + 1) - 1] * T;
+ * tSU;sto = (8h * p + 1) * T;
+ */
+static int rk3x_i2c_v1_calc_timings(unsigned long clk_rate,
+ struct i2c_timings *t,
+ struct rk3x_i2c_calced_timings *t_calc)
+{
+ unsigned long spec_min_low_ns, spec_min_high_ns;
+ unsigned long spec_min_setup_start_ns, spec_min_stop_setup_ns;
+ unsigned long spec_min_data_setup_ns, spec_max_data_hold_ns;
+
+ unsigned long min_low_ns, min_high_ns, min_total_ns;
+ unsigned long min_setup_start_ns, min_setup_data_ns;
+ unsigned long min_stop_setup_ns, max_hold_data_ns;
+
+ unsigned long clk_rate_khz, scl_rate_khz;
+
+ unsigned long min_low_div, min_high_div;
+
+ unsigned long min_div_for_hold, min_total_div;
+ unsigned long extra_div, extra_low_div;
+ unsigned long sda_update_cfg;
+
+ int ret = 0;
+
+ /* Support standard-mode, fast-mode and highspeed-mode */
+ if (WARN_ON(t->bus_freq_hz > 3400000))
+ t->bus_freq_hz = 3400000;
+
+ /* prevent scl_rate_khz from becoming 0 */
+ if (WARN_ON(t->bus_freq_hz < 1000))
+ t->bus_freq_hz = 1000;
+
+ /*
+ * min_low_ns: The minimum number of ns we need to hold low to
+ * meet I2C specification, should include fall time.
+ * min_high_ns: The minimum number of ns we need to hold high to
+ * meet I2C specification, should include rise time.
+ */
+ if (t->bus_freq_hz <= 100000) {
+ spec_min_low_ns = 4700;
+ spec_min_high_ns = 4000;
+
+ spec_min_setup_start_ns = 4700;
+ spec_min_stop_setup_ns = 4000;
+
+ spec_min_data_setup_ns = 250;
+ spec_max_data_hold_ns = 3450;
+ } else if (t->bus_freq_hz <= 400000) {
+ spec_min_low_ns = 1300;
+ spec_min_high_ns = 600;
+
+ spec_min_setup_start_ns = 600;
+ spec_min_stop_setup_ns = 600;
+
+ spec_min_data_setup_ns = 100;
+ spec_max_data_hold_ns = 900;
+ } else if (t->bus_freq_hz <= 1700000) {
+ spec_min_low_ns = 320;
+ spec_min_high_ns = 120;
+
+ spec_min_setup_start_ns = 160;
+ spec_min_stop_setup_ns = 160;
+
+ spec_min_data_setup_ns = 10;
+ spec_max_data_hold_ns = 150;
+ } else {
+ spec_min_low_ns = 160;
+ spec_min_high_ns = 60;
+
+ spec_min_setup_start_ns = 160;
+ spec_min_stop_setup_ns = 160;
+
+ spec_min_data_setup_ns = 10;
+ spec_max_data_hold_ns = 70;
+ }
+
+ /* caculate min-divh and min-divl */
+ clk_rate_khz = DIV_ROUND_UP(clk_rate, 1000);
+ scl_rate_khz = t->bus_freq_hz / 1000;
+ min_total_div = DIV_ROUND_UP(clk_rate_khz, scl_rate_khz * 8);
+
+ min_high_ns = t->scl_rise_ns + spec_min_high_ns;
+ min_high_div = DIV_ROUND_UP(clk_rate_khz * min_high_ns, 8 * 1000000);
+
+ min_low_ns = t->scl_fall_ns + spec_min_low_ns;
+ min_low_div = DIV_ROUND_UP(clk_rate_khz * min_low_ns, 8 * 1000000);
+
+ /* Final divh and divl must be greater than 0, otherwise the
+ * hardware would not output the i2c clk.
+ */
+ min_high_div = (min_high_div < 1) ? 2 : min_high_div;
+ min_low_div = (min_low_div < 1) ? 2 : min_low_div;
+
+ /* These are the min dividers needed for min hold times. */
+ min_div_for_hold = (min_low_div + min_high_div);
+ min_total_ns = min_low_ns + min_high_ns;
+
+ /*
+ * This is the maximum divider so we don't go over the maximum.
