Value *Zero = Constant::getNullValue(Src->getType());
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
}
+
+ // Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
+ Value *A = 0; ConstantInt *Cst = 0;
+ if (match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst))) &&
+ Src->hasOneUse()) {
+ // We have three types to worry about here, the type of A, the source of
+ // the truncate (MidSize), and the destination of the truncate. We know that
+ // ASize < MidSize and MidSize > ResultSize, but don't know the relation
+ // between ASize and ResultSize.
+ unsigned ASize = A->getType()->getPrimitiveSizeInBits();
+
+ // If the shift amount is larger than the size of A, then the result is
+ // known to be zero because all the input bits got shifted out.
+ if (Cst->getZExtValue() >= ASize)
+ return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
+
+ // Since we're doing an lshr and a zero extend, and know that the shift
+ // amount is smaller than ASize, it is always safe to do the shift in A's
+ // type, then zero extend or truncate to the result.
+ Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
+ Shift->takeName(Src);
+ return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
+ }
return 0;
}
; CHECK: %d = xor i64 {{.*}}, 8
; CHECK: ret i64 %d
}
+
+define i32 @test5(i32 %A) {
+ %B = zext i32 %A to i128
+ %C = lshr i128 %B, 16
+ %D = trunc i128 %C to i32
+ ret i32 %D
+; CHECK: @test5
+; CHECK: %C = lshr i32 %A, 16
+; CHECK: ret i32 %C
+}
+
+define i32 @test6(i64 %A) {
+ %B = zext i64 %A to i128
+ %C = lshr i128 %B, 32
+ %D = trunc i128 %C to i32
+ ret i32 %D
+; CHECK: @test6
+; CHECK: %C = lshr i64 %A, 32
+; CHECK: %D = trunc i64 %C to i32
+; CHECK: ret i32 %D
+}
+
+define i92 @test7(i64 %A) {
+ %B = zext i64 %A to i128
+ %C = lshr i128 %B, 32
+ %D = trunc i128 %C to i92
+ ret i92 %D
+; CHECK: @test7
+; CHECK: %C = lshr i64 %A, 32
+; CHECK: %D = zext i64 %C to i92
+; CHECK: ret i92 %D
+}
\ No newline at end of file