--- /dev/null
+//===-- llvm/ADT/TargetTuple.h - Target tuple class -------------*- C++ -*-===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+/// @file
+/// This file contains the definitions for TargetTuples which describe the
+/// target in a unique unambiguous way. This is in contrast to the GNU triples
+/// handled by the Triple class which are more of a guideline than a
+/// description and whose meaning can be overridden by vendors and distributors.
+//
+//===----------------------------------------------------------------------===//
+
+#ifndef LLVM_ADT_TARGETTUPLE_H
+#define LLVM_ADT_TARGETTUPLE_H
+
+#include "llvm/ADT/Twine.h"
+#include "llvm/ADT/Triple.h"
+
+// Some system headers or GCC predefined macros conflict with identifiers in
+// this file. Undefine them here.
+#undef NetBSD
+#undef mips
+#undef sparc
+
+namespace llvm {
+
+/// TargetTuple is currently a proxy for Triple but will become an unambiguous,
+/// authoratitive, and mutable counterpart to the GNU triples handled by Triple.
+class TargetTuple {
+public:
+ // FIXME: Don't duplicate Triple::ArchType. It's worth mentioning that these
+ // these values don't have to match Triple::ArchType. For example, it
+ // would be fairly sensible to have a single 'mips' architecture and
+ // distinguish endianness and ABI elsewhere.
+ enum ArchType {
+ UnknownArch,
+
+ arm, // ARM (little endian): arm, armv.*, xscale
+ armeb, // ARM (big endian): armeb
+ aarch64, // AArch64 (little endian): aarch64
+ aarch64_be, // AArch64 (big endian): aarch64_be
+ bpfel, // eBPF or extended BPF or 64-bit BPF (little endian)
+ bpfeb, // eBPF or extended BPF or 64-bit BPF (big endian)
+ hexagon, // Hexagon: hexagon
+ mips, // MIPS: mips, mipsallegrex
+ mipsel, // MIPSEL: mipsel, mipsallegrexel
+ mips64, // MIPS64: mips64
+ mips64el, // MIPS64EL: mips64el
+ msp430, // MSP430: msp430
+ ppc, // PPC: powerpc
+ ppc64, // PPC64: powerpc64, ppu
+ ppc64le, // PPC64LE: powerpc64le
+ r600, // R600: AMD GPUs HD2XXX - HD6XXX
+ amdgcn, // AMDGCN: AMD GCN GPUs
+ sparc, // Sparc: sparc
+ sparcv9, // Sparcv9: Sparcv9
+ sparcel, // Sparc: (endianness = little). NB: 'Sparcle' is a CPU variant
+ systemz, // SystemZ: s390x
+ tce, // TCE (http://tce.cs.tut.fi/): tce
+ // FIXME: thumb/thumbeb will be merged into arm/armeb soon.
+ thumb, // Thumb (little endian): thumb, thumbv.*
+ thumbeb, // Thumb (big endian): thumbeb
+ x86, // X86: i[3-9]86
+ x86_64, // X86-64: amd64, x86_64
+ xcore, // XCore: xcore
+ nvptx, // NVPTX: 32-bit
+ nvptx64, // NVPTX: 64-bit
+ le32, // le32: generic little-endian 32-bit CPU (PNaCl / Emscripten)
+ le64, // le64: generic little-endian 64-bit CPU (PNaCl / Emscripten)
+ amdil, // AMDIL
+ amdil64, // AMDIL with 64-bit pointers
+ hsail, // AMD HSAIL
+ hsail64, // AMD HSAIL with 64-bit pointers
+ spir, // SPIR: standard portable IR for OpenCL 32-bit version
+ spir64, // SPIR: standard portable IR for OpenCL 64-bit version
+ kalimba, // Kalimba: generic kalimba
+ shave, // SHAVE: Movidius vector VLIW processors
+ wasm32, // WebAssembly with 32-bit pointers
+ wasm64, // WebAssembly with 64-bit pointers
+ LastArchType = wasm64
+ };
+
+ enum SubArchType {
+ NoSubArch,
+
+ ARMSubArch_v8_1a,
+ ARMSubArch_v8,
+ ARMSubArch_v7,
+ ARMSubArch_v7em,
+ ARMSubArch_v7m,
+ ARMSubArch_v7s,
+ ARMSubArch_v6,
+ ARMSubArch_v6m,
+ ARMSubArch_v6k,
+ ARMSubArch_v6t2,
+ ARMSubArch_v5,
+ ARMSubArch_v5te,
+ ARMSubArch_v4t,
+
+ KalimbaSubArch_v3,
+ KalimbaSubArch_v4,
+ KalimbaSubArch_v5
+ };
+
+ enum VendorType {
+ UnknownVendor,
+
+ Apple,
+ PC,
+ SCEI,
+ BGP,
+ BGQ,
+ Freescale,
+ IBM,
+ ImaginationTechnologies,
+ MipsTechnologies,
+ NVIDIA,
+ CSR,
+ Myriad,
+ LastVendorType = Myriad
+ };
+
+ enum OSType {
+ UnknownOS,
+
+ CloudABI,
+ Darwin,
+ DragonFly,
+ FreeBSD,
+ IOS,
+ KFreeBSD,
+ Linux,
+ Lv2, // PS3
+ MacOSX,
+ NetBSD,
+ OpenBSD,
+ Solaris,
+ Win32,
+ Haiku,
+ Minix,
+ RTEMS,
+ NaCl, // Native Client
+ CNK, // BG/P Compute-Node Kernel
+ Bitrig,
+ AIX,
+ CUDA, // NVIDIA CUDA
+ NVCL, // NVIDIA OpenCL
+ AMDHSA, // AMD HSA Runtime
+ PS4,
+ LastOSType = PS4
+ };
+
+ enum EnvironmentType {
+ UnknownEnvironment,
+
+ GNU,
+ GNUEABI,
+ GNUEABIHF,
+ GNUX32,
+ CODE16,
+ EABI,
+ EABIHF,
+ Android,
+
+ MSVC,
+ Itanium,
+ Cygnus,
+ AMDOpenCL,
+ CoreCLR,
+ LastEnvironmentType = CoreCLR
+ };
+
+ enum ObjectFormatType {
+ UnknownObjectFormat,
+
+ COFF,
+ ELF,
+ MachO,
+ };
+
+public:
+ /// @name Constructors
+ /// @{
+
+ /// Default constructor leaves all fields unknown.
+ TargetTuple() : GnuTT() {}
+
+ /// Convert a GNU Triple to a TargetTuple.
+ ///
+ /// This conversion assumes that GNU Triple's have a specific defined meaning
+ /// which isn't strictly true. A single Triple can potentially have multiple
+ /// contradictory meanings depending on compiler options and configure-time
+ /// options. Despite this, Triple's do tend to have a 'usual' meaning, or
+ /// rather a default behaviour and this function selects it.
+ ///
+ /// When tool options affect the desired TargetTuple, the tool should obtain
+ /// the usual meaning of the GNU Triple using this constructor and then use
+ /// the mutator methods to apply the tool options.
+ explicit TargetTuple(const Triple &GnuTT) : GnuTT(GnuTT) {}
+
+ /// @}
+ /// @name Typed Component Access
+ /// @{
+
+ /// Get the parsed architecture type of this triple.
+ ArchType getArch() const;
+
+ /// get the parsed subarchitecture type for this triple.
+ SubArchType getSubArch() const;
+
+ /// Get the parsed vendor type of this triple.
+ VendorType getVendor() const;
+
+ /// Get the parsed operating system type of this triple.
+ OSType getOS() const;
+
+ /// Does this triple have the optional environment
+ /// (fourth) component?
+ bool hasEnvironment() const { return GnuTT.hasEnvironment(); }
+
+ /// Get the parsed environment type of this triple.
+ EnvironmentType getEnvironment() const;
+
+ /// Parse the version number from the OS name component of the
+ /// triple, if present.
+ ///
+ /// For example, "fooos1.2.3" would return (1, 2, 3).
+ ///
+ /// If an entry is not defined, it will be returned as 0.
+ void getEnvironmentVersion(unsigned &Major, unsigned &Minor,
+ unsigned &Micro) const;
+
+ /// Get the object format for this triple.
+ ObjectFormatType getObjectFormat() const;
+
+ /// Parse the version number from the OS name component of the
+ /// triple, if present.
+ ///
+ /// For example, "fooos1.2.3" would return (1, 2, 3).
+ ///
+ /// If an entry is not defined, it will be returned as 0.
+ void getOSVersion(unsigned &Major, unsigned &Minor, unsigned &Micro) const {
+ return GnuTT.getOSVersion(Major, Minor, Micro);
+ }
+
+ /// Return just the major version number, this is
+ /// specialized because it is a common query.
+ unsigned getOSMajorVersion() const { return GnuTT.getOSMajorVersion(); }
+
+ /// Parse the version number as with getOSVersion and then
+ /// translate generic "darwin" versions to the corresponding OS X versions.
+ /// This may also be called with IOS triples but the OS X version number is
+ /// just set to a constant 10.4.0 in that case. Returns true if successful.
+ bool getMacOSXVersion(unsigned &Major, unsigned &Minor,
+ unsigned &Micro) const {
+ return GnuTT.getMacOSXVersion(Major, Minor, Micro);
+ }
+
+ /// Parse the version number as with getOSVersion. This
+ /// should
+ /// only be called with IOS triples.
+ void getiOSVersion(unsigned &Major, unsigned &Minor, unsigned &Micro) const {
+ return GnuTT.getiOSVersion(Major, Minor, Micro);
+ }
+
+ /// @}
+ /// @name Direct Component Access
+ /// @{
+
+ const std::string &str() const { return GnuTT.str(); }
+
+ const std::string &getTriple() const { return GnuTT.str(); }
+
+ /// Get the architecture (first) component of the
+ /// triple.
+ StringRef getArchName() const { return GnuTT.getArchName(); }
+
+ /// Get the vendor (second) component of the triple.
+ StringRef getVendorName() const { return GnuTT.getVendorName(); }
+
+ /// Get the operating system (third) component of the
+ /// triple.
+ StringRef getOSName() const { return GnuTT.getOSName(); }
+
+ /// Get the optional environment (fourth)
+ /// component of the triple, or "" if empty.
+ StringRef getEnvironmentName() const { return GnuTT.getEnvironmentName(); }
+
+ /// Get the operating system and optional
+ /// environment components as a single string (separated by a '-'
+ /// if the environment component is present).
+ StringRef getOSAndEnvironmentName() const {
+ return GnuTT.getOSAndEnvironmentName();
+ }
+
+ /// @}
+ /// @name Convenience Predicates
+ /// @{
+
+ /// Test whether the architecture is 64-bit
+ ///
+ /// Note that this tests for 64-bit pointer width, and nothing else. Note
+ /// that we intentionally expose only three predicates, 64-bit, 32-bit, and
+ /// 16-bit. The inner details of pointer width for particular architectures
+ /// is not summed up in the triple, and so only a coarse grained predicate
+ /// system is provided.
+ bool isArch64Bit() const { return GnuTT.isArch64Bit(); }
+
+ /// Test whether the architecture is 32-bit
+ ///
+ /// Note that this tests for 32-bit pointer width, and nothing else.
+ bool isArch32Bit() const { return GnuTT.isArch32Bit(); }
+
+ /// Test whether the architecture is 16-bit
+ ///
+ /// Note that this tests for 16-bit pointer width, and nothing else.
+ bool isArch16Bit() const { return GnuTT.isArch16Bit(); }
+
+ /// Helper function for doing comparisons against version
+ /// numbers included in the target triple.
+ bool isOSVersionLT(unsigned Major, unsigned Minor = 0,
+ unsigned Micro = 0) const {
+ return GnuTT.isOSVersionLT(Major, Minor, Micro);
+ }
+
+ bool isOSVersionLT(const Triple &Other) const {
+ return GnuTT.isOSVersionLT(Other);
+ }
+
+ /// Comparison function for checking OS X version
+ /// compatibility, which handles supporting skewed version numbering schemes
+ /// used by the "darwin" triples.
+ unsigned isMacOSXVersionLT(unsigned Major, unsigned Minor = 0,
+ unsigned Micro = 0) const {
+ return GnuTT.isMacOSXVersionLT(Major, Minor, Micro);
+ }
+
+ /// Is this a Mac OS X triple. For legacy reasons, we support both
+ /// "darwin" and "osx" as OS X triples.
