--- /dev/null
+//===- llvm/Support/DepthFirstIterator.h - Depth First iterators -*- C++ -*--=//
+//
+// This file builds on the Support/GraphTraits.h file to build generic depth
+// first graph iterator.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_DEPTH_FIRST_ITERATOR_H
+#define LLVM_SUPPORT_DEPTH_FIRST_ITERATOR_H
+
+#include "llvm/Support/GraphTraits.h"
+#include <iterator>
+#include <stack>
+#include <set>
+
+// Generic Depth First Iterator
+template<class GraphT, class GT = GraphTraits<GraphT> >
+class df_iterator : public std::forward_iterator<typename GT::NodeType,
+ ptrdiff_t> {
+ typedef typename GT::NodeType NodeType;
+ typedef typename GT::ChildIteratorType ChildItTy;
+
+ set<NodeType *> Visited; // All of the blocks visited so far...
+ // VisitStack - Used to maintain the ordering. Top = current block
+ // First element is node pointer, second is the 'next child' to visit
+ stack<pair<NodeType *, ChildItTy> > VisitStack;
+ const bool Reverse; // Iterate over children before self?
+private:
+ void reverseEnterNode() {
+ pair<NodeType *, ChildItTy> &Top = VisitStack.top();
+ NodeType *Node = Top.first;
+ ChildItTy &It = Top.second;
+ for (; It != GT::child_end(Node); ++It) {
+ NodeType *Child = *It;
+ if (!Visited.count(Child)) {
+ Visited.insert(Child);
+ VisitStack.push(make_pair(Child, GT::child_begin(Child)));
+ reverseEnterNode();
+ return;
+ }
+ }
+ }
+
+ inline df_iterator(NodeType *Node, bool reverse) : Reverse(reverse) {
+ Visited.insert(Node);
+ VisitStack.push(make_pair(Node, GT::child_begin(Node)));
+ if (Reverse) reverseEnterNode();
+ }
+ inline df_iterator() { /* End is when stack is empty */ }
+
+public:
+ typedef df_iterator<GraphT, GT> _Self;
+
+ // Provide static begin and end methods as our public "constructors"
+ static inline _Self begin(GraphT G, bool Reverse = false) {
+ return _Self(GT::getEntryNode(G), Reverse);
+ }
+ static inline _Self end(GraphT G) { return _Self(); }
+
+
+ inline bool operator==(const _Self& x) const {
+ return VisitStack == x.VisitStack;
+ }
+ inline bool operator!=(const _Self& x) const { return !operator==(x); }
+
+ inline pointer operator*() const {
+ return VisitStack.top().first;
+ }
+
+ // This is a nonstandard operator-> that dereferences the pointer an extra
+ // time... so that you can actually call methods ON the Node, because
+ // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
+ //
+ inline NodeType *operator->() const { return operator*(); }
+
+ inline _Self& operator++() { // Preincrement
+ if (Reverse) { // Reverse Depth First Iterator
+ if (VisitStack.top().second == GT::child_end(VisitStack.top().first))
+ VisitStack.pop();
+ if (!VisitStack.empty())
+ reverseEnterNode();
+ } else { // Normal Depth First Iterator
+ do {
+ pair<NodeType *, ChildItTy> &Top = VisitStack.top();
+ NodeType *Node = Top.first;
+ ChildItTy &It = Top.second;
+
+ while (It != GT::child_end(Node)) {
+ NodeType *Next = *It++;
+ if (!Visited.count(Next)) { // Has our next sibling been visited?
+ // No, do it now.
+ Visited.insert(Next);
+ VisitStack.push(make_pair(Next, GT::child_begin(Next)));
+ return *this;
+ }
+ }
+
+ // Oops, ran out of successors... go up a level on the stack.
+ VisitStack.pop();
+ } while (!VisitStack.empty());
+ }
+ return *this;
+ }
+
+ inline _Self operator++(int) { // Postincrement
+ _Self tmp = *this; ++*this; return tmp;
+ }
+
+ // nodeVisited - return true if this iterator has already visited the
+ // specified node. This is public, and will probably be used to iterate over
+ // nodes that a depth first iteration did not find: ie unreachable nodes.