+ * We don't round up here (we round down) since this is a maximum.
+ */
+ if (min_div_for_hold >= min_total_div) {
+ /*
+ * Time needed to meet hold requirements is important.
+ * Just use that.
+ */
+ t_calc->div_low = min_low_div;
+ t_calc->div_high = min_high_div;
+ } else {
+ /*
+ * We've got to distribute some time among the low and high
+ * so we don't run too fast.
+ * We'll try to split things up by the scale of min_low_div and
+ * min_high_div, biasing slightly towards having a higher div
+ * for low (spend more time low).
+ */
+ extra_div = min_total_div - min_div_for_hold;
+ extra_low_div = DIV_ROUND_UP(min_low_div * extra_div,
+ min_div_for_hold);
+
+ t_calc->div_low = min_low_div + extra_low_div;
+ t_calc->div_high = min_high_div + (extra_div - extra_low_div);
+ }
+
+ /*
+ * calculate sda data hold count by the rules, data_upd_st:3
+ * is a appropriate value to reduce calculated times.
+ */
+ for (sda_update_cfg = 3; sda_update_cfg > 0; sda_update_cfg--) {
+ max_hold_data_ns = DIV_ROUND_UP((sda_update_cfg
+ * (t_calc->div_low) + 1)
+ * 1000000, clk_rate_khz);
+ min_setup_data_ns = DIV_ROUND_UP(((8 - sda_update_cfg)
+ * (t_calc->div_low) + 1)
+ * 1000000, clk_rate_khz);
+ if ((max_hold_data_ns < spec_max_data_hold_ns) &&
+ (min_setup_data_ns > spec_min_data_setup_ns)) {
+ t_calc->sda_update_cfg = sda_update_cfg;
+ break;
+ }
+ }
+
+ /* caculate setup start config */
+ min_setup_start_ns = t->scl_rise_ns + spec_min_setup_start_ns;
+ t_calc->stp_sta_cfg = DIV_ROUND_UP(clk_rate_khz * min_setup_start_ns
+ - 1000000, 8 * 1000000 * (t_calc->div_high));
+
+ /* caculate setup stop config */
+ min_stop_setup_ns = t->scl_rise_ns + spec_min_stop_setup_ns;
+ t_calc->stp_sto_cfg = DIV_ROUND_UP(clk_rate_khz * min_stop_setup_ns
+ - 1000000, 8 * 1000000 * (t_calc->div_high));
+
+ t_calc->stp_sta_cfg -= 1;
+ t_calc->stp_sto_cfg -= 1;
+ t_calc->sda_update_cfg -= 1;
+
+ t_calc->div_low -= 1;
+ t_calc->div_high -= 1;
+
+ /* Maximum divider supported by hw is 0xffff */
+ if ((t_calc->div_low > 0xffff) || (t_calc->div_high > 0xffff)) {
+ t_calc->div_low = 0xffff;
+ t_calc->div_high = 0xffff;
ret = -EINVAL;
}
static void rk3x_i2c_adapt_div(struct rk3x_i2c *i2c, unsigned long clk_rate)
{
struct i2c_timings *t = &i2c->t;
- unsigned long div_low, div_high;
+ struct rk3x_i2c_calced_timings *t_calc = &i2c->t_calc;
u64 t_low_ns, t_high_ns;
- int ret;
+ int ret = 0;
- ret = rk3x_i2c_calc_divs(clk_rate, t, &div_low, &div_high);
+ if (i2c->soc_data->calc_timings)
+ ret = i2c->soc_data->calc_timings(clk_rate, t, t_calc);
WARN_ONCE(ret != 0, "Could not reach SCL freq %u", t->bus_freq_hz);
- clk_enable(i2c->clk);
- i2c_writel(i2c, (div_high << 16) | (div_low & 0xffff), REG_CLKDIV);
- clk_disable(i2c->clk);
+ if (i2c->pclk)
+ clk_enable(i2c->pclk);
+ else
+ clk_enable(i2c->clk);
+
+ i2c_writel(i2c, (t_calc->div_high << 16) |
+ (t_calc->div_low & 0xffff), REG_CLKDIV);
+