+ bool isMacOSX() const { return GnuTT.isMacOSX(); }
+
+ /// Is this an iOS triple.
+ bool isiOS() const { return GnuTT.isiOS(); }
+
+ /// Is this a "Darwin" OS (OS X or iOS).
+ bool isOSDarwin() const { return GnuTT.isOSDarwin(); }
+
+ bool isOSNetBSD() const { return GnuTT.isOSNetBSD(); }
+
+ bool isOSOpenBSD() const { return GnuTT.isOSOpenBSD(); }
+
+ bool isOSFreeBSD() const { return GnuTT.isOSFreeBSD(); }
+
+ bool isOSDragonFly() const { return GnuTT.isOSDragonFly(); }
+
+ bool isOSSolaris() const { return GnuTT.isOSSolaris(); }
+
+ bool isOSBitrig() const { return GnuTT.isOSBitrig(); }
+
+ bool isWindowsMSVCEnvironment() const {
+ return GnuTT.isWindowsMSVCEnvironment();
+ }
+
+ bool isKnownWindowsMSVCEnvironment() const {
+ return GnuTT.isKnownWindowsMSVCEnvironment();
+ }
+
+ bool isWindowsCoreCLREnvironment() const {
+ return GnuTT.isWindowsCoreCLREnvironment();
+ }
+
+ bool isWindowsItaniumEnvironment() const {
+ return GnuTT.isWindowsItaniumEnvironment();
+ }
+
+ bool isWindowsCygwinEnvironment() const {
+ return GnuTT.isWindowsCygwinEnvironment();
+ }
+
+ bool isWindowsGNUEnvironment() const {
+ return GnuTT.isWindowsGNUEnvironment();
+ }
+
+ /// Tests for either Cygwin or MinGW OS
+ bool isOSCygMing() const { return GnuTT.isOSCygMing(); }
+
+ /// Is this a "Windows" OS targeting a "MSVCRT.dll" environment.
+ bool isOSMSVCRT() const { return GnuTT.isOSMSVCRT(); }
+
+ /// Tests whether the OS is Windows.
+ bool isOSWindows() const { return GnuTT.isOSWindows(); }
+
+ /// Tests whether the OS is NaCl (Native Client)
+ bool isOSNaCl() const { return GnuTT.isOSNaCl(); }
+
+ /// Tests whether the OS is Linux.
+ bool isOSLinux() const { return GnuTT.isOSLinux(); }
+
+ /// Tests whether the OS uses the ELF binary format.
+ bool isOSBinFormatELF() const { return GnuTT.isOSBinFormatELF(); }
+
+ /// Tests whether the OS uses the COFF binary format.
+ bool isOSBinFormatCOFF() const { return GnuTT.isOSBinFormatCOFF(); }
+
+ /// Tests whether the environment is MachO.
+ bool isOSBinFormatMachO() const { return GnuTT.isOSBinFormatMachO(); }
+
+ /// Tests whether the target is the PS4 CPU
+ bool isPS4CPU() const { return GnuTT.isPS4CPU(); }
+
+ /// Tests whether the target is the PS4 platform
+ bool isPS4() const { return GnuTT.isPS4(); }
+
+ /// @}
+
+ // FIXME: Remove. This function exists to avoid having to migrate everything
+ // at once.
+ const Triple &getTargetTriple() const { return GnuTT; }
+
+private:
+ Triple GnuTT;
+};
+
+} // End llvm namespace
+
+#endif
#ifndef LLVM_MC_MCELFOBJECTWRITER_H
#define LLVM_MC_MCELFOBJECTWRITER_H
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/ELF.h"
#include <vector>
bool IsN64=false);
public:
- static uint8_t getOSABI(Triple::OSType OSType) {
+ static uint8_t getOSABI(TargetTuple::OSType OSType) {
switch (OSType) {
- case Triple::CloudABI:
- return ELF::ELFOSABI_CLOUDABI;
- case Triple::PS4:
- case Triple::FreeBSD:
- return ELF::ELFOSABI_FREEBSD;
- case Triple::Linux:
- return ELF::ELFOSABI_LINUX;
- default:
- return ELF::ELFOSABI_NONE;
+ case TargetTuple::CloudABI:
+ return ELF::ELFOSABI_CLOUDABI;
+ case TargetTuple::PS4:
+ case TargetTuple::FreeBSD:
+ return ELF::ELFOSABI_FREEBSD;
+ case TargetTuple::Linux:
+ return ELF::ELFOSABI_LINUX;
+ default:
+ return ELF::ELFOSABI_NONE;
}
}
#ifndef LLVM_MC_MCSUBTARGETINFO_H
#define LLVM_MC_MCSUBTARGETINFO_H
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/SubtargetFeature.h"
#include <string>
/// MCSubtargetInfo - Generic base class for all target subtargets.
///
class MCSubtargetInfo {
- Triple TargetTriple; // Target triple
- std::string CPU; // CPU being targeted.
+ TargetTuple TheTargetTuple; // Target triple
+ std::string CPU; // CPU being targeted.
ArrayRef<SubtargetFeatureKV> ProcFeatures; // Processor feature list
- ArrayRef<SubtargetFeatureKV> ProcDesc; // Processor descriptions
+ ArrayRef<SubtargetFeatureKV> ProcDesc; // Processor descriptions
// Scheduler machine model
const SubtargetInfoKV *ProcSchedModels;
public:
MCSubtargetInfo(const MCSubtargetInfo &) = default;
- MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS,
+ MCSubtargetInfo(const TargetTuple &TT, StringRef CPU, StringRef FS,
ArrayRef<SubtargetFeatureKV> PF,
ArrayRef<SubtargetFeatureKV> PD,
const SubtargetInfoKV *ProcSched,
const MCReadAdvanceEntry *RA, const InstrStage *IS,
const unsigned *OC, const unsigned *FP);
- /// getTargetTriple - Return the target triple string.
- const Triple &getTargetTriple() const { return TargetTriple; }
+ /// getTargetTuple - Return the target triple string.
+ const TargetTuple &getTargetTuple() const { return TheTargetTuple; }
/// getCPU - Return the CPU string.
StringRef getCPU() const {
#include "llvm-c/Disassembler.h"
#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/FormattedStream.h"
#include <cassert>
bool RelaxAll, bool DWARFMustBeAtTheEnd,
bool LabelSections = false);
-MCRelocationInfo *createMCRelocationInfo(const Triple &TT, MCContext &Ctx);
+MCRelocationInfo *createMCRelocationInfo(const TargetTuple &TT, MCContext &Ctx);
-MCSymbolizer *createMCSymbolizer(const Triple &TT, LLVMOpInfoCallback GetOpInfo,
+MCSymbolizer *createMCSymbolizer(const TargetTuple &TT,
+ LLVMOpInfoCallback GetOpInfo,
LLVMSymbolLookupCallback SymbolLookUp,
void *DisInfo, MCContext *Ctx,
std::unique_ptr<MCRelocationInfo> &&RelInfo);
typedef bool (*ArchMatchFnTy)(Triple::ArchType Arch);
typedef MCAsmInfo *(*MCAsmInfoCtorFnTy)(const MCRegisterInfo &MRI,
- const Triple &TT);
- typedef MCCodeGenInfo *(*MCCodeGenInfoCtorFnTy)(const Triple &TT,
+ const TargetTuple &TT);
+ typedef MCCodeGenInfo *(*MCCodeGenInfoCtorFnTy)(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL);
typedef MCInstrInfo *(*MCInstrInfoCtorFnTy)(void);
typedef MCInstrAnalysis *(*MCInstrAnalysisCtorFnTy)(const MCInstrInfo *Info);
- typedef MCRegisterInfo *(*MCRegInfoCtorFnTy)(const Triple &TT);
- typedef MCSubtargetInfo *(*MCSubtargetInfoCtorFnTy)(const Triple &TT,
+ typedef MCRegisterInfo *(*MCRegInfoCtorFnTy)(const TargetTuple &TT);
+ // FIXME: CPU and Features should be merged into TargetTuple when possible.
+ typedef MCSubtargetInfo *(*MCSubtargetInfoCtorFnTy)(const TargetTuple &TT,
StringRef CPU,
StringRef Features);
+ // FIXME: CPU and Features should be merged into TargetTuple when possible.
typedef TargetMachine *(*TargetMachineCtorTy)(
- const Target &T, const Triple &TT, StringRef CPU, StringRef Features,
+ const Target &T, const TargetTuple &TT, StringRef CPU, StringRef Features,
const TargetOptions &Options, Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL);
// If it weren't for layering issues (this header is in llvm/Support, but
// reference.
typedef AsmPrinter *(*AsmPrinterCtorTy)(
TargetMachine &TM, std::unique_ptr<MCStreamer> &&Streamer);
+ // FIXME: CPU and Features should be merged into TargetTuple when possible.
typedef MCAsmBackend *(*MCAsmBackendCtorTy)(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT,
+ StringRef CPU);
typedef MCTargetAsmParser *(*MCAsmParserCtorTy)(
MCSubtargetInfo &STI, MCAsmParser &P, const MCInstrInfo &MII,
const MCTargetOptions &Options);
typedef MCDisassembler *(*MCDisassemblerCtorTy)(const Target &T,
const MCSubtargetInfo &STI,
MCContext &Ctx);
- typedef MCInstPrinter *(*MCInstPrinterCtorTy)(const Triple &T,
+ typedef MCInstPrinter *(*MCInstPrinterCtorTy)(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
typedef MCCodeEmitter *(*MCCodeEmitterCtorTy)(const MCInstrInfo &II,
const MCRegisterInfo &MRI,
MCContext &Ctx);
- typedef MCStreamer *(*ELFStreamerCtorTy)(const Triple &T, MCContext &Ctx,
+ typedef MCStreamer *(*ELFStreamerCtorTy)(const TargetTuple &T, MCContext &Ctx,
MCAsmBackend &TAB,
raw_pwrite_stream &OS,
MCCodeEmitter *Emitter,
bool IsVerboseAsm);
typedef MCTargetStreamer *(*ObjectTargetStreamerCtorTy)(
MCStreamer &S, const MCSubtargetInfo &STI);
- typedef MCRelocationInfo *(*MCRelocationInfoCtorTy)(const Triple &TT,
+ typedef MCRelocationInfo *(*MCRelocationInfoCtorTy)(const TargetTuple &TT,
MCContext &Ctx);
typedef MCSymbolizer *(*MCSymbolizerCtorTy)(
- const Triple &TT, LLVMOpInfoCallback GetOpInfo,
+ const TargetTuple &TT, LLVMOpInfoCallback GetOpInfo,
LLVMSymbolLookupCallback SymbolLookUp, void *DisInfo, MCContext *Ctx,
std::unique_ptr<MCRelocationInfo> &&RelInfo);
/// createMCAsmInfo - Create a MCAsmInfo implementation for the specified
/// target triple.
///
- /// \param TheTriple This argument is used to determine the target machine
+ /// \param TT This argument is used to determine the target machine
/// feature set; it should always be provided. Generally this should be
/// either the target triple from the module, or the target triple of the
/// host if that does not exist.
- MCAsmInfo *createMCAsmInfo(const MCRegisterInfo &MRI,
- StringRef TheTriple) const {
+ MCAsmInfo *createMCAsmInfo(const MCRegisterInfo &MRI, StringRef TT) const {
if (!MCAsmInfoCtorFn)
return nullptr;
- return MCAsmInfoCtorFn(MRI, Triple(TheTriple));
+ return MCAsmInfoCtorFn(MRI, TargetTuple(Triple(TT)));
}
/// createMCCodeGenInfo - Create a MCCodeGenInfo implementation.
CodeGenOpt::Level OL) const {
if (!MCCodeGenInfoCtorFn)
return nullptr;
- return MCCodeGenInfoCtorFn(Triple(TT), RM, CM, OL);
+ return MCCodeGenInfoCtorFn(TargetTuple(Triple(TT)), RM, CM, OL);
}
/// createMCInstrInfo - Create a MCInstrInfo implementation.
MCRegisterInfo *createMCRegInfo(StringRef TT) const {
if (!MCRegInfoCtorFn)
return nullptr;
- return MCRegInfoCtorFn(Triple(TT));
+ return MCRegInfoCtorFn(TargetTuple(Triple(TT)));
}
/// createMCSubtargetInfo - Create a MCSubtargetInfo implementation.