+ //
+ inline bool nodeVisited(NodeType *Node) const {
+ return Visited.count(Node) != 0;
+ }
+};
+
+
+// Provide global constructors that automatically figure out correct types...
+//
+template <class T>
+df_iterator<T> df_begin(T G, bool Reverse = false) {
+ return df_iterator<T>::begin(G, Reverse);
+}
+
+template <class T>
+df_iterator<T> df_end(T G) {
+ return df_iterator<T>::end(G);
+}
+
+// Provide global definitions of inverse depth first iterators...
+template <class T>
+struct idf_iterator : public df_iterator<Inverse<T> > {
+ idf_iterator(const df_iterator<Inverse<T> > &V) :df_iterator<Inverse<T> >(V){}
+};
+
+template <class T>
+idf_iterator<T> idf_begin(T G, bool Reverse = false) {
+ return idf_iterator<T>::begin(G, Reverse);
+}
+
+template <class T>
+idf_iterator<T> idf_end(T G){
+ return idf_iterator<T>::end(G);
+}
+
+#endif
--- /dev/null
+//===-- llvm/Support/GraphTraits.h - Graph traits template -------*- C++ -*--=//
+//
+// This file defines the little GraphTraits<X> template class that should be
+// specialized by classes that want to be iteratable by generic graph iterators.
+//
+// This file also defines the marker class Inverse that is used to iterate over
+// graphs in a graph defined, inverse ordering...
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_GRAPH_TRAITS_H
+#define LLVM_SUPPORT_GRAPH_TRAITS_H
+
+// GraphTraits - This class should be specialized by different graph types...
+// which is why the default version is empty.
+//
+template<class GraphType>
+struct GraphTraits {
+ // Elements to provide:
+
+ // typedef NodeType - Type of Node in the graph
+ // typedef ChildIteratorType - Type used to iterate over children in graph
+
+ // static NodeType *getEntryNode(GraphType *)
+ // Return the entry node of the graph
+
+ // static ChildIteratorType child_begin(NodeType *)
+ // static ChildIteratorType child_end (NodeType *)
+ // Return iterators that point to the beginning and ending of the child
+ // node list for the specified node.
+ //
+
+
+ // If anyone tries to use this class without having an appropriate
+ // specialization make an error. If you get this error, it's because you
+ // need to include the appropriate specialization of GraphTraits<> for your
+ // graph, or you need to define it for a new graph type.
+ //
+ typedef typename GraphType::UnknownGraphTypeError NodeType;
+};
+
+
+// Inverse - This class is used as a little marker class to tell the graph
+// iterator to iterate over the graph in a graph defined "Inverse" ordering.
+// Not all graphs define an inverse ordering, and if they do, it depends on
+// the graph exactly what that is. Here's an example of usage with the
+// df_iterator:
+//
+// df_iterator<Inverse<Method> > I = idf_begin(M), E = idf_end(M);
+// for (; I != E; ++I) { ... }
+//
+template <class GraphType>
+struct Inverse {
+ GraphType &Graph;
+
+ inline Inverse(GraphType &G) : Graph(G) {}
+};
+
+#endif
--- /dev/null
+//===-- llvm/Support/PostOrderIterator.h - Generic PO iterator ---*- C++ -*--=//
+//
+// This file builds on the Support/GraphTraits.h file to build a generic graph
+// post order iterator. This should work over any graph type that has a
+// GraphTraits specialization.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_SUPPORT_POSTORDER_ITERATOR_H
+#define LLVM_SUPPORT_POSTORDER_ITERATOR_H
+
+#include "llvm/Support/GraphTraits.h"
+#include <iterator>
+#include <stack>
+#include <set>
+
+template<class GraphT, class GT = GraphTraits<GraphT> >
+class po_iterator : public std::forward_iterator<typename GT::NodeType,
+ ptrdiff_t> {
+ typedef typename GT::NodeType NodeType;
+ typedef typename GT::ChildIteratorType ChildItTy;
+
+ set<NodeType *> Visited; // All of the blocks visited so far...
+ // VisitStack - Used to maintain the ordering. Top = current block
+ // First element is basic block pointer, second is the 'next child' to visit
+ stack<pair<NodeType *, ChildItTy> > VisitStack;
+
+ void traverseChild() {
+ while (VisitStack.top().second != GT::child_end(VisitStack.top().first)) {
+ NodeType *BB = *VisitStack.top().second++;
+ if (!Visited.count(BB)) { // If the block is not visited...
