bool tryToVectorizePair(Value *A, Value *B, BoUpSLP &R);
/// \brief Try to vectorize a list of operands.
- bool tryToVectorizeList(BoUpSLP::ValueList &VL, BoUpSLP &R);
+ bool tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R);
/// \brief Try to vectorize a chain that may start at the operands of \V;
bool tryToVectorize(BinaryOperator *V, BoUpSLP &R);
bool SLPVectorizer::tryToVectorizePair(Value *A, Value *B, BoUpSLP &R) {
if (!A || !B) return false;
- BoUpSLP::ValueList VL;
- VL.push_back(A);
- VL.push_back(B);
+ Value *VL[] = { A, B };
return tryToVectorizeList(VL, R);
}
-bool SLPVectorizer::tryToVectorizeList(BoUpSLP::ValueList &VL, BoUpSLP &R) {
+bool SLPVectorizer::tryToVectorizeList(ArrayRef<Value *> VL, BoUpSLP &R) {
DEBUG(dbgs()<<"SLP: Vectorizing a list of length = " << VL.size() << ".\n");
int Cost = R.getTreeCost(VL);
int ExtrCost = R.getScalarizationCost(VL);
return ((-Offset) == Sz);
}
-bool BoUpSLP::vectorizeStoreChain(ValueList &Chain, int CostThreshold) {
+bool BoUpSLP::vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold) {
Type *StoreTy = cast<StoreInst>(Chain[0])->getValueOperand()->getType();
unsigned Sz = DL->getTypeSizeInBits(StoreTy);
unsigned VF = MinVecRegSize / Sz;
for (unsigned i = 0, e = Chain.size(); i < e; ++i) {
if (i + VF > e) return Changed;
DEBUG(dbgs()<<"SLP: Analyzing " << VF << " stores at offset "<< i << "\n");
- ValueList Operands(&Chain[i], &Chain[i] + VF);
+ ArrayRef<Value *> Operands = Chain.slice(i, VF);
int Cost = getTreeCost(Operands);
DEBUG(dbgs() << "SLP: Found cost=" << Cost << " for VF=" << VF << "\n");
return Changed;
}
-bool BoUpSLP::vectorizeStores(StoreList &Stores, int costThreshold) {
+bool BoUpSLP::vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold) {
ValueSet Heads, Tails;
SmallDenseMap<Value*, Value*> ConsecutiveChain;
return Changed;
}
-int BoUpSLP::getScalarizationCost(ValueList &VL) {
+int BoUpSLP::getScalarizationCost(ArrayRef<Value *> VL) {
// Find the type of the operands in VL.
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
return 0;
}
-void BoUpSLP::vectorizeArith(ValueList &Operands) {
+void BoUpSLP::vectorizeArith(ArrayRef<Value *> Operands) {
Value *Vec = vectorizeTree(Operands, Operands.size());
BasicBlock::iterator Loc = cast<Instruction>(Vec);
IRBuilder<> Builder(++Loc);
}
}
-int BoUpSLP::getTreeCost(ValueList &VL) {
+int BoUpSLP::getTreeCost(ArrayRef<Value *> VL) {
// Get rid of the list of stores that were removed, and from the
// lists of instructions with multiple users.
MemBarrierIgnoreList.clear();
return getTreeCost_rec(VL, 0);
}
-void BoUpSLP::getTreeUses_rec(ValueList &VL, unsigned Depth) {
+void BoUpSLP::getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth) {
if (Depth == RecursionMaxDepth) return;
// Don't handle vectors.
}
}
-int BoUpSLP::getTreeCost_rec(ValueList &VL, unsigned Depth) {
+int BoUpSLP::getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth) {
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
}
}
-Instruction *BoUpSLP::GetLastInstr(ValueList &VL, unsigned VF) {
+Instruction *BoUpSLP::GetLastInstr(ArrayRef<Value *> VL, unsigned VF) {
int MaxIdx = InstrIdx[BB->getFirstNonPHI()];
for (unsigned i = 0; i < VF; ++i )
MaxIdx = std::max(MaxIdx, InstrIdx[VL[i]]);
return InstrVec[MaxIdx + 1];
}
-Value *BoUpSLP::Scalarize(ValueList &VL, VectorType *Ty) {
+Value *BoUpSLP::Scalarize(ArrayRef<Value *> VL, VectorType *Ty) {
IRBuilder<> Builder(GetLastInstr(VL, Ty->getNumElements()));
Value *Vec = UndefValue::get(Ty);
for (unsigned i=0; i < Ty->getNumElements(); ++i) {
return Vec;
}
-Value *BoUpSLP::vectorizeTree(ValueList &VL, int VF) {
+Value *BoUpSLP::vectorizeTree(ArrayRef<Value *> VL, int VF) {
Value *V = vectorizeTree_rec(VL, VF);
// We moved some instructions around. We have to number them again
// before we can do any analysis.