///
- /// \param TheTriple This argument is used to determine the target machine
+ /// \param TT This argument is used to determine the target machine
/// feature set; it should always be provided. Generally this should be
/// either the target triple from the module, or the target triple of the
/// host if that does not exist.
/// \param CPU This specifies the name of the target CPU.
/// \param Features This specifies the string representation of the
/// additional target features.
- MCSubtargetInfo *createMCSubtargetInfo(StringRef TheTriple, StringRef CPU,
+ MCSubtargetInfo *createMCSubtargetInfo(StringRef TT, StringRef CPU,
StringRef Features) const {
if (!MCSubtargetInfoCtorFn)
return nullptr;
- return MCSubtargetInfoCtorFn(Triple(TheTriple), CPU, Features);
+ return MCSubtargetInfoCtorFn(TargetTuple(Triple(TT)), CPU, Features);
}
/// createTargetMachine - Create a target specific machine implementation
- /// for the specified \p Triple.
+ /// for the specified \p TT.
///
/// \param TT This argument is used to determine the target machine
/// feature set; it should always be provided. Generally this should be
CodeGenOpt::Level OL = CodeGenOpt::Default) const {
if (!TargetMachineCtorFn)
return nullptr;
- return TargetMachineCtorFn(*this, Triple(TT), CPU, Features, Options, RM,
- CM, OL);
+ return TargetMachineCtorFn(*this, TargetTuple(Triple(TT)), CPU, Features,
+ Options, RM, CM, OL);
}
/// createMCAsmBackend - Create a target specific assembly parser.
///
- /// \param TheTriple The target triple string.
- MCAsmBackend *createMCAsmBackend(const MCRegisterInfo &MRI,
- StringRef TheTriple, StringRef CPU) const {
+ /// \param TT The target triple string.
+ MCAsmBackend *createMCAsmBackend(const MCRegisterInfo &MRI, StringRef TT,
+ StringRef CPU) const {
if (!MCAsmBackendCtorFn)
return nullptr;
- return MCAsmBackendCtorFn(*this, MRI, Triple(TheTriple), CPU);
+ return MCAsmBackendCtorFn(*this, MRI, TargetTuple(Triple(TT)), CPU);
}
/// createMCAsmParser - Create a target specific assembly parser.
return MCDisassemblerCtorFn(*this, STI, Ctx);
}
- MCInstPrinter *createMCInstPrinter(const Triple &T, unsigned SyntaxVariant,
+ MCInstPrinter *createMCInstPrinter(const TargetTuple &TT,
+ unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI) const {
if (!MCInstPrinterCtorFn)
return nullptr;
- return MCInstPrinterCtorFn(T, SyntaxVariant, MAI, MII, MRI);
+ return MCInstPrinterCtorFn(TT, SyntaxVariant, MAI, MII, MRI);
}
/// createMCCodeEmitter - Create a target specific code emitter.
/// Create a target specific MCStreamer.
///
- /// \param T The target triple.
+ /// \param TT The target triple.
/// \param Ctx The target context.
/// \param TAB The target assembler backend object. Takes ownership.
/// \param OS The stream object.
/// \param Emitter The target independent assembler object.Takes ownership.
/// \param RelaxAll Relax all fixups?
- MCStreamer *createMCObjectStreamer(const Triple &T, MCContext &Ctx,
+ MCStreamer *createMCObjectStreamer(const TargetTuple &TT, MCContext &Ctx,
MCAsmBackend &TAB, raw_pwrite_stream &OS,
MCCodeEmitter *Emitter,
const MCSubtargetInfo &STI, bool RelaxAll,
bool DWARFMustBeAtTheEnd) const {
MCStreamer *S;
- switch (T.getObjectFormat()) {
+ switch (TT.getObjectFormat()) {
default:
llvm_unreachable("Unknown object format");
- case Triple::COFF:
- assert(T.isOSWindows() && "only Windows COFF is supported");
+ case TargetTuple::COFF:
+ assert(TT.isOSWindows() && "only Windows COFF is supported");
S = COFFStreamerCtorFn(Ctx, TAB, OS, Emitter, RelaxAll);
break;
- case Triple::MachO:
+ case TargetTuple::MachO:
if (MachOStreamerCtorFn)
S = MachOStreamerCtorFn(Ctx, TAB, OS, Emitter, RelaxAll,
DWARFMustBeAtTheEnd);
S = createMachOStreamer(Ctx, TAB, OS, Emitter, RelaxAll,
DWARFMustBeAtTheEnd);
break;
- case Triple::ELF:
+ case TargetTuple::ELF:
if (ELFStreamerCtorFn)
- S = ELFStreamerCtorFn(T, Ctx, TAB, OS, Emitter, RelaxAll);
+ S = ELFStreamerCtorFn(TT, Ctx, TAB, OS, Emitter, RelaxAll);
else
S = createELFStreamer(Ctx, TAB, OS, Emitter, RelaxAll);
break;
MCRelocationInfoCtorTy Fn = MCRelocationInfoCtorFn
? MCRelocationInfoCtorFn
: llvm::createMCRelocationInfo;
- return Fn(Triple(TT), Ctx);
+ return Fn(TargetTuple(Triple(TT)), Ctx);
}
/// createMCSymbolizer - Create a target specific MCSymbolizer.
std::unique_ptr<MCRelocationInfo> &&RelInfo) const {
MCSymbolizerCtorTy Fn =
MCSymbolizerCtorFn ? MCSymbolizerCtorFn : llvm::createMCSymbolizer;
- return Fn(Triple(TT), GetOpInfo, SymbolLookUp, DisInfo, Ctx,
+ return Fn(TargetTuple(Triple(TT)), GetOpInfo, SymbolLookUp, DisInfo, Ctx,
std::move(RelInfo));
}
/// lookupTarget - Lookup a target based on a target triple.
///
- /// \param Triple - The triple to use for finding a target.
+ /// \param TT - The triple to use for finding a target.
/// \param Error - On failure, an error string describing why no target was
/// found.
- static const Target *lookupTarget(const std::string &Triple,
- std::string &Error);
+ static const Target *lookupTarget(const std::string &TT, std::string &Error);
/// lookupTarget - Lookup a target based on an architecture name
/// and a target triple. If the architecture name is non-empty,
/// triple is used.
///
/// \param ArchName - The architecture to use for finding a target.
- /// \param TheTriple - The triple to use for finding a target. The
+ /// \param TT - The triple to use for finding a target. The
/// triple is updated with canonical architecture name if a lookup
/// by architecture is done.
/// \param Error - On failure, an error string describing why no target was
/// found.
- static const Target *lookupTarget(const std::string &ArchName,
- Triple &TheTriple, std::string &Error);
+ static const Target *lookupTarget(const std::string &ArchName, Triple &TT,
+ std::string &Error);
/// @}
/// @name Target Registration
private:
static MCAsmInfo *Allocator(const MCRegisterInfo & /*MRI*/,
- const Triple &TT) {
- return new MCAsmInfoImpl(TT);
+ const TargetTuple &TT) {
+ return new MCAsmInfoImpl(TargetTuple(TT));
}
};
}
private:
- static MCCodeGenInfo *Allocator(const Triple & /*TT*/, Reloc::Model /*RM*/,
- CodeModel::Model /*CM*/,
+ static MCCodeGenInfo *Allocator(const TargetTuple & /*TT*/,
+ Reloc::Model /*RM*/, CodeModel::Model /*CM*/,
CodeGenOpt::Level /*OL*/) {
return new MCCodeGenInfoImpl();
}
}
private:
- static MCRegisterInfo *Allocator(const Triple & /*TT*/) {
+ static MCRegisterInfo *Allocator(const TargetTuple & /*TT*/) {
return new MCRegisterInfoImpl();
}
};
}
private:
- static MCSubtargetInfo *Allocator(const Triple & /*TT*/, StringRef /*CPU*/,
- StringRef /*FS*/) {
+ static MCSubtargetInfo *Allocator(const TargetTuple & /*TT*/,
+ StringRef /*CPU*/, StringRef /*FS*/) {
return new MCSubtargetInfoImpl();
}
};
}
private:
- static TargetMachine *Allocator(const Target &T, const Triple &TT,
+ static TargetMachine *Allocator(const Target &T, const TargetTuple &TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options, Reloc::Model RM,
CodeModel::Model CM, CodeGenOpt::Level OL) {
- return new TargetMachineImpl(T, TT, CPU, FS, Options, RM, CM, OL);
+ return new TargetMachineImpl(T, TT.getTargetTriple(), CPU, FS, Options, RM,
+ CM, OL);
}
};
private:
static MCAsmBackend *Allocator(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TheTriple, StringRef CPU) {
- return new MCAsmBackendImpl(T, MRI, TheTriple, CPU);
+ const TargetTuple &TT, StringRef CPU) {
+ return new MCAsmBackendImpl(T, MRI, TT, CPU);
}
};
#define LLVM_TARGET_TARGETMACHINE_H
#include "llvm/ADT/StringRef.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/ADT/Triple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Pass.h"
const Target &getTarget() const { return TheTarget; }
const Triple &getTargetTriple() const { return TargetTriple; }
+ // FIXME: Return a reference once we store a TargetTuple
+ const TargetTuple getTargetTuple() const { return TargetTuple(TargetTriple); }
StringRef getTargetCPU() const { return TargetCPU; }
StringRef getTargetFeatureString() const { return TargetFS; }
TargetSubtargetInfo() = delete;
protected: // Can only create subclasses...
- TargetSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS,
+ TargetSubtargetInfo(const TargetTuple &TT, StringRef CPU, StringRef FS,
ArrayRef<SubtargetFeatureKV> PF,
ArrayRef<SubtargetFeatureKV> PD,
const SubtargetInfoKV *ProcSched,
switch (FileType) {
case CGFT_AssemblyFile: {
MCInstPrinter *InstPrinter = getTarget().createMCInstPrinter(
- getTargetTriple(), MAI.getAssemblerDialect(), MAI, MII, MRI);
+ getTargetTuple(), MAI.getAssemblerDialect(), MAI, MII, MRI);
// Create a code emitter if asked to show the encoding.
MCCodeEmitter *MCE = nullptr;
// Don't waste memory on names of temp labels.
Context->setUseNamesOnTempLabels(false);
- Triple T(getTargetTriple().str());
+ TargetTuple T(Triple(getTargetTriple().str()));
AsmStreamer.reset(getTarget().createMCObjectStreamer(
T, *Context, *MAB, Out, MCE, STI, Options.MCOptions.MCRelaxAll,
/*DWARFMustBeAtTheEnd*/ true));
if (!MCE || !MAB)
return true;
- const Triple &T = getTargetTriple();
+ const TargetTuple &TT = getTargetTuple();
const MCSubtargetInfo &STI = *getMCSubtargetInfo();
std::unique_ptr<MCStreamer> AsmStreamer(getTarget().createMCObjectStreamer(
- T, *Ctx, *MAB, Out, MCE, STI, Options.MCOptions.MCRelaxAll,
+ TT, *Ctx, *MAB, Out, MCE, STI, Options.MCOptions.MCRelaxAll,
/*DWARFMustBeAtTheEnd*/ true));
// Create the AsmPrinter, which takes ownership of AsmStreamer if successful.