+ Visited.insert(BB);
+ VisitStack.push(make_pair(BB, GT::child_begin(BB)));
+ }
+ }
+ }
+
+ inline po_iterator(NodeType *BB) {
+ Visited.insert(BB);
+ VisitStack.push(make_pair(BB, GT::child_begin(BB)));
+ traverseChild();
+ }
+ inline po_iterator() { /* End is when stack is empty */ }
+public:
+ typedef po_iterator<GraphT, GT> _Self;
+
+ // Provide static "constructors"...
+ static inline _Self begin(GraphT G) { return _Self(GT::getEntryNode(G)); }
+ static inline _Self end (GraphT G) { return _Self(); }
+
+ inline bool operator==(const _Self& x) const {
+ return VisitStack == x.VisitStack;
+ }
+ inline bool operator!=(const _Self& x) const { return !operator==(x); }
+
+ inline pointer operator*() const {
+ return VisitStack.top().first;
+ }
+
+ // This is a nonstandard operator-> that dereferences the pointer an extra
+ // time... so that you can actually call methods ON the BasicBlock, because
+ // the contained type is a pointer. This allows BBIt->getTerminator() f.e.
+ //
+ inline NodeType *operator->() const { return operator*(); }
+
+ inline _Self& operator++() { // Preincrement
+ VisitStack.pop();
+ if (!VisitStack.empty())
+ traverseChild();
+ return *this;
+ }
+
+ inline _Self operator++(int) { // Postincrement
+ _Self tmp = *this; ++*this; return tmp;
+ }
+};
+
+// Provide global constructors that automatically figure out correct types...
+//
+template <class T>
+po_iterator<T> po_begin(T G) { return po_iterator<T>::begin(G); }
+template <class T>
+po_iterator<T> po_end (T G) { return po_iterator<T>::end(G); }
+
+// Provide global definitions of inverse post order iterators...
+template <class T>
+struct ipo_iterator : public po_iterator<Inverse<T> > {
+ ipo_iterator(const po_iterator<Inverse<T> > &V) :po_iterator<Inverse<T> >(V){}
+};
+
+template <class T>
+ipo_iterator<T> ipo_begin(T G, bool Reverse = false) {
+ return ipo_iterator<T>::begin(G, Reverse);
+}
+
+template <class T>
+ipo_iterator<T> ipo_end(T G){
+ return ipo_iterator<T>::end(G);
+}
+
+
+//===--------------------------------------------------------------------===//
+// Reverse Post Order CFG iterator code
+//===--------------------------------------------------------------------===//
+//
+// This is used to visit basic blocks in a method in reverse post order. This
+// class is awkward to use because I don't know a good incremental algorithm to
+// computer RPO from a graph. Because of this, the construction of the
+// ReversePostOrderTraversal object is expensive (it must walk the entire graph
+// with a postorder iterator to build the data structures). The moral of this
+// story is: Don't create more ReversePostOrderTraversal classes than neccesary.
+//
+// This class should be used like this:
+// {
+// cfg::ReversePostOrderTraversal RPOT(MethodPtr); // Expensive to create
+// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
+// ...
+// }
+// for (cfg::rpo_iterator I = RPOT.begin(); I != RPOT.end(); ++I) {
+// ...
+// }
+// }
+//
+
+typedef reverse_iterator<vector<BasicBlock*>::iterator> rpo_iterator;
+// TODO: FIXME: ReversePostOrderTraversal is not generic!
+class ReversePostOrderTraversal {
+ vector<BasicBlock*> Blocks; // Block list in normal PO order
+ inline void Initialize(BasicBlock *BB) {
+ copy(po_begin(BB), po_end(BB), back_inserter(Blocks));
+ }
+public:
+ inline ReversePostOrderTraversal(Method *M) {
+ Initialize(M->front());
+ }
+ inline ReversePostOrderTraversal(BasicBlock *BB) {
+ Initialize(BB);
+ }
+
+ // Because we want a reverse post order, use reverse iterators from the vector
+ inline rpo_iterator begin() { return Blocks.rbegin(); }
+ inline rpo_iterator end() { return Blocks.rend(); }
+};
+
+#endif