return V;
}
-Value *BoUpSLP::vectorizeTree_rec(ValueList &VL, int VF) {
+Value *BoUpSLP::vectorizeTree_rec(ArrayRef<Value *> VL, int VF) {
Type *ScalarTy = VL[0]->getType();
if (StoreInst *SI = dyn_cast<StoreInst>(VL[0]))
ScalarTy = SI->getValueOperand()->getType();
/// \brief Vectorize the tree that starts with the elements in \p VL.
/// \returns the vectorized value.
- Value *vectorizeTree(ValueList &VL, int VF);
+ Value *vectorizeTree(ArrayRef<Value *> VL, int VF);
/// \returns the vectorization cost of the subtree that starts at \p VL.
/// A negative number means that this is profitable.
- int getTreeCost(ValueList &VL);
+ int getTreeCost(ArrayRef<Value *> VL);
- /// \returns the scalarization cost for this ValueList. Assuming that this
- /// subtree gets vectorized, we may need to extract the values from the
+ /// \returns the scalarization cost for this list of values. Assuming that
+ /// this subtree gets vectorized, we may need to extract the values from the
/// roots. This method calculates the cost of extracting the values.
- int getScalarizationCost(ValueList &VL);
+ int getScalarizationCost(ArrayRef<Value *> VL);
/// \brief Attempts to order and vectorize a sequence of stores. This
/// function does a quadratic scan of the given stores.
/// \returns true if the basic block was modified.
- bool vectorizeStores(StoreList &Stores, int costThreshold);
+ bool vectorizeStores(ArrayRef<StoreInst *> Stores, int costThreshold);
/// \brief Vectorize a group of scalars into a vector tree.
- void vectorizeArith(ValueList &Operands);
+ void vectorizeArith(ArrayRef<Value *> Operands);
/// \returns the list of new instructions that were added in order to collect
/// scalars into vectors. This list can be used to further optimize the gather
private:
/// \brief This method contains the recursive part of getTreeCost.
- int getTreeCost_rec(ValueList &VL, unsigned Depth);
+ int getTreeCost_rec(ArrayRef<Value *> VL, unsigned Depth);
/// \brief This recursive method looks for vectorization hazards such as
/// values that are used by multiple users and checks that values are used
/// by only one vector lane. It updates the variables LaneMap, MultiUserVals.
- void getTreeUses_rec(ValueList &VL, unsigned Depth);
+ void getTreeUses_rec(ArrayRef<Value *> VL, unsigned Depth);
/// \brief This method contains the recursive part of vectorizeTree.
- Value *vectorizeTree_rec(ValueList &VL, int VF);
+ Value *vectorizeTree_rec(ArrayRef<Value *> VL, int VF);
/// \brief Number all of the instructions in the block.
void numberInstructions();
/// \brief Vectorize a sorted sequence of stores.
- bool vectorizeStoreChain(ValueList &Chain, int CostThreshold);
+ bool vectorizeStoreChain(ArrayRef<Value *> Chain, int CostThreshold);
/// \returns the scalarization cost for this type. Scalarization in this
/// context means the creation of vectors from a group of scalars.
/// \returns the instruction that appears last in the BB from \p VL.
/// Only consider the first \p VF elements.
- Instruction *GetLastInstr(ValueList &VL, unsigned VF);
+ Instruction *GetLastInstr(ArrayRef<Value *> VL, unsigned VF);
/// \returns a vector from a collection of scalars in \p VL.
- Value *Scalarize(ValueList &VL, VectorType *Ty);
+ Value *Scalarize(ArrayRef<Value *> VL, VectorType *Ty);
private:
/// Maps instructions to numbers and back.