// Set up the instruction printer.
int AsmPrinterVariant = MAI->getAssemblerDialect();
MCInstPrinter *IP = TheTarget->createMCInstPrinter(
- Triple(TT), AsmPrinterVariant, *MAI, *MII, *MRI);
+ TargetTuple(Triple(TT)), AsmPrinterVariant, *MAI, *MII, *MRI);
if (!IP)
return nullptr;
int AsmPrinterVariant = MAI->getAssemblerDialect();
AsmPrinterVariant = AsmPrinterVariant == 0 ? 1 : 0;
MCInstPrinter *IP = DC->getTarget()->createMCInstPrinter(
- Triple(DC->getTripleName()), AsmPrinterVariant, *MAI, *MII, *MRI);
+ TargetTuple(Triple(DC->getTripleName())), AsmPrinterVariant, *MAI,
+ *MII, *MRI);
if (IP) {
DC->setIP(IP);
DC->addOptions(LLVMDisassembler_Option_AsmPrinterVariant);
using namespace llvm;
namespace llvm {
-class Triple;
+class TargetTuple;
}
// This function tries to add a symbolic operand in place of the immediate
}
namespace llvm {
-MCSymbolizer *createMCSymbolizer(const Triple &TT, LLVMOpInfoCallback GetOpInfo,
+MCSymbolizer *createMCSymbolizer(const TargetTuple &TT,
+ LLVMOpInfoCallback GetOpInfo,
LLVMSymbolLookupCallback SymbolLookUp,
void *DisInfo, MCContext *Ctx,
std::unique_ptr<MCRelocationInfo> &&RelInfo) {
return SubExpr;
}
-MCRelocationInfo *llvm::createMCRelocationInfo(const Triple &TT,
+MCRelocationInfo *llvm::createMCRelocationInfo(const TargetTuple &TT,
MCContext &Ctx) {
return new MCRelocationInfo(Ctx);
}
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/ADT/StringRef.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCInstrItineraries.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Support/raw_ostream.h"
}
MCSubtargetInfo::MCSubtargetInfo(
- const Triple &TT, StringRef C, StringRef FS,
+ const TargetTuple &TT, StringRef C, StringRef FS,
ArrayRef<SubtargetFeatureKV> PF, ArrayRef<SubtargetFeatureKV> PD,
const SubtargetInfoKV *ProcSched, const MCWriteProcResEntry *WPR,
const MCWriteLatencyEntry *WL, const MCReadAdvanceEntry *RA,
const InstrStage *IS, const unsigned *OC, const unsigned *FP)
- : TargetTriple(TT), CPU(C), ProcFeatures(PF), ProcDesc(PD),
+ : TheTargetTuple(TT), CPU(C), ProcFeatures(PF), ProcDesc(PD),
ProcSchedModels(ProcSched), WriteProcResTable(WPR), WriteLatencyTable(WL),
ReadAdvanceTable(RA), Stages(IS), OperandCycles(OC), ForwardingPaths(FP) {
InitMCProcessorInfo(CPU, FS);
StringRef.cpp
SystemUtils.cpp
TargetParser.cpp
+ TargetTuple.cpp
Timer.cpp
ToolOutputFile.cpp
Triple.cpp
--- /dev/null
+//===--- TargetTuple.cpp - Target tuple class -----------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+
+#include "llvm/ADT/StringSwitch.h"
+#include "llvm/ADT/TargetTuple.h"
+#include "llvm/Support/TargetParser.h"
+
+using namespace llvm;
+
+// FIXME: These should be removed as soon as the Triple member is replaced.
+static TargetTuple::ArchType
+convertTripleArchToTupleArch(Triple::ArchType Arch) {
+ switch (Arch) {
+ case Triple::UnknownArch:
+ return TargetTuple::UnknownArch;
+ case Triple::arm:
+ return TargetTuple::arm;
+ case Triple::armeb:
+ return TargetTuple::armeb;
+ case Triple::aarch64:
+ return TargetTuple::aarch64;
+ case Triple::aarch64_be:
+ return TargetTuple::aarch64_be;
+ case Triple::bpfel:
+ return TargetTuple::bpfel;
+ case Triple::bpfeb:
+ return TargetTuple::bpfeb;
+ case Triple::hexagon:
+ return TargetTuple::hexagon;
+ case Triple::mips:
+ return TargetTuple::mips;
+ case Triple::mipsel:
+ return TargetTuple::mipsel;
+ case Triple::mips64:
+ return TargetTuple::mips64;
+ case Triple::mips64el:
+ return TargetTuple::mips64el;
+ case Triple::msp430:
+ return TargetTuple::msp430;
+ case Triple::ppc:
+ return TargetTuple::ppc;
+ case Triple::ppc64:
+ return TargetTuple::ppc64;
+ case Triple::ppc64le:
+ return TargetTuple::ppc64le;
+ case Triple::r600:
+ return TargetTuple::r600;
+ case Triple::amdgcn:
+ return TargetTuple::amdgcn;
+ case Triple::sparc:
+ return TargetTuple::sparc;
+ case Triple::sparcv9:
+ return TargetTuple::sparcv9;
+ case Triple::sparcel:
+ return TargetTuple::sparcel;
+ case Triple::systemz:
+ return TargetTuple::systemz;
+ case Triple::tce:
+ return TargetTuple::tce;
+ case Triple::thumb:
+ return TargetTuple::thumb;
+ case Triple::thumbeb:
+ return TargetTuple::thumbeb;
+ case Triple::x86:
+ return TargetTuple::x86;
+ case Triple::x86_64:
+ return TargetTuple::x86_64;
+ case Triple::xcore:
+ return TargetTuple::xcore;
+ case Triple::nvptx:
+ return TargetTuple::nvptx;
+ case Triple::nvptx64:
+ return TargetTuple::nvptx64;
+ case Triple::le32:
+ return TargetTuple::le32;
+ case Triple::le64:
+ return TargetTuple::le64;
+ case Triple::amdil:
+ return TargetTuple::amdil;
+ case Triple::amdil64:
+ return TargetTuple::amdil64;
+ case Triple::hsail:
+ return TargetTuple::hsail;
+ case Triple::hsail64:
+ return TargetTuple::hsail64;
+ case Triple::spir:
+ return TargetTuple::spir;
+ case Triple::spir64:
+ return TargetTuple::spir64;
+ case Triple::kalimba:
+ return TargetTuple::kalimba;
+ case Triple::shave:
+ return TargetTuple::shave;
+ case Triple::wasm32:
+ return TargetTuple::wasm32;
+ case Triple::wasm64:
+ return TargetTuple::wasm64;
+ }
+ llvm_unreachable("Unmapped architecture.");
+}
+
+// FIXME: These should be removed as soon as the Triple member is replaced.
+static TargetTuple::SubArchType
+convertTripleSubArchToTupleSubArch(Triple::SubArchType SubArch) {
+ switch (SubArch) {
+ case Triple::NoSubArch:
+ return TargetTuple::NoSubArch;
+ case Triple::ARMSubArch_v8_1a:
+ return TargetTuple::ARMSubArch_v8_1a;
+ case Triple::ARMSubArch_v8:
+ return TargetTuple::ARMSubArch_v8;
+ case Triple::ARMSubArch_v7:
+ return TargetTuple::ARMSubArch_v7;
+ case Triple::ARMSubArch_v7em:
+ return TargetTuple::ARMSubArch_v7em;
+ case Triple::ARMSubArch_v7m:
+ return TargetTuple::ARMSubArch_v7m;
+ case Triple::ARMSubArch_v7s:
+ return TargetTuple::ARMSubArch_v7s;
+ case Triple::ARMSubArch_v6:
+ return TargetTuple::ARMSubArch_v6;
+ case Triple::ARMSubArch_v6m:
+ return TargetTuple::ARMSubArch_v6m;
+ case Triple::ARMSubArch_v6k:
+ return TargetTuple::ARMSubArch_v6k;
+ case Triple::ARMSubArch_v6t2:
+ return TargetTuple::ARMSubArch_v6t2;
+ case Triple::ARMSubArch_v5:
+ return TargetTuple::ARMSubArch_v5;
+ case Triple::ARMSubArch_v5te:
+ return TargetTuple::ARMSubArch_v5te;
+ case Triple::ARMSubArch_v4t:
+ return TargetTuple::ARMSubArch_v4t;
+ case Triple::KalimbaSubArch_v3:
+ return TargetTuple::KalimbaSubArch_v3;
+ case Triple::KalimbaSubArch_v4:
+ return TargetTuple::KalimbaSubArch_v4;
+ case Triple::KalimbaSubArch_v5:
+ return TargetTuple::KalimbaSubArch_v5;
+ }
+ llvm_unreachable("Unmapped subarchitecture.");
+}
+
+// FIXME: These should be removed as soon as the Triple member is replaced.
+static TargetTuple::VendorType
+convertTripleVendorToTupleVendor(Triple::VendorType Vendor) {
+ switch (Vendor) {
+ case Triple::UnknownVendor:
+ return TargetTuple::UnknownVendor;
+ case Triple::Apple:
+ return TargetTuple::Apple;
+ case Triple::PC:
+ return TargetTuple::PC;
+ case Triple::SCEI:
+ return TargetTuple::SCEI;
+ case Triple::BGP:
+ return TargetTuple::BGP;
+ case Triple::BGQ:
+ return TargetTuple::BGQ;
+ case Triple::Freescale:
+ return TargetTuple::Freescale;
+ case Triple::IBM:
+ return TargetTuple::IBM;
+ case Triple::ImaginationTechnologies:
+ return TargetTuple::ImaginationTechnologies;
+ case Triple::MipsTechnologies:
+ return TargetTuple::MipsTechnologies;
+ case Triple::NVIDIA:
+ return TargetTuple::NVIDIA;
+ case Triple::CSR:
+ return TargetTuple::CSR;
+ case Triple::Myriad:
+ return TargetTuple::Myriad;
+ }
+ llvm_unreachable("Unmapped vendor.");
+}
+
+// FIXME: These should be removed as soon as the Triple member is replaced.
+static TargetTuple::OSType convertTripleOSToTupleOS(Triple::OSType OS) {
+ switch (OS) {
+ case Triple::UnknownOS:
+ return TargetTuple::UnknownOS;
+ case Triple::CloudABI:
+ return TargetTuple::CloudABI;
+ case Triple::Darwin:
+ return TargetTuple::Darwin;
+ case Triple::DragonFly:
+ return TargetTuple::DragonFly;
+ case Triple::FreeBSD:
+ return TargetTuple::FreeBSD;
+ case Triple::IOS:
+ return TargetTuple::IOS;
+ case Triple::KFreeBSD:
+ return TargetTuple::KFreeBSD;
+ case Triple::Linux:
+ return TargetTuple::Linux;
+ case Triple::Lv2:
+ return TargetTuple::Lv2;
+ case Triple::MacOSX:
+ return TargetTuple::MacOSX;
+ case Triple::NetBSD:
+ return TargetTuple::NetBSD;
+ case Triple::OpenBSD:
+ return TargetTuple::OpenBSD;
+ case Triple::Solaris:
+ return TargetTuple::Solaris;
+ case Triple::Win32:
+ return TargetTuple::Win32;
+ case Triple::Haiku:
+ return TargetTuple::Haiku;
+ case Triple::Minix:
+ return TargetTuple::Minix;
+ case Triple::RTEMS:
+ return TargetTuple::RTEMS;
+ case Triple::NaCl:
+ return TargetTuple::NaCl;
+ case Triple::CNK:
+ return TargetTuple::CNK;
+ case Triple::Bitrig:
+ return TargetTuple::Bitrig;
+ case Triple::AIX:
+ return TargetTuple::AIX;
+ case Triple::CUDA:
+ return TargetTuple::CUDA;
+ case Triple::NVCL:
+ return TargetTuple::NVCL;
+ case Triple::AMDHSA:
+ return TargetTuple::AMDHSA;
+ case Triple::PS4:
+ return TargetTuple::PS4;
+ }
+ llvm_unreachable("Unmapped OS.");
+}
+
+// FIXME: These should be removed as soon as the Triple member is replaced.
+static TargetTuple::EnvironmentType
+convertTripleEnvToTupleEnv(Triple::EnvironmentType Env) {
+ switch (Env) {
+ case Triple::UnknownEnvironment:
+ return TargetTuple::UnknownEnvironment;
+ case Triple::GNU:
+ return TargetTuple::GNU;
+ case Triple::GNUEABI:
+ return TargetTuple::GNUEABI;
+ case Triple::GNUEABIHF:
+ return TargetTuple::GNUEABIHF;
+ case Triple::GNUX32:
+ return TargetTuple::GNUX32;
+ case Triple::CODE16:
+ return TargetTuple::CODE16;
+ case Triple::EABI:
+ return TargetTuple::EABI;
+ case Triple::EABIHF:
+ return TargetTuple::EABIHF;
+ case Triple::Android:
+ return TargetTuple::Android;
+ case Triple::MSVC:
+ return TargetTuple::MSVC;
+ case Triple::Itanium:
+ return TargetTuple::Itanium;
+ case Triple::Cygnus:
+ return TargetTuple::Cygnus;
+ case Triple::AMDOpenCL:
+ return TargetTuple::AMDOpenCL;
+ case Triple::CoreCLR:
+ return TargetTuple::CoreCLR;
+ }
+ llvm_unreachable("Unmapped Environment.");
+}
+
+// FIXME: These should be removed as soon as the Triple member is replaced.
