\State $\tuple{s_{c_{max}},sv_{c_{max}}} \gets MaxSlot(SL_c)$\r
\State $s_{c_{max}} \gets SeqN(\tuple{s_{c_{max}},sv_{c_{max}}})$\r
\State $\tuple{s_{c_{min}},sv_{c_{min}}} \gets MinSlot(SL_c)$\r
-\State $s_{c_{min}} \gets SeqN(\tuple{s_{c_{max}},sv_{c_{max}}})$\r
+\State $s_{c_{min}} \gets SeqN(\tuple{s_{c_{min}},sv_{c_{min}}})$\r
%\For{$\{\tuple{s_c,sv_c} \mid \tuple{s_c,sv_c} \in SL_c\}$}\r
\For{$s_c \gets s_{c_{min}}$ \textbf{to} $s_{c_{max}}$}\r
\State $\tuple{s_c,sv_c} \gets Slot(SL_c,s_c)$\r