Let's suppose a highmem page is kmap'd with kmap(). A pkmap entry is
used, the page mapped to it, and the virtual cache is dirtied. Then
kunmap() is used which does virtually nothing except for decrementing a
usage count.
Then, let's suppose the _same_ page gets mapped using kmap_atomic().
It is therefore mapped onto a fixmap entry instead, which has a
different virtual address unaware of the dirty cache data for that page
sitting in the pkmap mapping.
Fortunately it is easy to know if a pkmap mapping still exists for that
page and use it directly with kmap_atomic(), thanks to kmap_high_get().
And actual testing with a printk in the added code path shows that this
condition is actually met *extremely* frequently. Seems that we've been
quite lucky that things have worked so well with highmem so far.
Cc: stable@kernel.org
Signed-off-by: Nicolas Pitre <nico@marvell.com>
Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
{
unsigned int idx;
unsigned long vaddr;
+ void *kmap;
pagefault_disable();
if (!PageHighMem(page))
return page_address(page);
+ kmap = kmap_high_get(page);
+ if (kmap)
+ return kmap;
+
idx = type + KM_TYPE_NR * smp_processor_id();
vaddr = __fix_to_virt(FIX_KMAP_BEGIN + idx);
#ifdef CONFIG_DEBUG_HIGHMEM
#else
(void) idx; /* to kill a warning */
#endif
+ } else if (vaddr >= PKMAP_ADDR(0) && vaddr < PKMAP_ADDR(LAST_PKMAP)) {
+ /* this address was obtained through kmap_high_get() */
+ kunmap_high(pte_page(pkmap_page_table[PKMAP_NR(vaddr)]));
}
pagefault_enable();
}