+static TargetTuple::ObjectFormatType
+convertTripleObjFmtToTupleObjFmt(Triple::ObjectFormatType ObjFmt) {
+ switch (ObjFmt) {
+ case Triple::UnknownObjectFormat:
+ return TargetTuple::UnknownObjectFormat;
+ case Triple::COFF:
+ return TargetTuple::COFF;
+ case Triple::ELF:
+ return TargetTuple::ELF;
+ case Triple::MachO:
+ return TargetTuple::MachO;
+ }
+ llvm_unreachable("Unmapped Object Format.");
+}
+
+TargetTuple::ArchType TargetTuple::getArch() const {
+ return convertTripleArchToTupleArch(GnuTT.getArch());
+}
+
+TargetTuple::SubArchType TargetTuple::getSubArch() const {
+ return convertTripleSubArchToTupleSubArch(GnuTT.getSubArch());
+}
+
+TargetTuple::VendorType TargetTuple::getVendor() const {
+ return convertTripleVendorToTupleVendor(GnuTT.getVendor());
+}
+
+TargetTuple::OSType TargetTuple::getOS() const {
+ return convertTripleOSToTupleOS(GnuTT.getOS());
+}
+
+TargetTuple::EnvironmentType TargetTuple::getEnvironment() const {
+ return convertTripleEnvToTupleEnv(GnuTT.getEnvironment());
+}
+
+TargetTuple::ObjectFormatType TargetTuple::getObjectFormat() const {
+ return convertTripleObjFmtToTupleObjFmt(GnuTT.getObjectFormat());
+}
AArch64Subtarget::AArch64Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const TargetMachine &TM, bool LittleEndian)
- : AArch64GenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
+ : AArch64GenSubtargetInfo(TargetTuple(TT), CPU, FS), ARMProcFamily(Others),
HasV8_1aOps(false), HasFPARMv8(false), HasNEON(false), HasCrypto(false),
HasCRC(false), HasPerfMon(false), HasZeroCycleRegMove(false),
HasZeroCycleZeroing(false), StrictAlign(false), ReserveX18(false),
#include "AArch64InstrInfo.h"
#include "AArch64RegisterInfo.h"
#include "AArch64SelectionDAGInfo.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <string>
return &getInstrInfo()->getRegisterInfo();
}
const Triple &getTargetTriple() const { return TargetTriple; }
+ // FIXME: Return a references once our member is a TargetTuple.
+ const TargetTuple getTargetTuple() const { return TargetTuple(TargetTriple); }
bool enableMachineScheduler() const override { return true; }
bool enablePostRAScheduler() const override {
return isCortexA53() || isCortexA57();
return decodeInstruction(DecoderTable32, MI, Insn, Address, this, STI);
}
-static MCSymbolizer *
-createAArch64ExternalSymbolizer(const Triple &TT, LLVMOpInfoCallback GetOpInfo,
- LLVMSymbolLookupCallback SymbolLookUp,
- void *DisInfo, MCContext *Ctx,
- std::unique_ptr<MCRelocationInfo> &&RelInfo) {
+static MCSymbolizer *createAArch64ExternalSymbolizer(
+ const TargetTuple &TT, LLVMOpInfoCallback GetOpInfo,
+ LLVMSymbolLookupCallback SymbolLookUp, void *DisInfo, MCContext *Ctx,
+ std::unique_ptr<MCRelocationInfo> &&RelInfo) {
return new llvm::AArch64ExternalSymbolizer(*Ctx, move(RelInfo), GetOpInfo,
SymbolLookUp, DisInfo);
}
#include "AArch64.h"
#include "AArch64RegisterInfo.h"
#include "MCTargetDesc/AArch64FixupKinds.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCDirectives.h"
#include "llvm/MC/MCELFObjectWriter.h"
MCAsmBackend *llvm::createAArch64leAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TheTriple,
+ const TargetTuple &TT,
StringRef CPU) {
- if (TheTriple.isOSBinFormatMachO())
+ if (TT.isOSBinFormatMachO())
return new DarwinAArch64AsmBackend(T, MRI);
- assert(TheTriple.isOSBinFormatELF() && "Expect either MachO or ELF target");
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ assert(TT.isOSBinFormatELF() && "Expect either MachO or ELF target");
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new ELFAArch64AsmBackend(T, OSABI, /*IsLittleEndian=*/true);
}
MCAsmBackend *llvm::createAArch64beAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TheTriple,
+ const TargetTuple &TT,
StringRef CPU) {
- assert(TheTriple.isOSBinFormatELF() &&
+ assert(TT.isOSBinFormatELF() &&
"Big endian is only supported for ELF targets!");
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new ELFAArch64AsmBackend(T, OSABI,
/*IsLittleEndian=*/false);
}
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/StringExtras.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/ADT/Twine.h"
#include "llvm/MC/MCAsmBackend.h"
#include "llvm/MC/MCAsmInfo.h"
MCTargetStreamer *
createAArch64ObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) {
- const Triple &TT = STI.getTargetTriple();
+ const TargetTuple &TT = STI.getTargetTuple();
if (TT.isOSBinFormatELF())
return new AArch64TargetELFStreamer(S);
return nullptr;
//===----------------------------------------------------------------------===//
#include "AArch64MCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCStreamer.h"
return MCBinaryExpr::createSub(Res, PC, Context);
}
-AArch64MCAsmInfoELF::AArch64MCAsmInfoELF(const Triple &T) {
- if (T.getArch() == Triple::aarch64_be)
+AArch64MCAsmInfoELF::AArch64MCAsmInfoELF(const TargetTuple &T) {
+ if (T.getArch() == TargetTuple::aarch64_be)
IsLittleEndian = false;
// We prefer NEON instructions to be printed in the short form.
namespace llvm {
class MCStreamer;
class Target;
-class Triple;
+class TargetTuple;
struct AArch64MCAsmInfoDarwin : public MCAsmInfoDarwin {
explicit AArch64MCAsmInfoDarwin();
};
struct AArch64MCAsmInfoELF : public MCAsmInfoELF {
- explicit AArch64MCAsmInfoELF(const Triple &T);
+ explicit AArch64MCAsmInfoELF(const TargetTuple &TT);
};
} // namespace llvm
return X;
}
-static MCSubtargetInfo *
-createAArch64MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+static MCSubtargetInfo *createAArch64MCSubtargetInfo(const TargetTuple &TT,
+ StringRef CPU,
+ StringRef FS) {
if (CPU.empty())
CPU = "generic";
return createAArch64MCSubtargetInfoImpl(TT, CPU, FS);
}
-static MCRegisterInfo *createAArch64MCRegisterInfo(const Triple &Triple) {
+static MCRegisterInfo *createAArch64MCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitAArch64MCRegisterInfo(X, AArch64::LR);
return X;
}
static MCAsmInfo *createAArch64MCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TheTriple) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI;
- if (TheTriple.isOSBinFormatMachO())
+ if (TT.isOSBinFormatMachO())
MAI = new AArch64MCAsmInfoDarwin();
else {
- assert(TheTriple.isOSBinFormatELF() && "Only expect Darwin or ELF");
- MAI = new AArch64MCAsmInfoELF(TheTriple);
+ assert(TT.isOSBinFormatELF() && "Only expect Darwin or ELF");
+ MAI = new AArch64MCAsmInfoELF(TT);
}
// Initial state of the frame pointer is SP.
return MAI;
}
-static MCCodeGenInfo *createAArch64MCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createAArch64MCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createAArch64MCInstPrinter(const Triple &T,
+static MCInstPrinter *createAArch64MCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
return nullptr;
}
-static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
+static MCStreamer *createELFStreamer(const TargetTuple &TT, MCContext &Ctx,
MCAsmBackend &TAB, raw_pwrite_stream &OS,
MCCodeEmitter *Emitter, bool RelaxAll) {
return createAArch64ELFStreamer(Ctx, TAB, OS, Emitter, RelaxAll);
class MCTargetStreamer;
class StringRef;
class Target;
-class Triple;
+class TargetTuple;
class raw_ostream;
class raw_pwrite_stream;
MCContext &Ctx);
MCAsmBackend *createAArch64leAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createAArch64beAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createAArch64ELFObjectWriter(raw_pwrite_stream &OS,
uint8_t OSABI,
AMDGPUSubtarget::AMDGPUSubtarget(const Triple &TT, StringRef GPU, StringRef FS,
TargetMachine &TM)
- : AMDGPUGenSubtargetInfo(TT, GPU, FS), DevName(GPU), Is64bit(false),
- DumpCode(false), R600ALUInst(false), HasVertexCache(false),
- TexVTXClauseSize(0), Gen(AMDGPUSubtarget::R600), FP64(false),
- FP64Denormals(false), FP32Denormals(false), FastFMAF32(false),
- CaymanISA(false), FlatAddressSpace(false), EnableIRStructurizer(true),
- EnablePromoteAlloca(false), EnableIfCvt(true), EnableLoadStoreOpt(false),
- EnableUnsafeDSOffsetFolding(false),
+ : AMDGPUGenSubtargetInfo(TargetTuple(TT), GPU, FS), DevName(GPU),
+ Is64bit(false), DumpCode(false), R600ALUInst(false),
+ HasVertexCache(false), TexVTXClauseSize(0), Gen(AMDGPUSubtarget::R600),
+ FP64(false), FP64Denormals(false), FP32Denormals(false),
+ FastFMAF32(false), CaymanISA(false), FlatAddressSpace(false),
+ EnableIRStructurizer(true), EnablePromoteAlloca(false), EnableIfCvt(true),
+ EnableLoadStoreOpt(false), EnableUnsafeDSOffsetFolding(false),
WavefrontSize(0), CFALUBug(false), LocalMemorySize(0),
EnableVGPRSpilling(false), SGPRInitBug(false), IsGCN(false),
GCN1Encoding(false), GCN3Encoding(false), CIInsts(false), LDSBankCount(0),
MCAsmBackend *llvm::createAMDGPUAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
- Triple TargetTriple(TT);
-
+ const TargetTuple &TT,
+ StringRef CPU) {
// Use 64-bit ELF for amdgcn
- return new ELFAMDGPUAsmBackend(T, TargetTriple.getArch() == Triple::amdgcn);
+ return new ELFAMDGPUAsmBackend(T, TT.getArch() == TargetTuple::amdgcn);
}
#include "AMDGPUMCAsmInfo.h"
using namespace llvm;
-AMDGPUMCAsmInfo::AMDGPUMCAsmInfo(const Triple &TT) : MCAsmInfoELF() {
+AMDGPUMCAsmInfo::AMDGPUMCAsmInfo(const TargetTuple &TT) : MCAsmInfoELF() {
HasSingleParameterDotFile = false;
//===------------------------------------------------------------------===//
MaxInstLength = 16;
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
// If you need to create another MCAsmInfo class, which inherits from MCAsmInfo,
// you will need to make sure your new class sets PrivateGlobalPrefix to
// with 'L' as a local symbol.
class AMDGPUMCAsmInfo : public MCAsmInfoELF {
public:
- explicit AMDGPUMCAsmInfo(const Triple &TT);
+ explicit AMDGPUMCAsmInfo(const TargetTuple &TT);
};
} // namespace llvm
#endif
return X;
}
-static MCRegisterInfo *createAMDGPUMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createAMDGPUMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitAMDGPUMCRegisterInfo(X, 0);
return X;
}
-static MCSubtargetInfo *
-createAMDGPUMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+static MCSubtargetInfo *createAMDGPUMCSubtargetInfo(const TargetTuple &TT,
+ StringRef CPU,
+ StringRef FS) {
return createAMDGPUMCSubtargetInfoImpl(TT, CPU, FS);
}
-static MCCodeGenInfo *createAMDGPUMCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createAMDGPUMCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createAMDGPUMCInstPrinter(const Triple &T,
+static MCInstPrinter *createAMDGPUMCInstPrinter(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
class MCRegisterInfo;
class MCSubtargetInfo;
class Target;
-class Triple;
+class TargetTuple;
class raw_pwrite_stream;
class raw_ostream;
MCContext &Ctx);
MCAsmBackend *createAMDGPUAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createAMDGPUELFObjectWriter(bool Is64Bit,
raw_pwrite_stream &OS);
const Triple &TT = TM.getTargetTriple();
StringRef CPU = TM.getTargetCPU();
StringRef FS = TM.getTargetFeatureString();
- std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
+ std::string ArchFS = ARM_MC::ParseARMTargetTuple(TargetTuple(TT), CPU);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
ARMSubtarget::ARMSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const ARMBaseTargetMachine &TM, bool IsLittle)
- : ARMGenSubtargetInfo(TT, CPU, FS), ARMProcFamily(Others),
+ : ARMGenSubtargetInfo(TargetTuple(TT), CPU, FS), ARMProcFamily(Others),
ARMProcClass(None), stackAlignment(4), CPUString(CPU), IsLittle(IsLittle),
TargetTriple(TT), Options(TM.Options), TM(TM),
FrameLowering(initializeFrameLowering(CPU, FS)),
// Insert the architecture feature derived from the target triple into the
// feature string. This is important for setting features that are implied
// based on the architecture version.
