external store_size : TargetData.t -> Llvm.lltype -> Int64.t = "llvm_store_size"
(** Computes the ABI size of a type in bytes for a target.
- See the method llvm::TargetData::getTypePaddedSize. *)
+ See the method llvm::TargetData::getTypeAllocSize. *)
external abi_size : TargetData.t -> Llvm.lltype -> Int64.t = "llvm_abi_size"
(** Computes the ABI alignment of a type in bytes for a target.
unsigned long long LLVMStoreSizeOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the ABI size of a type in bytes for a target.
- See the method llvm::TargetData::getTypePaddedSize. */
+ See the method llvm::TargetData::getTypeAllocSize. */
unsigned long long LLVMABISizeOfType(LLVMTargetDataRef, LLVMTypeRef);
/** Computes the ABI alignment of a type in bytes for a target.
/// Size examples:
///
- /// Type SizeInBits StoreSizeInBits PaddedSizeInBits[*]
- /// ---- ---------- --------------- ----------------
+ /// Type SizeInBits StoreSizeInBits AllocSizeInBits[*]
+ /// ---- ---------- --------------- ---------------
/// i1 1 8 8
/// i8 8 8 8
/// i19 19 24 32
/// Double 64 64 64
/// X86_FP80 80 80 96
///
- /// [*] The padded size depends on the alignment, and thus on the target.
+ /// [*] The alloc size depends on the alignment, and thus on the target.
/// These values are for x86-32 linux.
/// getTypeSizeInBits - Return the number of bits necessary to hold the
return 8*getTypeStoreSize(Ty);
}
- /// getTypePaddedSize - Return the offset in bytes between successive objects
+ /// getTypeAllocSize - Return the offset in bytes between successive objects
/// of the specified type, including alignment padding. This is the amount
/// that alloca reserves for this type. For example, returns 12 or 16 for
/// x86_fp80, depending on alignment.
- uint64_t getTypePaddedSize(const Type* Ty) const {
+ uint64_t getTypeAllocSize(const Type* Ty) const {
// Round up to the next alignment boundary.
return RoundUpAlignment(getTypeStoreSize(Ty), getABITypeAlignment(Ty));
}
- /// getTypePaddedSizeInBits - Return the offset in bits between successive
+ /// getTypeAllocSizeInBits - Return the offset in bits between successive
/// objects of the specified type, including alignment padding; always a
/// multiple of 8. This is the amount that alloca reserves for this type.
/// For example, returns 96 or 128 for x86_fp80, depending on alignment.
- uint64_t getTypePaddedSizeInBits(const Type* Ty) const {
- return 8*getTypePaddedSize(Ty);
+ uint64_t getTypeAllocSizeInBits(const Type* Ty) const {
+ return 8*getTypeAllocSize(Ty);
}
/// getABITypeAlignment - Return the minimum ABI-required alignment for the
}
if (AccessTy->isSized())
- return TD.getTypePaddedSize(AccessTy) < Size;
+ return TD.getTypeAllocSize(AccessTy) < Size;
return false;
}
Offset += TD.getStructLayout(ST)->getElementOffset(CI->getZExtValue());
} else {
const SequentialType *SQT = cast<SequentialType>(*GTI);
- Offset += TD.getTypePaddedSize(SQT->getElementType())*CI->getSExtValue();
+ Offset += TD.getTypeAllocSize(SQT->getElementType())*CI->getSExtValue();
}
}
return true;
if (const ArrayType *AT =
dyn_cast<ArrayType>(GVTy->getElementType())) {
const Type *ElTy = AT->getElementType();
- uint64_t PaddedSize = TD->getTypePaddedSize(ElTy);
- APInt PSA(L->getValue().getBitWidth(), PaddedSize);
+ uint64_t AllocSize = TD->getTypeAllocSize(ElTy);
+ APInt PSA(L->getValue().getBitWidth(), AllocSize);
if (ElTy == cast<PointerType>(DestTy)->getElementType() &&
L->getValue().urem(PSA) == 0) {
APInt ElemIdx = L->getValue().udiv(PSA);
IntPtrTy);
LocalOffset =
getMulExpr(LocalOffset,
- getIntegerSCEV(TD->getTypePaddedSize(*GTI),
+ getIntegerSCEV(TD->getTypeAllocSize(*GTI),
IntPtrTy));
TotalOffset = getAddExpr(TotalOffset, LocalOffset);
}
const Type *IndexedTy = GTI.getIndexedType();
if (!IndexedTy->isSized()) return;
unsigned GEPOpiBits = Index->getType()->getPrimitiveSizeInBits();
- uint64_t TypeSize = TD ? TD->getTypePaddedSize(IndexedTy) : 1;
+ uint64_t TypeSize = TD ? TD->getTypeAllocSize(IndexedTy) : 1;
LocalMask = APInt::getAllOnesValue(GEPOpiBits);
LocalKnownZero = LocalKnownOne = APInt(GEPOpiBits, 0);
ComputeMaskedBits(Index, LocalMask,
EmitZeros(NewOffset - Offset);
const Type *Ty = CPE.getType();
- Offset = NewOffset + TM.getTargetData()->getTypePaddedSize(Ty);
+ Offset = NewOffset + TM.getTargetData()->getTypeAllocSize(Ty);
O << TAI->getPrivateGlobalPrefix() << "CPI" << getFunctionNumber() << '_'
<< CPI << ":\t\t\t\t\t";
// We can emit the pointer value into this slot if the slot is an
// integer slot greater or equal to the size of the pointer.
- if (TD->getTypePaddedSize(Ty) >= TD->getTypePaddedSize(Op->getType()))
+ if (TD->getTypeAllocSize(Ty) >= TD->getTypeAllocSize(Op->getType()))
return EmitConstantValueOnly(Op);
O << "((";
EmitConstantValueOnly(Op);
- APInt ptrMask = APInt::getAllOnesValue(TD->getTypePaddedSizeInBits(Ty));
+ APInt ptrMask = APInt::getAllOnesValue(TD->getTypeAllocSizeInBits(Ty));
SmallString<40> S;
ptrMask.toStringUnsigned(S);
unsigned AddrSpace) {
// Print the fields in successive locations. Pad to align if needed!
const TargetData *TD = TM.getTargetData();
- unsigned Size = TD->getTypePaddedSize(CVS->getType());
+ unsigned Size = TD->getTypeAllocSize(CVS->getType());
const StructLayout *cvsLayout = TD->getStructLayout(CVS->getType());
uint64_t sizeSoFar = 0;
for (unsigned i = 0, e = CVS->getNumOperands(); i != e; ++i) {
const Constant* field = CVS->getOperand(i);
// Check if padding is needed and insert one or more 0s.