+ if (i2c->pclk)
+ clk_disable(i2c->pclk);
+ else
+ clk_disable(i2c->clk);
- t_low_ns = div_u64(((u64)div_low + 1) * 8 * 1000000000, clk_rate);
- t_high_ns = div_u64(((u64)div_high + 1) * 8 * 1000000000, clk_rate);
+ t_low_ns = div_u64(((u64)t_calc->div_low + 1) * 8 * 1000000000,
+ clk_rate);
+ t_high_ns = div_u64(((u64)t_calc->div_high + 1) * 8 * 1000000000,
+ clk_rate);
dev_dbg(i2c->dev,
"CLK %lukhz, Req %uns, Act low %lluns high %lluns\n",
clk_rate / 1000,
{
struct clk_notifier_data *ndata = data;
struct rk3x_i2c *i2c = container_of(nb, struct rk3x_i2c, clk_rate_nb);
- unsigned long div_low, div_high;
+ struct i2c_timings *t = &i2c->t;
+ struct rk3x_i2c_calced_timings *t_calc = &i2c->t_calc;
switch (event) {
case PRE_RATE_CHANGE:
- if (rk3x_i2c_calc_divs(ndata->new_rate, &i2c->t,
- &div_low, &div_high) != 0)
+ if (i2c->soc_data->calc_timings(ndata->new_rate,
+ t, t_calc) != 0)
return NOTIFY_STOP;
/* scale up */
spin_lock_irqsave(&i2c->lock, flags);
+ if (i2c->pclk)
+ clk_enable(i2c->pclk);
clk_enable(i2c->clk);
i2c->is_last_msg = false;
/* Force a STOP condition without interrupt */
i2c_writel(i2c, 0, REG_IEN);
- i2c_writel(i2c, REG_CON_EN | REG_CON_STOP, REG_CON);
+ i2c_writel(i2c, rk3x_i2c_get_con_count(i2c) |
+ REG_CON_EN | REG_CON_STOP, REG_CON);
i2c->state = STATE_IDLE;
}
clk_disable(i2c->clk);
+ if (i2c->pclk)
+ clk_disable(i2c->pclk);
spin_unlock_irqrestore(&i2c->lock, flags);
return ret < 0 ? ret : num;
.functionality = rk3x_i2c_func,
};
-static struct rk3x_i2c_soc_data soc_data[3] = {
- { .grf_offset = 0x154 }, /* rk3066 */
- { .grf_offset = 0x0a4 }, /* rk3188 */
- { .grf_offset = -1 }, /* no I2C switching needed */
+static int rk3x_i2c_v0_clock_init(struct rk3x_i2c *i2c, unsigned long *clk_rate)
+{
+ int ret = 0;
+
+ i2c->clk = devm_clk_get(i2c->dev, "i2c");
+ if (IS_ERR(i2c->clk)) {
+ dev_err(i2c->dev, "Could not get i2c clk\n");
+ return PTR_ERR(i2c->clk);
+ }
+
+ ret = clk_prepare(i2c->clk);
+ if (ret < 0) {
+ dev_err(i2c->dev, "Could not prepare i2c clk\n");
+ return ret;
+ }
+
+ *clk_rate = clk_get_rate(i2c->clk);
+
+ i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
+ ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
+ if (ret != 0) {
+ dev_err(i2c->dev, "Unable to register clk notifier\n");
+ clk_unprepare(i2c->clk);
+ }
+
+ return ret;
+}
+
+static int rk3x_i2c_v1_clock_init(struct rk3x_i2c *i2c, unsigned long *clk_rate)
+{
+ int ret = 0;
+ u32 rate = 0;
+
+ /* sclk and pclk need to do individually*/
+ i2c->pclk = devm_clk_get(i2c->dev, "pclk");
+ if (IS_ERR(i2c->pclk)) {
+ dev_err(i2c->dev, "Could not get i2c pclk\n");
+ return PTR_ERR(i2c->pclk);
+ }
+
+ ret = clk_prepare(i2c->pclk);
+ if (ret < 0) {
+ dev_err(i2c->dev, "Could not prepare pclk\n");
+ return ret;
+ }
+
+ i2c->clk = devm_clk_get(i2c->dev, "i2c");
+ if (IS_ERR(i2c->clk)) {
+ dev_err(i2c->dev, "cannot get i2c clk\n");
+ clk_unprepare(i2c->pclk);
+ return PTR_ERR(i2c->clk);