- std::string ArchFS = ARM_MC::ParseARMTriple(TargetTriple, CPUString);
+ std::string ArchFS =
+ ARM_MC::ParseARMTargetTuple(TargetTuple(TargetTriple), CPUString);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
MCAsmBackend *llvm::createARMAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TheTriple, StringRef CPU,
+ const TargetTuple &TT, StringRef CPU,
bool isLittle) {
- switch (TheTriple.getObjectFormat()) {
+ switch (TT.getObjectFormat()) {
default:
llvm_unreachable("unsupported object format");
- case Triple::MachO: {
- MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TheTriple.getArchName());
- return new ARMAsmBackendDarwin(T, TheTriple, CS);
- }
- case Triple::COFF:
- assert(TheTriple.isOSWindows() && "non-Windows ARM COFF is not supported");
- return new ARMAsmBackendWinCOFF(T, TheTriple);
- case Triple::ELF:
- assert(TheTriple.isOSBinFormatELF() && "using ELF for non-ELF target");
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
- return new ARMAsmBackendELF(T, TheTriple, OSABI, isLittle);
+ case TargetTuple::MachO: {
+ MachO::CPUSubTypeARM CS = getMachOSubTypeFromArch(TT.getArchName());
+ return new ARMAsmBackendDarwin(T, TT, CS);
+ }
+ case TargetTuple::COFF:
+ assert(TT.isOSWindows() && "non-Windows ARM COFF is not supported");
+ return new ARMAsmBackendWinCOFF(T, TT);
+ case TargetTuple::ELF:
+ assert(TT.isOSBinFormatELF() && "using ELF for non-ELF target");
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
+ return new ARMAsmBackendELF(T, TT, OSABI, isLittle);
}
}
MCAsmBackend *llvm::createARMLEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, true);
}
MCAsmBackend *llvm::createARMBEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, false);
}
MCAsmBackend *llvm::createThumbLEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, true);
}
MCAsmBackend *llvm::createThumbBEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return createARMAsmBackend(T, MRI, TT, CPU, false);
}
bool isThumbMode; // Currently emitting Thumb code.
bool IsLittleEndian; // Big or little endian.
public:
- ARMAsmBackend(const Target &T, const Triple &TT, bool IsLittle)
+ ARMAsmBackend(const Target &T, const TargetTuple &TT, bool IsLittle)
: MCAsmBackend(), STI(ARM_MC::createARMMCSubtargetInfo(TT, "", "")),
isThumbMode(TT.getArchName().startswith("thumb")),
IsLittleEndian(IsLittle) {}
class ARMAsmBackendDarwin : public ARMAsmBackend {
public:
const MachO::CPUSubTypeARM Subtype;
- ARMAsmBackendDarwin(const Target &T, const Triple &TT,
+ ARMAsmBackendDarwin(const Target &T, const TargetTuple &TT,
MachO::CPUSubTypeARM st)
: ARMAsmBackend(T, TT, /* IsLittleEndian */ true), Subtype(st) {
HasDataInCodeSupport = true;
class ARMAsmBackendELF : public ARMAsmBackend {
public:
uint8_t OSABI;
- ARMAsmBackendELF(const Target &T, const Triple &TT, uint8_t OSABI,
+ ARMAsmBackendELF(const Target &T, const TargetTuple &TT, uint8_t OSABI,
bool IsLittle)
: ARMAsmBackend(T, TT, IsLittle), OSABI(OSABI) {}
namespace {
class ARMAsmBackendWinCOFF : public ARMAsmBackend {
public:
- ARMAsmBackendWinCOFF(const Target &T, const Triple &TheTriple)
- : ARMAsmBackend(T, TheTriple, true) {}
+ ARMAsmBackendWinCOFF(const Target &T, const TargetTuple &TT)
+ : ARMAsmBackend(T, TT, true) {}
MCObjectWriter *createObjectWriter(raw_pwrite_stream &OS) const override {
return createARMWinCOFFObjectWriter(OS, /*Is64Bit=*/false);
}
MCTargetStreamer *createARMObjectTargetStreamer(MCStreamer &S,
const MCSubtargetInfo &STI) {
- const Triple &TT = STI.getTargetTriple();
+ const TargetTuple &TT = STI.getTargetTuple();
if (TT.isOSBinFormatELF())
return new ARMTargetELFStreamer(S);
return new ARMTargetStreamer(S);
//===----------------------------------------------------------------------===//
#include "ARMMCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
void ARMMCAsmInfoDarwin::anchor() { }
-ARMMCAsmInfoDarwin::ARMMCAsmInfoDarwin(const Triple &TheTriple) {
- if ((TheTriple.getArch() == Triple::armeb) ||
- (TheTriple.getArch() == Triple::thumbeb))
+ARMMCAsmInfoDarwin::ARMMCAsmInfoDarwin(const TargetTuple &TT) {
+ if ((TT.getArch() == TargetTuple::armeb) ||
+ (TT.getArch() == TargetTuple::thumbeb))
IsLittleEndian = false;
Data64bitsDirective = nullptr;
void ARMELFMCAsmInfo::anchor() { }
-ARMELFMCAsmInfo::ARMELFMCAsmInfo(const Triple &TheTriple) {
- if ((TheTriple.getArch() == Triple::armeb) ||
- (TheTriple.getArch() == Triple::thumbeb))
+ARMELFMCAsmInfo::ARMELFMCAsmInfo(const TargetTuple &TT) {
+ if ((TT.getArch() == TargetTuple::armeb) ||
+ (TT.getArch() == TargetTuple::thumbeb))
IsLittleEndian = false;
// ".comm align is in bytes but .align is pow-2."
SupportsDebugInformation = true;
// Exceptions handling
- switch (TheTriple.getOS()) {
- case Triple::Bitrig:
- case Triple::NetBSD:
+ switch (TT.getOS()) {
+ case TargetTuple::Bitrig:
+ case TargetTuple::NetBSD:
ExceptionsType = ExceptionHandling::DwarfCFI;
break;
default:
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class ARMMCAsmInfoDarwin : public MCAsmInfoDarwin {
virtual void anchor();
public:
- explicit ARMMCAsmInfoDarwin(const Triple &TheTriple);
+ explicit ARMMCAsmInfoDarwin(const TargetTuple &TT);
};
class ARMELFMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit ARMELFMCAsmInfo(const Triple &TT);
+ explicit ARMELFMCAsmInfo(const TargetTuple &TT);
void setUseIntegratedAssembler(bool Value) override;
};
return isThumb(STI) && STI.getFeatureBits()[ARM::FeatureThumb2];
}
bool isTargetMachO(const MCSubtargetInfo &STI) const {
- const Triple &TT = STI.getTargetTriple();
+ const TargetTuple &TT = STI.getTargetTuple();
return TT.isOSBinFormatMachO();
}
#include "ARMMCAsmInfo.h"
#include "ARMMCTargetDesc.h"
#include "InstPrinter/ARMInstPrinter.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInstrAnalysis.h"
#define GET_SUBTARGETINFO_MC_DESC
#include "ARMGenSubtargetInfo.inc"
-std::string ARM_MC::ParseARMTriple(const Triple &TT, StringRef CPU) {
- bool isThumb =
- TT.getArch() == Triple::thumb || TT.getArch() == Triple::thumbeb;
+std::string ARM_MC::ParseARMTargetTuple(const TargetTuple &TT, StringRef CPU) {
+ bool isThumb = TT.getArch() == TargetTuple::thumb ||
+ TT.getArch() == TargetTuple::thumbeb;
bool NoCPU = CPU == "generic" || CPU.empty();
std::string ARMArchFeature;
switch (TT.getSubArch()) {
default:
llvm_unreachable("invalid sub-architecture for ARM");
- case Triple::ARMSubArch_v8:
+ case TargetTuple::ARMSubArch_v8:
if (NoCPU)
// v8a: FeatureDB, FeatureFPARMv8, FeatureNEON, FeatureDSPThumb2,
// FeatureMP, FeatureHWDiv, FeatureHWDivARM, FeatureTrustZone,
// Use CPU to figure out the exact features
ARMArchFeature = "+v8";
break;
- case Triple::ARMSubArch_v8_1a:
+ case TargetTuple::ARMSubArch_v8_1a:
if (NoCPU)
// v8.1a: FeatureDB, FeatureFPARMv8, FeatureNEON, FeatureDSPThumb2,
// FeatureMP, FeatureHWDiv, FeatureHWDivARM, FeatureTrustZone,
// Use CPU to figure out the exact features
ARMArchFeature = "+v8.1a";
break;
- case Triple::ARMSubArch_v7m:
+ case TargetTuple::ARMSubArch_v7m:
isThumb = true;
if (NoCPU)
// v7m: FeatureNoARM, FeatureDB, FeatureHWDiv, FeatureMClass
// Use CPU to figure out the exact features.
ARMArchFeature = "+v7";
break;
- case Triple::ARMSubArch_v7em:
+ case TargetTuple::ARMSubArch_v7em:
if (NoCPU)
// v7em: FeatureNoARM, FeatureDB, FeatureHWDiv, FeatureDSPThumb2,
// FeatureT2XtPk, FeatureMClass
// Use CPU to figure out the exact features.
ARMArchFeature = "+v7";
break;
- case Triple::ARMSubArch_v7s:
+ case TargetTuple::ARMSubArch_v7s:
if (NoCPU)
// v7s: FeatureNEON, FeatureDB, FeatureDSPThumb2, FeatureHasRAS
// Swift
// Use CPU to figure out the exact features.
ARMArchFeature = "+v7";
break;
- case Triple::ARMSubArch_v7:
+ case TargetTuple::ARMSubArch_v7:
// v7 CPUs have lots of different feature sets. If no CPU is specified,
// then assume v7a (e.g. cortex-a8) feature set. Otherwise, return
// the "minimum" feature set and use CPU string to figure out the exact
// Use CPU to figure out the exact features.