- uint64_t fieldSize = TD->getTypePaddedSize(field->getType());
+ uint64_t fieldSize = TD->getTypeAllocSize(field->getType());
uint64_t padSize = ((i == e-1 ? Size : cvsLayout->getElementOffset(i+1))
- cvsLayout->getElementOffset(i)) - fieldSize;
sizeSoFar += fieldSize + padSize;
<< " long double most significant halfword";
O << '\n';
}
- EmitZeros(TD->getTypePaddedSize(Type::X86_FP80Ty) -
+ EmitZeros(TD->getTypeAllocSize(Type::X86_FP80Ty) -
TD->getTypeStoreSize(Type::X86_FP80Ty), AddrSpace);
return;
} else if (CFP->getType() == Type::PPC_FP128Ty) {
void AsmPrinter::EmitGlobalConstant(const Constant *CV, unsigned AddrSpace) {
const TargetData *TD = TM.getTargetData();
const Type *type = CV->getType();
- unsigned Size = TD->getTypePaddedSize(type);
+ unsigned Size = TD->getTypeAllocSize(type);
if (CV->isNullValue() || isa<UndefValue>(CV)) {
EmitZeros(Size, AddrSpace);
unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
unsigned Size =
- TM.getTargetData()->getTypePaddedSize(GV->getType()->getElementType());
+ TM.getTargetData()->getTypeAllocSize(GV->getType()->getElementType());
// If this global has a zero initializer, it is part of the .bss or common
// section.
// "giant object for PIC" optimization.
for (unsigned i = 0, e = CP.size(); i != e; ++i) {
const Type *Ty = CP[i].getType();
- unsigned Size = TM.getTargetData()->getTypePaddedSize(Ty);
+ unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
MachOWriter::MachOSection *Sec = MOW.getConstSection(CP[i].Val.ConstVal);
OutputBuffer SecDataOut(Sec->SectionData, is64Bit, isLittleEndian);
void MachOWriter::AddSymbolToSection(MachOSection *Sec, GlobalVariable *GV) {
const Type *Ty = GV->getType()->getElementType();
- unsigned Size = TM.getTargetData()->getTypePaddedSize(Ty);
+ unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
unsigned Align = TM.getTargetData()->getPreferredAlignment(GV);
// Reserve space in the .bss section for this symbol while maintaining the
void MachOWriter::EmitGlobal(GlobalVariable *GV) {
const Type *Ty = GV->getType()->getElementType();
- unsigned Size = TM.getTargetData()->getTypePaddedSize(Ty);
+ unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
bool NoInit = !GV->hasInitializer();
// If this global has a zero initializer, it is part of the .bss or common
continue;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(PC)) {
unsigned ElementSize =
- TD->getTypePaddedSize(CP->getType()->getElementType());
+ TD->getTypeAllocSize(CP->getType()->getElementType());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
WorkList.push_back(CPair(CP->getOperand(i), PA+i*ElementSize));
} else if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(PC)) {
abort();
}
} else if (isa<ConstantAggregateZero>(PC)) {
- memset((void*)PA, 0, (size_t)TD->getTypePaddedSize(PC->getType()));
+ memset((void*)PA, 0, (size_t)TD->getTypeAllocSize(PC->getType()));
} else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(PC)) {
unsigned ElementSize =
- TD->getTypePaddedSize(CPA->getType()->getElementType());
+ TD->getTypeAllocSize(CPA->getType()->getElementType());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
WorkList.push_back(CPair(CPA->getOperand(i), PA+i*ElementSize));
} else if (const ConstantStruct *CPS = dyn_cast<ConstantStruct>(PC)) {
const Type *Ty = C->getType();
if (Ty->isPrimitiveType() || Ty->isInteger()) {
- unsigned Size = TM.getTargetData()->getTypePaddedSize(Ty);
+ unsigned Size = TM.getTargetData()->getTypeAllocSize(Ty);
switch(Size) {
default: break; // Fall through to __TEXT,__const
case 4:
// Get the offsets to the 0 and 1 element of the array so that we can
// select between them.
SDValue Zero = DAG.getIntPtrConstant(0);
- unsigned EltSize = (unsigned)TD.getTypePaddedSize(Elts[0]->getType());
+ unsigned EltSize = (unsigned)TD.getTypeAllocSize(Elts[0]->getType());
SDValue One = DAG.getIntPtrConstant(EltSize);
SDValue Cond = DAG.getSetCC(DL,
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->getZExtValue() == 0) continue;
uint64_t Offs =
- TD.getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ TD.getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
N = FastEmit_ri_(VT, ISD::ADD, N, Offs, VT);
if (N == 0)
// Unhandled operand. Halt "fast" selection and bail.
}
// N = N + Idx * ElementSize;
- uint64_t ElementSize = TD.getTypePaddedSize(Ty);
+ uint64_t ElementSize = TD.getTypeAllocSize(Ty);
unsigned IdxN = getRegForGEPIndex(Idx);
if (IdxN == 0)
// Unhandled operand. Halt "fast" selection and bail.
// Increment the pointer, VAList, to the next vaarg
Tmp3 = DAG.getNode(ISD::ADD, dl, TLI.getPointerTy(), VAList,
DAG.getConstant(TLI.getTargetData()->
- getTypePaddedSize(VT.getTypeForMVT()),
+ getTypeAllocSize(VT.getTypeForMVT()),
TLI.getPointerTy()));
// Store the incremented VAList to the legalized pointer
Tmp3 = DAG.getStore(VAList.getValue(1), dl, Tmp3, Tmp2, V, 0);
Align = TM.getTargetData()->getPrefTypeAlignment(Type);
if (Align == 0) {
// Alignment of vector types. FIXME!
