defm FNEG : PTX_FLOAT_2OP<"neg", fneg>;
// Standard Binary Operations
-defm FADD : PTX_FLOAT_3OP<"add", fadd>;
-defm FSUB : PTX_FLOAT_3OP<"sub", fsub>;
-defm FMUL : PTX_FLOAT_3OP<"mul", fmul>;
-
-// TODO: Allow user selection of rounding modes for fdiv.
-// For division, we need to have f32 and f64 differently.
-// For f32, we just always use .approx since it is supported on all hardware
-// for PTX 1.4+, which is our minimum target.
-def FDIVrr32 : InstPTX<(outs RegF32:$d),
+defm FADD : PTX_FLOAT_3OP<"add.rn", fadd>;
+defm FSUB : PTX_FLOAT_3OP<"sub.rn", fsub>;
+defm FMUL : PTX_FLOAT_3OP<"mul.rn", fmul>;
+
+// For floating-point division:
+// SM_13+ defaults to .rn for f32 and f64,
+// SM10 must *not* provide a rounding
+
+// TODO:
+// - Allow user selection of rounding modes for fdiv
+// - Add support for -prec-div=false (.approx)
+
+def FDIVrr32SM13 : InstPTX<(outs RegF32:$d),
(ins RegF32:$a, RegF32:$b),
- "div.approx.f32\t$d, $a, $b",
- [(set RegF32:$d, (fdiv RegF32:$a, RegF32:$b))]>;
-def FDIVri32 : InstPTX<(outs RegF32:$d),
+ "div.rn.f32\t$d, $a, $b",
+ [(set RegF32:$d, (fdiv RegF32:$a, RegF32:$b))]>,
+ Requires<[SupportsSM13]>;
+def FDIVri32SM13 : InstPTX<(outs RegF32:$d),
(ins RegF32:$a, f32imm:$b),
- "div.approx.f32\t$d, $a, $b",
- [(set RegF32:$d, (fdiv RegF32:$a, fpimm:$b))]>;
+ "div.rn.f32\t$d, $a, $b",
+ [(set RegF32:$d, (fdiv RegF32:$a, fpimm:$b))]>,
+ Requires<[SupportsSM13]>;
+def FDIVrr32SM10 : InstPTX<(outs RegF32:$d),
+ (ins RegF32:$a, RegF32:$b),
+ "div.f32\t$d, $a, $b",
+ [(set RegF32:$d, (fdiv RegF32:$a, RegF32:$b))]>,
+ Requires<[DoesNotSupportSM13]>;
+def FDIVri32SM10 : InstPTX<(outs RegF32:$d),
+ (ins RegF32:$a, f32imm:$b),
+ "div.f32\t$d, $a, $b",
+ [(set RegF32:$d, (fdiv RegF32:$a, fpimm:$b))]>,
+ Requires<[DoesNotSupportSM13]>;
-// For f64, we must specify a rounding for sm 1.3+ but *not* for sm 1.0.
def FDIVrr64SM13 : InstPTX<(outs RegF64:$d),
(ins RegF64:$a, RegF64:$b),
"div.rn.f64\t$d, $a, $b",
[(set RegPred:$d, (trunc RegI64:$a))]>;
def CVT_pred_f32
- : InstPTX<(outs RegPred:$d), (ins RegF32:$a), "cvt.rni.pred.f32\t$d, $a",
+ : InstPTX<(outs RegPred:$d), (ins RegF32:$a), "cvt.rzi.pred.f32\t$d, $a",
[(set RegPred:$d, (fp_to_uint RegF32:$a))]>;
def CVT_pred_f64
- : InstPTX<(outs RegPred:$d), (ins RegF64:$a), "cvt.rni.pred.f64\t$d, $a",
+ : InstPTX<(outs RegPred:$d), (ins RegF64:$a), "cvt.rzi.pred.f64\t$d, $a",
[(set RegPred:$d, (fp_to_uint RegF64:$a))]>;
// Conversion to u16
[(set RegI16:$d, (trunc RegI64:$a))]>;
def CVT_u16_f32
- : InstPTX<(outs RegI16:$d), (ins RegF32:$a), "cvt.rni.u16.f32\t$d, $a",
+ : InstPTX<(outs RegI16:$d), (ins RegF32:$a), "cvt.rzi.u16.f32\t$d, $a",
