}
}
+/// reconcileNewOffset - Determine if the given use can accomodate a fixup
+/// at the given offset and other details. If so, update the use and
+/// return true.
bool
LSRInstance::reconcileNewOffset(LSRUse &LU, int64_t NewOffset, bool HasBaseReg,
LSRUse::KindType Kind, const Type *AccessTy) {
DEBUG(print_fixups(dbgs()));
}
+/// InsertInitialFormula - Insert a formula for the given expression into
+/// the given use, separating out loop-variant portions from loop-invariant
+/// and loop-computable portions.
void
LSRInstance::InsertInitialFormula(const SCEV *S, LSRUse &LU, size_t LUIdx) {
Formula F;
assert(Inserted && "Initial formula already exists!"); (void)Inserted;
}
+/// InsertSupplementalFormula - Insert a simple single-register formula for
+/// the given expression into the given use.
void
LSRInstance::InsertSupplementalFormula(const SCEV *S,
LSRUse &LU, size_t LUIdx) {
print_uses(dbgs()));
}
+ // With all other options exhausted, loop until the system is simple
+ // enough to handle.
SmallPtrSet<const SCEV *, 4> Taken;
while (EstimateSearchSpaceComplexity() >= ComplexityLimit) {
// Ok, we have too many of formulae on our hands to conveniently handle.
}
}
+/// Solve - Choose one formula from each use. Return the results in the given
+/// Solution vector.
void LSRInstance::Solve(SmallVectorImpl<const Formula *> &Solution) const {
SmallVector<const Formula *, 8> Workspace;
Cost SolutionCost;
return IP;
}
+/// Expand - Emit instructions for the leading candidate expression for this
+/// LSRUse (this is called "expanding").
Value *LSRInstance::Expand(const LSRFixup &LF,
const Formula &F,
BasicBlock::iterator IP,
DeadInsts.push_back(LF.OperandValToReplace);
}
+/// ImplementSolution - Rewrite all the fixup locations with new values,
+/// following the chosen solution.
void
LSRInstance::ImplementSolution(const SmallVectorImpl<const Formula *> &Solution,
Pass *P) {