- Align = TM.getTargetData()->getTypePaddedSize(Type);
+ Align = TM.getTargetData()->getTypeAllocSize(Type);
}
}
// Given an array type, recursively traverse the elements.
if (const ArrayType *ATy = dyn_cast<ArrayType>(Ty)) {
const Type *EltTy = ATy->getElementType();
- uint64_t EltSize = TLI.getTargetData()->getTypePaddedSize(EltTy);
+ uint64_t EltSize = TLI.getTargetData()->getTypeAllocSize(EltTy);
for (unsigned i = 0, e = ATy->getNumElements(); i != e; ++i)
ComputeValueVTs(TLI, EltTy, ValueVTs, Offsets,
StartingOffset + i * EltSize);
if (AllocaInst *AI = dyn_cast<AllocaInst>(I))
if (ConstantInt *CUI = dyn_cast<ConstantInt>(AI->getArraySize())) {
const Type *Ty = AI->getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
AI->getAlignment());
if (ConstantInt *CI = dyn_cast<ConstantInt>(Idx)) {
if (CI->getZExtValue() == 0) continue;
uint64_t Offs =
- TD->getTypePaddedSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
+ TD->getTypeAllocSize(Ty)*cast<ConstantInt>(CI)->getSExtValue();
SDValue OffsVal;
unsigned PtrBits = TLI.getPointerTy().getSizeInBits();
if (PtrBits < 64) {
}
// N = N + Idx * ElementSize;
- uint64_t ElementSize = TD->getTypePaddedSize(Ty);
+ uint64_t ElementSize = TD->getTypeAllocSize(Ty);
SDValue IdxN = getValue(Idx);
// If the index is smaller or larger than intptr_t, truncate or extend
return; // getValue will auto-populate this.
const Type *Ty = I.getAllocatedType();
- uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
unsigned Align =
std::max((unsigned)TLI.getTargetData()->getPrefTypeAlignment(Ty),
I.getAlignment());
// Otherwise, create a stack slot and emit a store to it before the
// asm.
const Type *Ty = OpVal->getType();
- uint64_t TySize = TLI.getTargetData()->getTypePaddedSize(Ty);
+ uint64_t TySize = TLI.getTargetData()->getTypeAllocSize(Ty);
unsigned Align = TLI.getTargetData()->getPrefTypeAlignment(Ty);
MachineFunction &MF = DAG.getMachineFunction();
int SSFI = MF.getFrameInfo()->CreateStackObject(TySize, Align);
// i32-ness of the optimizer: we do not want to promote to i64 and then
// multiply on 64-bit targets.
// FIXME: Malloc inst should go away: PR715.
- uint64_t ElementSize = TD->getTypePaddedSize(I.getType()->getElementType());
+ uint64_t ElementSize = TD->getTypeAllocSize(I.getType()->getElementType());
if (ElementSize != 1)
Src = DAG.getNode(ISD::MUL, getCurDebugLoc(), Src.getValueType(),
Src, DAG.getConstant(ElementSize, Src.getValueType()));
const PointerType *Ty = cast<PointerType>(I->getType());
const Type *ElementTy = Ty->getElementType();
unsigned FrameAlign = getByValTypeAlignment(ElementTy);
- unsigned FrameSize = getTargetData()->getTypePaddedSize(ElementTy);
+ unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy);
// For ByVal, alignment should be passed from FE. BE will guess if
// this info is not there but there are cases it cannot get right.
if (F.getParamAlignment(j))
const PointerType *Ty = cast<PointerType>(Args[i].Ty);
const Type *ElementTy = Ty->getElementType();
unsigned FrameAlign = getByValTypeAlignment(ElementTy);
- unsigned FrameSize = getTargetData()->getTypePaddedSize(ElementTy);
+ unsigned FrameSize = getTargetData()->getTypeAllocSize(ElementTy);
// For ByVal, alignment should come from FE. BE will guess if this
// info is not there but there are cases it cannot get right.
if (Args[i].Alignment)
if (const ArrayType *AT = dyn_cast<ArrayType>(AI->getAllocatedType()))
// If an array has more than SSPBufferSize bytes of allocated space,
// then we emit stack protectors.
- if (SSPBufferSize <= TD->getTypePaddedSize(AT))
+ if (SSPBufferSize <= TD->getTypeAllocSize(AT))
return true;
}
}
char* ExecutionEngine::getMemoryForGV(const GlobalVariable* GV) {
const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
+ size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
return new char[GVSize];
}
return;
} else if (const ConstantVector *CP = dyn_cast<ConstantVector>(Init)) {
unsigned ElementSize =
- getTargetData()->getTypePaddedSize(CP->getType()->getElementType());
+ getTargetData()->getTypeAllocSize(CP->getType()->getElementType());
for (unsigned i = 0, e = CP->getNumOperands(); i != e; ++i)
InitializeMemory(CP->getOperand(i), (char*)Addr+i*ElementSize);
return;
} else if (isa<ConstantAggregateZero>(Init)) {
- memset(Addr, 0, (size_t)getTargetData()->getTypePaddedSize(Init->getType()));
+ memset(Addr, 0, (size_t)getTargetData()->getTypeAllocSize(Init->getType()));
return;
} else if (const ConstantArray *CPA = dyn_cast<ConstantArray>(Init)) {
unsigned ElementSize =
- getTargetData()->getTypePaddedSize(CPA->getType()->getElementType());
+ getTargetData()->getTypeAllocSize(CPA->getType()->getElementType());
for (unsigned i = 0, e = CPA->getNumOperands(); i != e; ++i)
InitializeMemory(CPA->getOperand(i), (char*)Addr+i*ElementSize);
return;
InitializeMemory(GV->getInitializer(), GA);
const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
+ size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
NumInitBytes += (unsigned)GVSize;
++NumGlobals;
}
unsigned NumElements =
getOperandValue(I.getOperand(0), SF).IntVal.getZExtValue();
- unsigned TypeSize = (size_t)TD.getTypePaddedSize(Ty);
+ unsigned TypeSize = (size_t)TD.getTypeAllocSize(Ty);
// Avoid malloc-ing zero bytes, use max()...
unsigned MemToAlloc = std::max(1U, NumElements * TypeSize);
assert(BitWidth == 64 && "Invalid index type for getelementptr");
Idx = (int64_t)IdxGV.IntVal.getZExtValue();
}
- Total += TD.getTypePaddedSize(ST->getElementType())*Idx;
+ Total += TD.getTypeAllocSize(ST->getElementType())*Idx;
}
}
// emit it into memory. It goes in the same array as the generated
// code, jump tables, etc.