ARMArchFeature = "+v7";
break;
- case Triple::ARMSubArch_v6t2:
+ case TargetTuple::ARMSubArch_v6t2:
ARMArchFeature = "+v6t2";
break;
- case Triple::ARMSubArch_v6k:
+ case TargetTuple::ARMSubArch_v6k:
ARMArchFeature = "+v6k";
break;
- case Triple::ARMSubArch_v6m:
+ case TargetTuple::ARMSubArch_v6m:
isThumb = true;
if (NoCPU)
// v6m: FeatureNoARM, FeatureMClass
else
ARMArchFeature = "+v6";
break;
- case Triple::ARMSubArch_v6:
+ case TargetTuple::ARMSubArch_v6:
ARMArchFeature = "+v6";
break;
- case Triple::ARMSubArch_v5te:
+ case TargetTuple::ARMSubArch_v5te:
ARMArchFeature = "+v5te";
break;
- case Triple::ARMSubArch_v5:
+ case TargetTuple::ARMSubArch_v5:
ARMArchFeature = "+v5t";
break;
- case Triple::ARMSubArch_v4t:
+ case TargetTuple::ARMSubArch_v4t:
ARMArchFeature = "+v4t";
break;
- case Triple::NoSubArch:
+ case TargetTuple::NoSubArch:
break;
}
return ARMArchFeature;
}
-MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const Triple &TT,
+MCSubtargetInfo *ARM_MC::createARMMCSubtargetInfo(const TargetTuple &TT,
StringRef CPU, StringRef FS) {
- std::string ArchFS = ARM_MC::ParseARMTriple(TT, CPU);
+ std::string ArchFS = ARM_MC::ParseARMTargetTuple(TT, CPU);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
return X;
}
-static MCRegisterInfo *createARMMCRegisterInfo(const Triple &Triple) {
+static MCRegisterInfo *createARMMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitARMMCRegisterInfo(X, ARM::LR, 0, 0, ARM::PC);
return X;
}
static MCAsmInfo *createARMMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TheTriple) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI;
- if (TheTriple.isOSDarwin() || TheTriple.isOSBinFormatMachO())
- MAI = new ARMMCAsmInfoDarwin(TheTriple);
- else if (TheTriple.isWindowsMSVCEnvironment())
+ if (TT.isOSDarwin() || TT.isOSBinFormatMachO())
+ MAI = new ARMMCAsmInfoDarwin(TT);
+ else if (TT.isWindowsMSVCEnvironment())
MAI = new ARMCOFFMCAsmInfoMicrosoft();
- else if (TheTriple.isOSWindows())
+ else if (TT.isOSWindows())
MAI = new ARMCOFFMCAsmInfoGNU();
else
- MAI = new ARMELFMCAsmInfo(TheTriple);
+ MAI = new ARMELFMCAsmInfo(TT);
unsigned Reg = MRI.getDwarfRegNum(ARM::SP, true);
MAI->addInitialFrameState(MCCFIInstruction::createDefCfa(nullptr, Reg, 0));
return MAI;
}
-static MCCodeGenInfo *createARMMCCodeGenInfo(const Triple &TT, Reloc::Model RM,
+static MCCodeGenInfo *createARMMCCodeGenInfo(const TargetTuple &TT,
+ Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
return X;
}
-static MCStreamer *createELFStreamer(const Triple &T, MCContext &Ctx,
+static MCStreamer *createELFStreamer(const TargetTuple &TT, MCContext &Ctx,
MCAsmBackend &MAB, raw_pwrite_stream &OS,
MCCodeEmitter *Emitter, bool RelaxAll) {
return createARMELFStreamer(Ctx, MAB, OS, Emitter, false,
- T.getArch() == Triple::thumb);
+ TT.getArch() == TargetTuple::thumb);
}
static MCStreamer *createARMMachOStreamer(MCContext &Ctx, MCAsmBackend &MAB,
return createMachOStreamer(Ctx, MAB, OS, Emitter, false, DWARFMustBeAtTheEnd);
}
-static MCInstPrinter *createARMMCInstPrinter(const Triple &T,
+static MCInstPrinter *createARMMCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
return nullptr;
}
-static MCRelocationInfo *createARMMCRelocationInfo(const Triple &TT,
+static MCRelocationInfo *createARMMCRelocationInfo(const TargetTuple &TT,
MCContext &Ctx) {
if (TT.isOSBinFormatMachO())
return createARMMachORelocationInfo(Ctx);
class MCTargetStreamer;
class StringRef;
class Target;
-class Triple;
+class TargetTuple;
class raw_ostream;
class raw_pwrite_stream;
extern Target TheARMBETarget, TheThumbBETarget;
namespace ARM_MC {
-std::string ParseARMTriple(const Triple &TT, StringRef CPU);
+std::string ParseARMTargetTuple(const TargetTuple &TT, StringRef CPU);
/// Create a ARM MCSubtargetInfo instance. This is exposed so Asm parser, etc.
/// do not need to go through TargetRegistry.
-MCSubtargetInfo *createARMMCSubtargetInfo(const Triple &TT, StringRef CPU,
+MCSubtargetInfo *createARMMCSubtargetInfo(const TargetTuple &TT, StringRef CPU,
StringRef FS);
}
MCContext &Ctx);
MCAsmBackend *createARMAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU,
+ const TargetTuple &TT, StringRef CPU,
bool IsLittleEndian);
MCAsmBackend *createARMLEAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createARMBEAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createThumbLEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createThumbBEAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
// Construct a PE/COFF machine code streamer which will generate a PE/COFF
// object file.
BPFSubtarget::BPFSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM)
- : BPFGenSubtargetInfo(TT, CPU, FS), InstrInfo(), FrameLowering(*this),
- TLInfo(TM, *this) {}
+ : BPFGenSubtargetInfo(TargetTuple(TT), CPU, FS), InstrInfo(),
+ FrameLowering(*this), TLInfo(TM, *this) {}
MCAsmBackend *llvm::createBPFAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT, StringRef CPU) {
return new BPFAsmBackend(/*IsLittleEndian=*/true);
}
MCAsmBackend *llvm::createBPFbeAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return new BPFAsmBackend(/*IsLittleEndian=*/false);
}
#include "llvm/ADT/StringRef.h"
#include "llvm/MC/MCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
namespace llvm {
class Target;
-class Triple;
class BPFMCAsmInfo : public MCAsmInfo {
public:
- explicit BPFMCAsmInfo(const Triple &TT) {
- if (TT.getArch() == Triple::bpfeb)
+ explicit BPFMCAsmInfo(const TargetTuple &TT) {
+ if (TT.getArch() == TargetTuple::bpfeb)
IsLittleEndian = false;
PrivateGlobalPrefix = ".L";
return X;
}
-static MCRegisterInfo *createBPFMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createBPFMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitBPFMCRegisterInfo(X, BPF::R11 /* RAReg doesn't exist */);
return X;
}
-static MCSubtargetInfo *createBPFMCSubtargetInfo(const Triple &TT,
+static MCSubtargetInfo *createBPFMCSubtargetInfo(const TargetTuple &TT,
StringRef CPU, StringRef FS) {
return createBPFMCSubtargetInfoImpl(TT, CPU, FS);
}
-static MCCodeGenInfo *createBPFMCCodeGenInfo(const Triple &TT, Reloc::Model RM,
+static MCCodeGenInfo *createBPFMCCodeGenInfo(const TargetTuple &TT,
+ Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
return X;
}
-static MCStreamer *createBPFMCStreamer(const Triple &T,
- MCContext &Ctx, MCAsmBackend &MAB,
- raw_pwrite_stream &OS, MCCodeEmitter *Emitter,
- bool RelaxAll) {
+static MCStreamer *createBPFMCStreamer(const TargetTuple &TT, MCContext &Ctx,
+ MCAsmBackend &MAB, raw_pwrite_stream &OS,
+ MCCodeEmitter *Emitter, bool RelaxAll) {
return createELFStreamer(Ctx, MAB, OS, Emitter, RelaxAll);
}
-static MCInstPrinter *createBPFMCInstPrinter(const Triple &T,
+static MCInstPrinter *createBPFMCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
class MCSubtargetInfo;
class StringRef;
class Target;
-class Triple;
+class TargetTuple;
class raw_ostream;
class raw_pwrite_stream;
MCContext &Ctx);
MCAsmBackend *createBPFAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createBPFbeAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createBPFELFObjectWriter(raw_pwrite_stream &OS,
uint8_t OSABI, bool IsLittleEndian);
HexagonSubtarget::HexagonSubtarget(const Triple &TT, StringRef CPU,
StringRef FS, const TargetMachine &TM)
- : HexagonGenSubtargetInfo(TT, CPU, FS), CPUString(CPU),
+ : HexagonGenSubtargetInfo(TargetTuple(TT), CPU, FS), CPUString(CPU),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
FrameLowering() {
namespace llvm {
MCAsmBackend *createHexagonAsmBackend(Target const &T,
MCRegisterInfo const & /*MRI*/,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT, StringRef CPU) {
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new HexagonAsmBackend(T, OSABI, CPU);
}
// Pin the vtable to this file.
void HexagonMCAsmInfo::anchor() {}
-HexagonMCAsmInfo::HexagonMCAsmInfo(const Triple &TT) {
+HexagonMCAsmInfo::HexagonMCAsmInfo(const TargetTuple &TT) {
Data16bitsDirective = "\t.half\t";
Data32bitsDirective = "\t.word\t";
Data64bitsDirective = nullptr; // .xword is only supported by V9.
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class HexagonMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit HexagonMCAsmInfo(const Triple &TT);
+ explicit HexagonMCAsmInfo(const TargetTuple &TT);
};
} // namespace llvm
return X;
}
-static MCRegisterInfo *createHexagonMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createHexagonMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitHexagonMCRegisterInfo(X, Hexagon::R0);
return X;
}
-static MCSubtargetInfo *
-createHexagonMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+static MCSubtargetInfo *createHexagonMCSubtargetInfo(const TargetTuple &TT,
+ StringRef CPU,
+ StringRef FS) {
return createHexagonMCSubtargetInfoImpl(TT, CPU, FS);
}
}
static MCAsmInfo *createHexagonMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TT) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI = new HexagonMCAsmInfo(TT);
// VirtualFP = (R30 + #0).
return MAI;
}
-static MCCodeGenInfo *createHexagonMCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createHexagonMCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createHexagonMCInstPrinter(const Triple &T,
+static MCInstPrinter *createHexagonMCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
return new HexagonTargetAsmStreamer(S, OS, IsVerboseAsm, *InstPrint);
}
-static MCStreamer *createMCStreamer(Triple const &T, MCContext &Context,
+static MCStreamer *createMCStreamer(const TargetTuple &TT, MCContext &Context,
MCAsmBackend &MAB, raw_pwrite_stream &OS,
MCCodeEmitter *Emitter, bool RelaxAll) {
return createHexagonELFStreamer(Context, MAB, OS, Emitter);
class MCRegisterInfo;
class MCSubtargetInfo;
class Target;
-class Triple;
+class TargetTuple;
class StringRef;
class raw_ostream;
class raw_pwrite_stream;
MCAsmBackend *createHexagonAsmBackend(Target const &T,
MCRegisterInfo const &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createHexagonELFObjectWriter(raw_pwrite_stream &OS,
uint8_t OSABI, StringRef CPU);
void MSP430MCAsmInfo::anchor() { }
-MSP430MCAsmInfo::MSP430MCAsmInfo(const Triple &TT) {
+MSP430MCAsmInfo::MSP430MCAsmInfo(const TargetTuple &TT) {
PointerSize = CalleeSaveStackSlotSize = 2;
CommentString = ";";
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class MSP430MCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit MSP430MCAsmInfo(const Triple &TT);
+ explicit MSP430MCAsmInfo(const TargetTuple &TT);
};
} // namespace llvm
return X;
}
-static MCRegisterInfo *createMSP430MCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createMSP430MCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitMSP430MCRegisterInfo(X, MSP430::PC);
return X;
}
-static MCSubtargetInfo *
-createMSP430MCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+static MCSubtargetInfo *createMSP430MCSubtargetInfo(const TargetTuple &TT,
+ StringRef CPU,
+ StringRef FS) {
return createMSP430MCSubtargetInfoImpl(TT, CPU, FS);
}
-static MCCodeGenInfo *createMSP430MCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createMSP430MCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createMSP430MCInstPrinter(const Triple &T,
+static MCInstPrinter *createMSP430MCInstPrinter(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
MSP430Subtarget::MSP430Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM)
- : MSP430GenSubtargetInfo(TT, CPU, FS), FrameLowering(),
+ : MSP430GenSubtargetInfo(TargetTuple(TT), CPU, FS), FrameLowering(),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this) {}
MipsAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII, const MCTargetOptions &Options)
: MCTargetAsmParser(Options), STI(sti),
- ABI(MipsABIInfo::computeTargetABI(Triple(sti.getTargetTriple()),
- sti.getCPU(), Options)) {
+ ABI(MipsABIInfo::computeTargetABI(sti.getTargetTuple(), sti.getCPU(),
+ Options)) {
MCAsmParserExtension::Initialize(parser);
parser.addAliasForDirective(".asciiz", ".asciz");
IsPicEnabled =
(getContext().getObjectFileInfo()->getRelocM() == Reloc::PIC_);
- Triple TheTriple(sti.getTargetTriple());
- if ((TheTriple.getArch() == Triple::mips) ||
- (TheTriple.getArch() == Triple::mips64))
+ const TargetTuple &TT = sti.getTargetTuple();
+ if ((TT.getArch() == TargetTuple::mips) ||
+ (TT.getArch() == TargetTuple::mips64))
IsLittleEndian = false;
else
IsLittleEndian = true;
llvm_unreachable("Unhandled ABI");
}
-MipsABIInfo MipsABIInfo::computeTargetABI(const Triple &TT, StringRef CPU,
+MipsABIInfo MipsABIInfo::computeTargetABI(const TargetTuple &TT, StringRef CPU,
const MCTargetOptions &Options) {
if (Options.getABIName().startswith("o32"))
return MipsABIInfo::O32();
// used and not shared in a couple of other places. This needs unifying
// at some level.