[(set RegI16:$d, (fp_to_uint RegF32:$a))]>;
def CVT_u16_f64
- : InstPTX<(outs RegI16:$d), (ins RegF64:$a), "cvt.rni.u16.f64\t$d, $a",
+ : InstPTX<(outs RegI16:$d), (ins RegF64:$a), "cvt.rzi.u16.f64\t$d, $a",
[(set RegI16:$d, (fp_to_uint RegF64:$a))]>;
// Conversion to u32
[(set RegI32:$d, (trunc RegI64:$a))]>;
def CVT_u32_f32
- : InstPTX<(outs RegI32:$d), (ins RegF32:$a), "cvt.rni.u32.f32\t$d, $a",
+ : InstPTX<(outs RegI32:$d), (ins RegF32:$a), "cvt.rzi.u32.f32\t$d, $a",
[(set RegI32:$d, (fp_to_uint RegF32:$a))]>;
def CVT_u32_f64
- : InstPTX<(outs RegI32:$d), (ins RegF64:$a), "cvt.rni.u32.f64\t$d, $a",
+ : InstPTX<(outs RegI32:$d), (ins RegF64:$a), "cvt.rzi.u32.f64\t$d, $a",
[(set RegI32:$d, (fp_to_uint RegF64:$a))]>;
// Conversion to u64
[(set RegI64:$d, (zext RegI32:$a))]>;
def CVT_u64_f32
- : InstPTX<(outs RegI64:$d), (ins RegF32:$a), "cvt.rni.u64.f32\t$d, $a",
+ : InstPTX<(outs RegI64:$d), (ins RegF32:$a), "cvt.rzi.u64.f32\t$d, $a",
[(set RegI64:$d, (fp_to_uint RegF32:$a))]>;
def CVT_u64_f64
- : InstPTX<(outs RegI64:$d), (ins RegF64:$a), "cvt.rni.u64.f64\t$d, $a",
+ : InstPTX<(outs RegI64:$d), (ins RegF64:$a), "cvt.rzi.u64.f64\t$d, $a",
[(set RegI64:$d, (fp_to_uint RegF64:$a))]>;
// Conversion to f32
}
define ptx_device i32 @cvt_pred_f32(float %x, i1 %y) {
-; CHECK: cvt.rni.pred.f32 p0, r1;
+; CHECK: cvt.rzi.pred.f32 p0, r1;
; CHECK: ret;
%a = fptoui float %x to i1
%b = and i1 %a, %y
}
define ptx_device i32 @cvt_pred_f64(double %x, i1 %y) {
-; CHECK: cvt.rni.pred.f64 p0, rd1;
+; CHECK: cvt.rzi.pred.f64 p0, rd1;
; CHECK: ret;
%a = fptoui double %x to i1
%b = and i1 %a, %y
}
define ptx_device i16 @cvt_i16_f32(float %x) {
-; CHECK: cvt.rni.u16.f32 rh0, r1;
+; CHECK: cvt.rzi.u16.f32 rh0, r1;
; CHECK: ret;
%a = fptoui float %x to i16
ret i16 %a
}
define ptx_device i16 @cvt_i16_f64(double %x) {
-; CHECK: cvt.rni.u16.f64 rh0, rd1;
+; CHECK: cvt.rzi.u16.f64 rh0, rd1;
; CHECK: ret;
%a = fptoui double %x to i16
ret i16 %a
}
define ptx_device i32 @cvt_i32_f32(float %x) {
-; CHECK: cvt.rni.u32.f32 r0, r1;
+; CHECK: cvt.rzi.u32.f32 r0, r1;
; CHECK: ret;
%a = fptoui float %x to i32
ret i32 %a
}
define ptx_device i32 @cvt_i32_f64(double %x) {
-; CHECK: cvt.rni.u32.f64 r0, rd1;
+; CHECK: cvt.rzi.u32.f64 r0, rd1;
; CHECK: ret;
%a = fptoui double %x to i32
ret i32 %a
}
define ptx_device i64 @cvt_i64_f32(float %x) {
-; CHECK: cvt.rni.u64.f32 rd0, r1;
+; CHECK: cvt.rzi.u64.f32 rd0, r1;
; CHECK: ret;
%a = fptoui float %x to i64
ret i64 %a
}
define ptx_device i64 @cvt_i64_f64(double %x) {
-; CHECK: cvt.rni.u64.f64 rd0, rd1;
+; CHECK: cvt.rzi.u64.f64 rd0, rd1;
; CHECK: ret;
%a = fptoui double %x to i64
ret i64 %a