const Type *GlobalType = GV->getType()->getElementType();
- size_t S = getTargetData()->getTypePaddedSize(GlobalType);
+ size_t S = getTargetData()->getTypeAllocSize(GlobalType);
size_t A = getTargetData()->getPreferredAlignment(GV);
if (GV->isThreadLocal()) {
MutexGuard locked(lock);
///
char* JIT::getMemoryForGV(const GlobalVariable* GV) {
const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)getTargetData()->getTypePaddedSize(ElTy);
+ size_t GVSize = (size_t)getTargetData()->getTypeAllocSize(ElTy);
if (GV->isThreadLocal()) {
MutexGuard locked(lock);
return TJI.allocateThreadLocalMemory(GVSize);
unsigned AlignMask = CPE.getAlignment() - 1;
Size = (Size + AlignMask) & ~AlignMask;
const Type *Ty = CPE.getType();
- Size += TD->getTypePaddedSize(Ty);
+ Size += TD->getTypeAllocSize(Ty);
}
return Size;
}
unsigned JITEmitter::addSizeOfGlobal(const GlobalVariable *GV, unsigned Size) {
const Type *ElTy = GV->getType()->getElementType();
- size_t GVSize = (size_t)TheJIT->getTargetData()->getTypePaddedSize(ElTy);
+ size_t GVSize = (size_t)TheJIT->getTargetData()->getTypeAllocSize(ElTy);
size_t GVAlign =
(size_t)TheJIT->getTargetData()->getPreferredAlignment(GV);
DOUT << "JIT: Adding in size " << GVSize << " alignment " << GVAlign;
<< std::hex << CAddr << std::dec << "]\n";
const Type *Ty = CPE.Val.ConstVal->getType();
- Offset += TheJIT->getTargetData()->getTypePaddedSize(Ty);
+ Offset += TheJIT->getTargetData()->getTypeAllocSize(Ty);
}
}
const TargetData &TD = *Fn.getTarget().getTargetData();
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
- unsigned Size = TD.getTypePaddedSize(CPs[i].getType());
+ unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
// Verify that all constant pool entries are a multiple of 4 bytes. If not,
// we would have to pad them out or something so that instructions stay
// aligned.
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
- unsigned Size = TD->getTypePaddedSize(Type);
+ unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
bool isDarwin = Subtarget->isTargetDarwin();
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
- unsigned Size = TD->getTypePaddedSize(C->getType());
+ unsigned Size = TD->getTypeAllocSize(C->getType());
unsigned Align = TD->getPreferredAlignmentLog(GVar);
// 0: Switch to section
const VectorType *VTy = cast<VectorType>(Ty);
return printSimpleType(Out, VTy->getElementType(), isSigned,
" __attribute__((vector_size(" +
- utostr(TD->getTypePaddedSize(VTy)) + " ))) " + NameSoFar);
+ utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
}
default:
const VectorType *VTy = cast<VectorType>(Ty);
return printSimpleType(Out, VTy->getElementType(), isSigned,
" __attribute__((vector_size(" +
- utostr(TD->getTypePaddedSize(VTy)) + " ))) " + NameSoFar);
+ utostr(TD->getTypeAllocSize(VTy)) + " ))) " + NameSoFar);
}
default:
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
- unsigned Size = TD->getTypePaddedSize(Type);
+ unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
SwitchToSection(TAI->SectionForGlobal(GVar));
Constant *C = cast<GlobalVariable>(GV)->getInitializer();
const Type *Ty = cast<ArrayType>(C->getType())->getElementType();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
if (Size) {
unsigned Align = TD->getPreferredAlignment(GV);
if (Align <= 32)
DarwinTargetAsmInfo::MergeableConstSection(const Type *Ty) const {
const TargetData *TD = TM.getTargetData();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
if (Size == 4)
return FourByteConstantSection;
else if (Size == 8)
// FIXME: string here is temporary, until stuff will fully land in.
// We cannot use {Four,Eight,Sixteen}ByteConstantSection here, since it's
// currently directly used by asmprinter.
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
if (Size == 4 || Size == 8 || Size == 16) {
std::string Name = ".rodata.cst" + utostr(Size);
Constant *C = cast<GlobalVariable>(GV)->getInitializer();
const Type *Ty = cast<ArrayType>(C->getType())->getElementType();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
if (Size <= 16) {
assert(getCStringSection() && "Should have string section prefix");
O << "\n\n";
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
- unsigned Size = TD->getTypePaddedSize(C->getType());
+ unsigned Size = TD->getTypeAllocSize(C->getType());
unsigned Align = TD->getPreferredAlignmentLog(GVar);
printVisibility(name, GVar->getVisibility());
case Type::DoubleTyID:
return "r8";
case Type::PointerTyID:
- return "i"+utostr(TD->getTypePaddedSize(Ty));
+ return "i"+utostr(TD->getTypeAllocSize(Ty));
default:
cerr << "TypeID = " << Ty->getTypeID() << '\n';
assert(0 && "Invalid type in TypeToPostfix()");
uint64_t FieldIndex = cast<ConstantInt>(IndexValue)->getZExtValue();
// Offset is the sum of all previous structure fields.
for (uint64_t F = 0; F<FieldIndex; ++F)
- Size += TD->getTypePaddedSize(StrucTy->getContainedType((unsigned)F));
+ Size += TD->getTypeAllocSize(StrucTy->getContainedType((unsigned)F));
printPtrLoad(Size);
printSimpleInstruction("add");
continue;
} else if (const SequentialType* SeqTy = dyn_cast<SequentialType>(*I)) {
- Size = TD->getTypePaddedSize(SeqTy->getElementType());
+ Size = TD->getTypeAllocSize(SeqTy->getElementType());
} else {
- Size = TD->getTypePaddedSize(*I);
+ Size = TD->getTypeAllocSize(*I);
}
// Add offset of current element to stack top.
if (!isZeroValue(IndexValue)) {
void MSILWriter::printAllocaInstruction(const AllocaInst* Inst) {
- uint64_t Size = TD->getTypePaddedSize(Inst->getAllocatedType());
+ uint64_t Size = TD->getTypeAllocSize(Inst->getAllocatedType());
// Constant optimization.
