/// The specified iterator tells us what the type USED to look like.
void finishRefinement(TypeClass *Ty, const DerivedType *OldType,
const Type *NewType) {
- assert((Ty->isAbstract() || !OldType->isAbstract()) &&
+ // Either NewTy == OldTy (in which case the specified type just became
+ // concrete) or they are different an the Ty is thought to be abstract.
+ assert((Ty->isAbstract() || OldType == NewType) &&
"Refining a non-abstract type!");
#ifdef DEBUG_MERGE_TYPES
std::cerr << "refineAbstractTy(" << (void*)OldType << "[" << *OldType
// Remember the structural hash for the type before we start hacking on it,
// in case we need it later.
unsigned OldTypeHash = ValType::hashTypeStructure(Ty);
- unsigned NewTypeHash;
// Find the type element we are refining... and change it now!
- if (OldType != NewType || !OldType->isAbstract()) {
+ if (!OldType->isAbstract()) {
+ // If the element just became concrete, remove 'ty' from the abstract
+ // type user list for the type.
for (unsigned i = 0, e = Ty->ContainedTys.size(); i != e; ++i)
- if (Ty->ContainedTys[i] == OldType) {
- Ty->ContainedTys[i].removeUserFromConcrete();
- Ty->ContainedTys[i] = NewType;
- }
- NewTypeHash = ValType::hashTypeStructure(Ty);
+ if (Ty->ContainedTys[i] == OldType)
+ OldType->removeAbstractTypeUser(Ty);
} else {
- NewTypeHash = OldTypeHash;
+ assert(OldType != NewType && "Unknown case!");
+ for (unsigned i = 0, e = Ty->ContainedTys.size(); i != e; ++i)
+ if (Ty->ContainedTys[i] == OldType)
+ Ty->ContainedTys[i] = NewType;
}
-
+ unsigned NewTypeHash = ValType::hashTypeStructure(Ty);
+
// If there are no cycles going through this node, we can do a simple,
// efficient lookup in the map, instead of an inefficient nasty linear
// lookup.