+ }
+ ret = clk_prepare(i2c->clk);
+ if (ret) {
+ dev_err(i2c->dev, "Could not prepare i2c clk\n");
+ clk_unprepare(i2c->pclk);
+ return ret;
+ }
+
+ if (!device_property_read_u32(i2c->dev, "input-clk-rate", &rate)) {
+ *clk_rate = rate;
+ ret = clk_set_rate(i2c->clk, *clk_rate);
+ if (ret) {
+ dev_err(i2c->dev, "i2c clk set rate failed\n");
+ clk_unprepare(i2c->clk);
+ clk_unprepare(i2c->pclk);
+ return ret;
+ }
+ } else {
+ /* use default input clock rate */
+ *clk_rate = clk_get_rate(i2c->clk);
+ }
+
+ return ret;
+}
+
+static struct rk3x_i2c_soc_data soc_data[] = {
+ {
+ .grf_offset = 0x154,
+ .clk_init = rk3x_i2c_v0_clock_init,
+ .calc_timings = rk3x_i2c_v0_calc_timings,
+ },
+ {
+ .grf_offset = 0x0a4,
+ .clk_init = rk3x_i2c_v0_clock_init,
+ .calc_timings = rk3x_i2c_v0_calc_timings,
+ },
+ {
+ .grf_offset = -1,
+ .clk_init = rk3x_i2c_v0_clock_init,
+ .calc_timings = rk3x_i2c_v0_calc_timings,
+ },
+ {
+ .grf_offset = -1,
+ .clk_init = rk3x_i2c_v1_clock_init,
+ .calc_timings = rk3x_i2c_v1_calc_timings,
+ },
};
static const struct of_device_id rk3x_i2c_match[] = {
{ .compatible = "rockchip,rk3066-i2c", .data = (void *)&soc_data[0] },
{ .compatible = "rockchip,rk3188-i2c", .data = (void *)&soc_data[1] },
{ .compatible = "rockchip,rk3288-i2c", .data = (void *)&soc_data[2] },
+ { .compatible = "rockchip,rk3399-i2c", .data = (void *)&soc_data[3] },
{},
};
MODULE_DEVICE_TABLE(of, rk3x_i2c_match);
i2c->adap.dev.of_node = np;
i2c->adap.algo_data = i2c;
i2c->adap.dev.parent = &pdev->dev;
-
i2c->dev = &pdev->dev;
spin_lock_init(&i2c->lock);
init_waitqueue_head(&i2c->wait);
- i2c->clk = devm_clk_get(&pdev->dev, NULL);
- if (IS_ERR(i2c->clk)) {
- dev_err(&pdev->dev, "cannot get clock\n");
- return PTR_ERR(i2c->clk);
- }
-
mem = platform_get_resource(pdev, IORESOURCE_MEM, 0);
i2c->regs = devm_ioremap_resource(&pdev->dev, mem);
if (IS_ERR(i2c->regs))
platform_set_drvdata(pdev, i2c);
- ret = clk_prepare(i2c->clk);
- if (ret < 0) {
- dev_err(&pdev->dev, "Could not prepare clock\n");
- return ret;
- }
-
- i2c->clk_rate_nb.notifier_call = rk3x_i2c_clk_notifier_cb;
- ret = clk_notifier_register(i2c->clk, &i2c->clk_rate_nb);
- if (ret != 0) {
- dev_err(&pdev->dev, "Unable to register clock notifier\n");
- goto err_clk;
+ if (i2c->soc_data->clk_init) {
+ ret = i2c->soc_data->clk_init(i2c, &clk_rate);
+ if (ret < 0) {
+ dev_err(&pdev->dev, "clock init failed\n");
+ return ret;
+ }
}
- clk_rate = clk_get_rate(i2c->clk);
rk3x_i2c_adapt_div(i2c, clk_rate);
-
ret = i2c_add_adapter(&i2c->adap);
if (ret < 0) {
dev_err(&pdev->dev, "Could not register adapter\n");
err_clk_notifier:
clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
-err_clk:
clk_unprepare(i2c->clk);
+ if (i2c->pclk)
+ clk_unprepare(i2c->pclk);
+
return ret;
}
clk_notifier_unregister(i2c->clk, &i2c->clk_rate_nb);
clk_unprepare(i2c->clk);
+ if (i2c->pclk)
+ clk_unprepare(i2c->pclk);
return 0;
}