if (const ConstantInt* CInt = dyn_cast<ConstantInt>(Inst->getOperand(0))) {
printPtrLoad(CInt->getZExtValue()*Size);
// Print not duplicated type
if (Printed.insert(Ty).second) {
Out << ".class value explicit ansi sealed '" << Name << "'";
- Out << " { .pack " << 1 << " .size " << TD->getTypePaddedSize(Ty);
+ Out << " { .pack " << 1 << " .size " << TD->getTypeAllocSize(Ty);
Out << " }\n\n";
}
}
const Type* Ty = C->getType();
// Print zero initialized constant.
if (isa<ConstantAggregateZero>(C) || C->isNullValue()) {
- TySize = TD->getTypePaddedSize(C->getType());
+ TySize = TD->getTypeAllocSize(C->getType());
Offset += TySize;
Out << "int8 (0) [" << TySize << "]";
return;
// Print constant initializer
switch (Ty->getTypeID()) {
case Type::IntegerTyID: {
- TySize = TD->getTypePaddedSize(Ty);
+ TySize = TD->getTypeAllocSize(Ty);
const ConstantInt* Int = cast<ConstantInt>(C);
Out << getPrimitiveTypeName(Ty,true) << "(" << Int->getSExtValue() << ")";
break;
}
case Type::FloatTyID:
case Type::DoubleTyID: {
- TySize = TD->getTypePaddedSize(Ty);
+ TySize = TD->getTypeAllocSize(Ty);
const ConstantFP* FP = cast<ConstantFP>(C);
if (Ty->getTypeID() == Type::FloatTyID)
Out << "int32 (" <<
}
break;
case Type::PointerTyID:
- TySize = TD->getTypePaddedSize(C->getType());
+ TySize = TD->getTypeAllocSize(C->getType());
// Initialize with global variable address
if (const GlobalVariable *G = dyn_cast<GlobalVariable>(C)) {
std::string name = getValueName(G);
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
const Type *CTy = C->getType();
- unsigned Size = TD->getTypePaddedSize(CTy);
+ unsigned Size = TD->getTypeAllocSize(CTy);
const ConstantArray *CVA = dyn_cast<ConstantArray>(C);
bool printSizeAndType = true;
return false;
const Type *Ty = GV->getType()->getElementType();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
// if this is a internal constant string, there is a special
// section for it, but not in small data/bss.
// hacking it. This feature should come soon so we can uncomment the
// stuff below.
//if (!Subtarget->hasABICall() &&
- // IsInSmallSection(getTargetData()->getTypePaddedSize(C->getType()))) {
+ // IsInSmallSection(getTargetData()->getTypeAllocSize(C->getType()))) {
// SDValue GPRelNode = DAG.getNode(MipsISD::GPRel, MVT::i32, CP);
// SDValue GOT = DAG.getGLOBAL_OFFSET_TABLE(MVT::i32);
// ResNode = DAG.getNode(ISD::ADD, MVT::i32, GOT, GPRelNode);
if (isa<GlobalVariable>(GV)) {
const TargetData *TD = TM.getTargetData();
- unsigned Size = TD->getTypePaddedSize(GV->getType()->getElementType());
+ unsigned Size = TD->getTypeAllocSize(GV->getType()->getElementType());
unsigned Threshold = Subtarget->getSSectionThreshold();
if (Size > 0 && Size <= Threshold) {
const Type *RetType = F->getReturnType();
unsigned RetSize = 0;
if (RetType->getTypeID() != Type::VoidTyID)
- RetSize = TD->getTypePaddedSize(RetType);
+ RetSize = TD->getTypeAllocSize(RetType);
//Emit function return value space
if(RetSize > 0)
for (Function::const_arg_iterator argi = F->arg_begin(),
arge = F->arg_end(); argi != arge ; ++argi) {
const Type *Ty = argi->getType();
- ArgSize += TD->getTypePaddedSize(Ty);
+ ArgSize += TD->getTypeAllocSize(Ty);
}
O << FunctionLabelBegin << CurrentFnName << ".args. RES " << ArgSize
<< "\n";
I->setSection("fadata." + CurrentFnName + ".#");
Constant *C = I->getInitializer();
const Type *Ty = C->getType();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
FrameSize += Size;
// Emit memory reserve directive.
O << FunctionLabelBegin << VarName << " RES " << Size << "\n";
std::string Name = Mang->getValueName(Items[j]);
Constant *C = Items[j]->getInitializer();
const Type *Ty = C->getType();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
O << Name << " " <<"RES"<< " " << Size ;
O << "\n";
// Find how much space this global needs.
const TargetData *TD = TM.getTargetData();
const Type *Ty = C->getType();
- unsigned ValSize = TD->getTypePaddedSize(Ty);
+ unsigned ValSize = TD->getTypeAllocSize(Ty);
// Go through all BSS Sections and assign this variable
// to the first available section having enough space.
// Find how much space this global needs.
const TargetData *TD = TM.getTargetData();
const Type *Ty = C->getType();
- unsigned ValSize = TD->getTypePaddedSize(Ty);
+ unsigned ValSize = TD->getTypeAllocSize(Ty);
// Go through all IDATA Sections and assign this variable
// to the first available section having enough space.
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
- unsigned Size = TD->getTypePaddedSize(Type);
+ unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
SwitchToSection(TAI->SectionForGlobal(GVar));
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
- unsigned Size = TD->getTypePaddedSize(Type);
+ unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
SwitchToSection(TAI->SectionForGlobal(GVar));
O << "\n\n";
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
- unsigned Size = TD->getTypePaddedSize(C->getType());
+ unsigned Size = TD->getTypeAllocSize(C->getType());
unsigned Align = TD->getPreferredAlignment(GVar);
printVisibility(name, GVar->getVisibility());
}
unsigned long long LLVMABISizeOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
- return unwrap(TD)->getTypePaddedSize(unwrap(Ty));
+ return unwrap(TD)->getTypeAllocSize(unwrap(Ty));
}
unsigned LLVMABIAlignmentOfType(LLVMTargetDataRef TD, LLVMTypeRef Ty) {
StructAlignment = std::max(TyAlign, StructAlignment);
MemberOffsets[i] = StructSize;
- StructSize += TD.getTypePaddedSize(Ty); // Consume space for this data item
+ StructSize += TD.getTypeAllocSize(Ty); // Consume space for this data item
}
// Empty structures have alignment of 1 byte.
return getPointerSizeInBits();
case Type::ArrayTyID: {
const ArrayType *ATy = cast<ArrayType>(Ty);
- return getTypePaddedSizeInBits(ATy->getElementType())*ATy->getNumElements();
+ return getTypeAllocSizeInBits(ATy->getElementType())*ATy->getNumElements();
}
case Type::StructTyID:
// Get the layout annotation... which is lazily created on demand.
// Get the array index and the size of each array element.
int64_t arrayIdx = cast<ConstantInt>(Indices[CurIDX])->getSExtValue();
- Result += arrayIdx * (int64_t)getTypePaddedSize(Ty);
+ Result += arrayIdx * (int64_t)getTypeAllocSize(Ty);
}
}
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
- Size += ((TD->getTypePaddedSize(Ty) + 3)/4)*4;
+ Size += ((TD->getTypeAllocSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
std::string name = Mang->getValueName(GVar);
Constant *C = GVar->getInitializer();
const Type *Type = C->getType();
- unsigned Size = TD->getTypePaddedSize(Type);
+ unsigned Size = TD->getTypeAllocSize(Type);
unsigned Align = TD->getPreferredAlignmentLog(GVar);
printVisibility(name, GVar->getVisibility());
Ty = cast<PointerType>(Ty)->getElementType();
// Size should be aligned to DWORD boundary
- Size += ((TD->getTypePaddedSize(Ty) + 3)/4)*4;
+ Size += ((TD->getTypeAllocSize(Ty) + 3)/4)*4;
}
// We're not supporting tooooo huge arguments :)
unsigned Idx = cast<ConstantInt>(Op)->getZExtValue();
Disp += SL->getElementOffset(Idx);
} else {
- uint64_t S = TD.getTypePaddedSize(GTI.getIndexedType());
+ uint64_t S = TD.getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *CI = dyn_cast<ConstantInt>(Op)) {
// Constant-offset addressing.
Disp += CI->getSExtValue() * S;
unsigned Align = TD.getPrefTypeAlignment(C->getType());
if (Align == 0) {
// Alignment of vector types. FIXME!
- Align = TD.getTypePaddedSize(C->getType());
+ Align = TD.getTypeAllocSize(C->getType());
}
// x86-32 PIC requires a PIC base register for constant pools.
EmitAlignment(Align, GV, 2);
- unsigned Size = TD->getTypePaddedSize(C->getType());
+ unsigned Size = TD->getTypeAllocSize(C->getType());
if (GV->isThreadLocal()) {
Size *= MaxThreads;
}
}
SDValue base = getGlobalAddressWrapper(GA, GV, DAG);
const TargetData *TD = TM.getTargetData();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
SDValue offset = DAG.getNode(ISD::MUL, dl, MVT::i32, BuildGetId(DAG, dl),
DAG.getConstant(Size, MVT::i32));
return DAG.getNode(ISD::ADD, dl, MVT::i32, base, offset);
XCoreTargetAsmInfo::MergeableConstSection(const Type *Ty) const {
const TargetData *TD = TM.getTargetData();
- unsigned Size = TD->getTypePaddedSize(Ty);
+ unsigned Size = TD->getTypeAllocSize(Ty);
if (Size == 4 || Size == 8 || Size == 16) {
std::string Name = ".cp.const" + utostr(Size);
return 0; // It's not worth it.
NewGlobals.reserve(NumElements);
- uint64_t EltSize = TD.getTypePaddedSize(STy->getElementType());
+ uint64_t EltSize = TD.getTypeAllocSize(STy->getElementType());
unsigned EltAlign = TD.getABITypeAlignment(STy->getElementType());
for (unsigned i = 0, e = NumElements; i != e; ++i) {
Constant *In = getAggregateConstantElement(Init,
// (2048 bytes currently), as we don't want to introduce a 16M global or
// something.
if (NElements->getZExtValue()*
- TD.getTypePaddedSize(MI->getAllocatedType()) < 2048) {
+ TD.getTypeAllocSize(MI->getAllocatedType()) < 2048) {
GVI = OptimizeGlobalAddressOfMalloc(GV, MI);
return true;
}
if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
pointerSize = C->getZExtValue() *
- TD.getTypePaddedSize(A->getAllocatedType());
+ TD.getTypeAllocSize(A->getAllocatedType());
} else {
const PointerType* PT = cast<PointerType>(
cast<Argument>(*I)->getType());
- pointerSize = TD.getTypePaddedSize(PT->getElementType());
+ pointerSize = TD.getTypeAllocSize(PT->getElementType());
}
// See if the call site touches it
if (AllocaInst* A = dyn_cast<AllocaInst>(*I)) {
if (ConstantInt* C = dyn_cast<ConstantInt>(A->getArraySize()))
pointerSize = C->getZExtValue() *
- TD.getTypePaddedSize(A->getAllocatedType());
+ TD.getTypeAllocSize(A->getAllocatedType());
} else {
const PointerType* PT = cast<PointerType>(cast<Argument>(*I)->getType());
- pointerSize = TD.getTypePaddedSize(PT->getElementType());
+ pointerSize = TD.getTypeAllocSize(PT->getElementType());
}
// See if this pointer could alias it
for (User::op_iterator i = GEP->op_begin() + 1, e = GEP->op_end(); i != e;
++i, ++GTI) {
Value *Op = *i;
- uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType()) & PtrSizeMask;
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType()) & PtrSizeMask;
if (ConstantInt *OpC = dyn_cast<ConstantInt>(Op)) {
if (OpC->isZero()) continue;
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
- uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType());
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
} else {
Value *VariableIdx = GEP->getOperand(i);
// Determine the scale factor of the variable element. For example, this is
// 4 if the variable index is into an array of i32.
- uint64_t VariableScale = TD.getTypePaddedSize(GTI.getIndexedType());
+ uint64_t VariableScale = TD.getTypeAllocSize(GTI.getIndexedType());
// Verify that there are no other variable indices. If so, emit the hard way.
for (++i, ++GTI; i != e; ++i, ++GTI) {
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
Offset += TD.getStructLayout(STy)->getElementOffset(CI->getZExtValue());
} else {
- uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType());
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*CI->getSExtValue();
}
}
if (!AI.hasOneUse() && !hasOneUsePlusDeclare(&AI) &&
CastElTyAlign == AllocElTyAlign) return 0;
- uint64_t AllocElTySize = TD->getTypePaddedSize(AllocElTy);
- uint64_t CastElTySize = TD->getTypePaddedSize(CastElTy);
+ uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
+ uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
// See if we can satisfy the modulus by pulling a scale out of the array
// is something like [0 x {int, int}]
const Type *IntPtrTy = TD->getIntPtrType();
int64_t FirstIdx = 0;
- if (int64_t TySize = TD->getTypePaddedSize(Ty)) {
+ if (int64_t TySize = TD->getTypeAllocSize(Ty)) {
FirstIdx = Offset/TySize;
Offset -= FirstIdx*TySize;
Offset -= SL->getElementOffset(Elt);
Ty = STy->getElementType(Elt);
} else if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
- uint64_t EltSize = TD->getTypePaddedSize(AT->getElementType());
+ uint64_t EltSize = TD->getTypeAllocSize(AT->getElementType());
assert(EltSize && "Cannot index into a zero-sized array");
NewIndices.push_back(ConstantInt::get(IntPtrTy,Offset/EltSize));
Offset %= EltSize;
// is a single-index GEP.
if (X->getType() == CI.getType()) {
// Get the size of the pointee type.
- uint64_t Size = TD->getTypePaddedSize(DestPointee);
+ uint64_t Size = TD->getTypeAllocSize(DestPointee);
// Convert the constant to intptr type.
APInt Offset = Cst->getValue();
// "inttoptr+GEP" instead of "add+intptr".
// Get the size of the pointee type.
- uint64_t Size = TD->getTypePaddedSize(DestPointee);
+ uint64_t Size = TD->getTypeAllocSize(DestPointee);
// Convert the constant to intptr type.
APInt Offset = Cst->getValue();
const Type* DstTy = cast<PointerType>(CI->getType())->getElementType();
if (!SrcTy->isSized() || !DstTy->isSized())
return false;
- if (TD->getTypePaddedSize(SrcTy) != TD->getTypePaddedSize(DstTy))
+ if (TD->getTypeAllocSize(SrcTy) != TD->getTypeAllocSize(DstTy))
return false;
return true;
}
const Type *SrcElTy = cast<PointerType>(X->getType())->getElementType();
const Type *ResElTy=cast<PointerType>(PtrOp->getType())->getElementType();
if (isa<ArrayType>(SrcElTy) &&
- TD->getTypePaddedSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
- TD->getTypePaddedSize(ResElTy)) {
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType()) ==
+ TD->getTypeAllocSize(ResElTy)) {
Value *Idx[2];
Idx[0] = Constant::getNullValue(Type::Int32Ty);
Idx[1] = GEP.getOperand(1);
if (isa<ArrayType>(SrcElTy) && ResElTy == Type::Int8Ty) {
uint64_t ArrayEltSize =
- TD->getTypePaddedSize(cast<ArrayType>(SrcElTy)->getElementType());
+ TD->getTypeAllocSize(cast<ArrayType>(SrcElTy)->getElementType());
// Check to see if "tmp" is a scale by a multiple of ArrayEltSize. We
// allow either a mul, shift, or constant here.
// If alloca'ing a zero byte object, replace the alloca with a null pointer.
// Note that we only do this for alloca's, because malloc should allocate
// and return a unique pointer, even for a zero byte allocation.
- if (TD->getTypePaddedSize(AI.getAllocatedType()) == 0)
+ if (TD->getTypeAllocSize(AI.getAllocatedType()) == 0)
return ReplaceInstUsesWith(AI, Constant::getNullValue(AI.getType()));
// If the alignment is 0 (unspecified), assign it the preferred alignment.
// Otherwise, we have a sequential type like an array or vector. Multiply
// the index by the ElementSize.
- uint64_t Size = TD.getTypePaddedSize(GTI.getIndexedType());
+ uint64_t Size = TD.getTypeAllocSize(GTI.getIndexedType());
Offset += Size*OpC->getSExtValue();
}
if (!srcArraySize)
return false;
- uint64_t srcSize = TD.getTypePaddedSize(srcAlloca->getAllocatedType()) *
+ uint64_t srcSize = TD.getTypeAllocSize(srcAlloca->getAllocatedType()) *
srcArraySize->getZExtValue();
if (cpyLength->getZExtValue() < srcSize)
if (!destArraySize)
return false;
- uint64_t destSize = TD.getTypePaddedSize(A->getAllocatedType()) *
+ uint64_t destSize = TD.getTypeAllocSize(A->getAllocatedType()) *
destArraySize->getZExtValue();
if (destSize < srcSize)
return false;
const Type* StructTy = cast<PointerType>(A->getType())->getElementType();
- uint64_t destSize = TD.getTypePaddedSize(StructTy);
+ uint64_t destSize = TD.getTypeAllocSize(StructTy);
if (destSize < srcSize)
return false;
// transform the allocation instruction if it is an array allocation
// (allocations OF arrays are ok though), and an allocation of a scalar
// value cannot be decomposed at all.
- uint64_t AllocaSize = TD->getTypePaddedSize(AI->getAllocatedType());
+ uint64_t AllocaSize = TD->getTypeAllocSize(AI->getAllocatedType());
// Do not promote any struct whose size is too big.
if (AllocaSize > SRThreshold) continue;
// If not the whole aggregate, give up.
if (Length->getZExtValue() !=
- TD->getTypePaddedSize(AI->getType()->getElementType()))
+ TD->getTypeAllocSize(AI->getType()->getElementType()))
return MarkUnsafe(Info);
// We only know about memcpy/memset/memmove.
// cast a {i32,i32}* to i64* and store through it. This is similar to the
// memcpy case and occurs in various "byval" cases and emulated memcpys.
if (isa<IntegerType>(SI->getOperand(0)->getType()) &&
- TD->getTypePaddedSize(SI->getOperand(0)->getType()) ==
- TD->getTypePaddedSize(AI->getType()->getElementType())) {
+ TD->getTypeAllocSize(SI->getOperand(0)->getType()) ==
+ TD->getTypeAllocSize(AI->getType()->getElementType())) {
Info.isMemCpyDst = true;
continue;
}
// cast a {i32,i32}* to i64* and load through it. This is similar to the
// memcpy case and occurs in various "byval" cases and emulated memcpys.
if (isa<IntegerType>(LI->getType()) &&
- TD->getTypePaddedSize(LI->getType()) ==
- TD->getTypePaddedSize(AI->getType()->getElementType())) {
+ TD->getTypeAllocSize(LI->getType()) ==
+ TD->getTypeAllocSize(AI->getType()->getElementType())) {
Info.isMemCpySrc = true;
continue;
}
} else {
const Type *EltTy =
cast<SequentialType>(OtherPtr->getType())->getElementType();
- EltOffset = TD->getTypePaddedSize(EltTy)*i;
+ EltOffset = TD->getTypeAllocSize(EltTy)*i;
}
// The alignment of the other pointer is the guaranteed alignment of the
OtherElt = new BitCastInst(OtherElt, BytePtrTy,OtherElt->getNameStr(),
MI);
- unsigned EltSize = TD->getTypePaddedSize(EltTy);
+ unsigned EltSize = TD->getTypeAllocSize(EltTy);
// Finally, insert the meminst for this element.
if (isa<MemTransferInst>(MI)) {
// and store the element value to the individual alloca.
Value *SrcVal = SI->getOperand(0);
const Type *AllocaEltTy = AI->getType()->getElementType();
- uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
+ uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
// If this isn't a store of an integer to the whole alloca, it may be a store
// to the first element. Just ignore the store in this case and normal SROA
uint64_t Shift = Layout->getElementOffsetInBits(i);
if (TD->isBigEndian())
- Shift = AllocaSizeBits-Shift-TD->getTypePaddedSizeInBits(FieldTy);
+ Shift = AllocaSizeBits-Shift-TD->getTypeAllocSizeInBits(FieldTy);
Value *EltVal = SrcVal;
if (Shift) {
} else {
const ArrayType *ATy = cast<ArrayType>(AllocaEltTy);
const Type *ArrayEltTy = ATy->getElementType();
- uint64_t ElementOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
+ uint64_t ElementOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
uint64_t ElementSizeBits = TD->getTypeSizeInBits(ArrayEltTy);
uint64_t Shift;
// Extract each element out of the NewElts according to its structure offset
// and form the result value.
const Type *AllocaEltTy = AI->getType()->getElementType();
- uint64_t AllocaSizeBits = TD->getTypePaddedSizeInBits(AllocaEltTy);
+ uint64_t AllocaSizeBits = TD->getTypeAllocSizeInBits(AllocaEltTy);
// If this isn't a load of the whole alloca to an integer, it may be a load
// of the first element. Just ignore the load in this case and normal SROA
Layout = TD->getStructLayout(EltSTy);
} else {
const Type *ArrayEltTy = cast<ArrayType>(AllocaEltTy)->getElementType();
- ArrayEltBitOffset = TD->getTypePaddedSizeInBits(ArrayEltTy);
+ ArrayEltBitOffset = TD->getTypeAllocSizeInBits(ArrayEltTy);
}
Value *ResultVal = Constant::getNullValue(LI->getType());
} else if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
return HasPadding(VTy->getElementType(), TD);
}
- return TD.getTypeSizeInBits(Ty) != TD.getTypePaddedSizeInBits(Ty);
+ return TD.getTypeSizeInBits(Ty) != TD.getTypeAllocSizeInBits(Ty);
}
/// isSafeStructAllocaToScalarRepl - Check to see if the specified allocation of
// Otherwise it must be an element access.
unsigned Elt = 0;
if (Offset) {
- unsigned EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
+ unsigned EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
Elt = Offset/EltSize;
assert(EltSize*Elt == Offset && "Invalid modulus in validity checking");
}
}
if (const ArrayType *AT = dyn_cast<ArrayType>(ToType)) {
- uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
+ uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
Value *Res = UndefValue::get(AT);
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = ConvertScalar_ExtractValue(FromVal, AT->getElementType(),
const Type *AllocaType = Old->getType();
if (const VectorType *VTy = dyn_cast<VectorType>(AllocaType)) {
- uint64_t VecSize = TD->getTypePaddedSizeInBits(VTy);
- uint64_t ValSize = TD->getTypePaddedSizeInBits(SV->getType());
+ uint64_t VecSize = TD->getTypeAllocSizeInBits(VTy);
+ uint64_t ValSize = TD->getTypeAllocSizeInBits(SV->getType());
// Changing the whole vector with memset or with an access of a different
// vector type?
if (ValSize == VecSize)
return Builder.CreateBitCast(SV, AllocaType, "tmp");
- uint64_t EltSize = TD->getTypePaddedSizeInBits(VTy->getElementType());
+ uint64_t EltSize = TD->getTypeAllocSizeInBits(VTy->getElementType());
// Must be an element insertion.
unsigned Elt = Offset/EltSize;
}
if (const ArrayType *AT = dyn_cast<ArrayType>(SV->getType())) {
- uint64_t EltSize = TD->getTypePaddedSizeInBits(AT->getElementType());
+ uint64_t EltSize = TD->getTypeAllocSizeInBits(AT->getElementType());
for (unsigned i = 0, e = AT->getNumElements(); i != e; ++i) {
Value *Elt = Builder.CreateExtractValue(SV, i, "tmp");
Old = ConvertScalar_InsertValue(Elt, Old, Offset+i*EltSize, Builder);
cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
ConstantOffset += SL->getElementOffset(Idx);
} else {
- uint64_t TypeSize = TD->getTypePaddedSize(GTI.getIndexedType());
+ uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
ConstantOffset += CI->getSExtValue()*TypeSize;
} else if (TypeSize) { // Scales of zero don't do anything.
Value *MallocArg;
if (LowerMallocArgToInteger)
MallocArg = ConstantInt::get(Type::Int64Ty,
- TD.getTypePaddedSize(AllocTy));
+ TD.getTypeAllocSize(AllocTy));
else
MallocArg = ConstantExpr::getSizeOf(AllocTy);
MallocArg = ConstantExpr::getTruncOrBitCast(cast<Constant>(MallocArg),
O << Size << ", ";
else
O << "\n" << IndentStr << " State.getTarget().getTargetData()"
- "->getTypePaddedSize(LocVT.getTypeForMVT()), ";
+ "->getTypeAllocSize(LocVT.getTypeForMVT()), ";
if (Align)
O << Align;
else