if (CPU.empty() || CPU == "generic") {
- if (TT.getArch() == Triple::mips || TT.getArch() == Triple::mipsel)
+ if (TT.getArch() == TargetTuple::mips ||
+ TT.getArch() == TargetTuple::mipsel)
CPU = "mips32";
else
CPU = "mips64";
#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSABIINFO_H
#include "llvm/ADT/ArrayRef.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/MC/MCRegisterInfo.h"
static MipsABIInfo N32() { return MipsABIInfo(ABI::N32); }
static MipsABIInfo N64() { return MipsABIInfo(ABI::N64); }
static MipsABIInfo EABI() { return MipsABIInfo(ABI::EABI); }
- static MipsABIInfo computeTargetABI(const Triple &TT, StringRef CPU,
+ static MipsABIInfo computeTargetABI(const TargetTuple &TT, StringRef CPU,
const MCTargetOptions &Options);
bool IsKnown() const { return ThisABI != ABI::Unknown; }
// MCAsmBackend
MCAsmBackend *llvm::createMipsAsmBackendEL32(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return new MipsAsmBackend(T, TT.getOS(), /*IsLittle*/ true,
/*Is64Bit*/ false);
}
MCAsmBackend *llvm::createMipsAsmBackendEB32(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return new MipsAsmBackend(T, TT.getOS(), /*IsLittle*/ false,
/*Is64Bit*/ false);
}
MCAsmBackend *llvm::createMipsAsmBackendEL64(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return new MipsAsmBackend(T, TT.getOS(), /*IsLittle*/ true, /*Is64Bit*/ true);
}
MCAsmBackend *llvm::createMipsAsmBackendEB64(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return new MipsAsmBackend(T, TT.getOS(), /*IsLittle*/ false,
/*Is64Bit*/ true);
}
#define LLVM_LIB_TARGET_MIPS_MCTARGETDESC_MIPSASMBACKEND_H
#include "MCTargetDesc/MipsFixupKinds.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCAsmBackend.h"
namespace llvm {
class MCObjectWriter;
class MipsAsmBackend : public MCAsmBackend {
- Triple::OSType OSType;
+ TargetTuple::OSType OSType;
bool IsLittle; // Big or little endian
bool Is64Bit; // 32 or 64 bit words
public:
- MipsAsmBackend(const Target &T, Triple::OSType OSType, bool IsLittle,
+ MipsAsmBackend(const Target &T, TargetTuple::OSType OSType, bool IsLittle,
bool Is64Bit)
: MCAsmBackend(), OSType(OSType), IsLittle(IsLittle), Is64Bit(Is64Bit) {}
//===----------------------------------------------------------------------===//
#include "MipsMCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
using namespace llvm;
void MipsMCAsmInfo::anchor() { }
-MipsMCAsmInfo::MipsMCAsmInfo(const Triple &TheTriple) {
- if ((TheTriple.getArch() == Triple::mips) ||
- (TheTriple.getArch() == Triple::mips64))
+MipsMCAsmInfo::MipsMCAsmInfo(const TargetTuple &TT) {
+ if ((TT.getArch() == TargetTuple::mips) ||
+ (TT.getArch() == TargetTuple::mips64))
IsLittleEndian = false;
- if ((TheTriple.getArch() == Triple::mips64el) ||
- (TheTriple.getArch() == Triple::mips64)) {
+ if ((TT.getArch() == TargetTuple::mips64el) ||
+ (TT.getArch() == TargetTuple::mips64)) {
PointerSize = CalleeSaveStackSlotSize = 8;
}
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class MipsMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit MipsMCAsmInfo(const Triple &TheTriple);
+ explicit MipsMCAsmInfo(const TargetTuple &TT);
};
} // namespace llvm
#include "MipsMCNaCl.h"
#include "MipsMCTargetDesc.h"
#include "MipsTargetStreamer.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCELFStreamer.h"
#include "llvm/MC/MCInstrInfo.h"
/// Select the Mips CPU for the given triple and cpu name.
/// FIXME: Merge with the copy in MipsSubtarget.cpp
-StringRef MIPS_MC::selectMipsCPU(const Triple &TT, StringRef CPU) {
+StringRef MIPS_MC::selectMipsCPU(const TargetTuple &TT, StringRef CPU) {
if (CPU.empty() || CPU == "generic") {
- if (TT.getArch() == Triple::mips || TT.getArch() == Triple::mipsel)
+ if (TT.getArch() == TargetTuple::mips ||
+ TT.getArch() == TargetTuple::mipsel)
CPU = "mips32";
else
CPU = "mips64";
return X;
}
-static MCRegisterInfo *createMipsMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createMipsMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitMipsMCRegisterInfo(X, Mips::RA);
return X;
}
-static MCSubtargetInfo *createMipsMCSubtargetInfo(const Triple &TT,
+static MCSubtargetInfo *createMipsMCSubtargetInfo(const TargetTuple &TT,
StringRef CPU, StringRef FS) {
CPU = MIPS_MC::selectMipsCPU(TT, CPU);
return createMipsMCSubtargetInfoImpl(TT, CPU, FS);
}
static MCAsmInfo *createMipsMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TT) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI = new MipsMCAsmInfo(TT);
unsigned SP = MRI.getDwarfRegNum(Mips::SP, true);
return MAI;
}
-static MCCodeGenInfo *createMipsMCCodeGenInfo(const Triple &TT, Reloc::Model RM,
+static MCCodeGenInfo *createMipsMCCodeGenInfo(const TargetTuple &TT,
+ Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
return X;
}
-static MCInstPrinter *createMipsMCInstPrinter(const Triple &T,
+static MCInstPrinter *createMipsMCInstPrinter(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
return new MipsInstPrinter(MAI, MII, MRI);
}
-static MCStreamer *createMCStreamer(const Triple &T, MCContext &Context,
+static MCStreamer *createMCStreamer(const TargetTuple &T, MCContext &Context,
MCAsmBackend &MAB, raw_pwrite_stream &OS,
MCCodeEmitter *Emitter, bool RelaxAll) {
MCStreamer *S;
class MCSubtargetInfo;
class StringRef;
class Target;
-class Triple;
+class TargetTuple;
class raw_ostream;
class raw_pwrite_stream;
MCAsmBackend *createMipsAsmBackendEB32(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createMipsAsmBackendEL32(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createMipsAsmBackendEB64(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createMipsAsmBackendEL64(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createMipsELFObjectWriter(raw_pwrite_stream &OS, uint8_t OSABI,
bool IsLittleEndian, bool Is64Bit);
namespace MIPS_MC {
-StringRef selectMipsCPU(const Triple &TT, StringRef CPU);
+StringRef selectMipsCPU(const TargetTuple &TT, StringRef CPU);
}
} // End llvm namespace
// clean anyhow.
// FIXME: For ifunc related functions we could iterate over and look
// for a feature string that doesn't match the default one.
- const Triple &TT = TM.getTargetTriple();
+ TargetTuple TT(TargetTuple(TM.getTargetTriple()));
StringRef CPU = MIPS_MC::selectMipsCPU(TT, TM.getTargetCPU());
StringRef FS = TM.getTargetFeatureString();
const MipsTargetMachine &MTM = static_cast<const MipsTargetMachine &>(TM);
- const MipsSubtarget STI(TT, CPU, FS, MTM.isLittleEndian(), MTM);
+ const MipsSubtarget STI(TM.getTargetTriple(), CPU, FS, MTM.isLittleEndian(),
+ MTM);
bool IsABICalls = STI.isABICalls();
const MipsABIInfo &ABI = MTM.getABI();
MipsSubtarget::MipsSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, bool little,
const MipsTargetMachine &TM)
- : MipsGenSubtargetInfo(TT, CPU, FS), MipsArchVersion(MipsDefault),
- IsLittle(little), IsSoftFloat(false), IsSingleFloat(false), IsFPXX(false),
- NoABICalls(false), IsFP64bit(false), UseOddSPReg(true),
- IsNaN2008bit(false), IsGP64bit(false), HasVFPU(false), HasCnMips(false),
- HasMips3_32(false), HasMips3_32r2(false), HasMips4_32(false),
- HasMips4_32r2(false), HasMips5_32r2(false), InMips16Mode(false),
- InMips16HardFloat(Mips16HardFloat), InMicroMipsMode(false), HasDSP(false),
- HasDSPR2(false), AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16),
- HasMSA(false), UseTCCInDIV(false), HasEVA(false), TM(TM),
- TargetTriple(TT), TSInfo(),
+ : MipsGenSubtargetInfo(TargetTuple(TT), CPU, FS),
+ MipsArchVersion(MipsDefault), IsLittle(little), IsSoftFloat(false),
+ IsSingleFloat(false), IsFPXX(false), NoABICalls(false), IsFP64bit(false),
+ UseOddSPReg(true), IsNaN2008bit(false), IsGP64bit(false), HasVFPU(false),
+ HasCnMips(false), HasMips3_32(false), HasMips3_32r2(false),
+ HasMips4_32(false), HasMips4_32r2(false), HasMips5_32r2(false),
+ InMips16Mode(false), InMips16HardFloat(Mips16HardFloat),
+ InMicroMipsMode(false), HasDSP(false), HasDSPR2(false),
+ AllowMixed16_32(Mixed16_32 | Mips_Os16), Os16(Mips_Os16), HasMSA(false),
+ UseTCCInDIV(false), HasEVA(false), TM(TM), TargetTriple(TT), TSInfo(),
InstrInfo(
MipsInstrInfo::create(initializeSubtargetDependencies(CPU, FS, TM))),
FrameLowering(MipsFrameLowering::create(*this)),
MipsSubtarget &
MipsSubtarget::initializeSubtargetDependencies(StringRef CPU, StringRef FS,
const TargetMachine &TM) {
- std::string CPUName = MIPS_MC::selectMipsCPU(TM.getTargetTriple(), CPU);
+ std::string CPUName =
+ MIPS_MC::selectMipsCPU(TargetTuple(TM.getTargetTriple()), CPU);
// Parse features string.
ParseSubtargetFeatures(CPUName, FS);
const TargetOptions &Options,
bool isLittle) {
std::string Ret = "";
- MipsABIInfo ABI = MipsABIInfo::computeTargetABI(TT, CPU, Options.MCOptions);
+ MipsABIInfo ABI =
+ MipsABIInfo::computeTargetABI(TargetTuple(TT), CPU, Options.MCOptions);
// There are both little and big endian mips.
if (isLittle)
: LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
CPU, FS, Options, RM, CM, OL),
isLittle(isLittle), TLOF(make_unique<MipsTargetObjectFile>()),
- ABI(MipsABIInfo::computeTargetABI(TT, CPU, Options.MCOptions)),
+ ABI(MipsABIInfo::computeTargetABI(TargetTuple(TT), CPU,
+ Options.MCOptions)),
Subtarget(nullptr), DefaultSubtarget(TT, CPU, FS, isLittle, *this),
NoMips16Subtarget(TT, CPU, FS.empty() ? "-mips16" : FS.str() + ",-mips16",
isLittle, *this),
//===----------------------------------------------------------------------===//
#include "NVPTXMCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/Support/CommandLine.h"
using namespace llvm;
void NVPTXMCAsmInfo::anchor() {}
-NVPTXMCAsmInfo::NVPTXMCAsmInfo(const Triple &TheTriple) {
- if (TheTriple.getArch() == Triple::nvptx64) {
+NVPTXMCAsmInfo::NVPTXMCAsmInfo(const TargetTuple &TT) {
+ if (TT.getArch() == TargetTuple::nvptx64) {
PointerSize = CalleeSaveStackSlotSize = 8;
}
namespace llvm {
class Target;
-class Triple;
+class TargetTuple;
class NVPTXMCAsmInfo : public MCAsmInfo {
virtual void anchor();
public:
- explicit NVPTXMCAsmInfo(const Triple &TheTriple);
+ explicit NVPTXMCAsmInfo(const TargetTuple &TT);
};
} // namespace llvm
return X;
}
-static MCRegisterInfo *createNVPTXMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createNVPTXMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
// PTX does not have a return address register.
InitNVPTXMCRegisterInfo(X, 0);
}
static MCSubtargetInfo *
-createNVPTXMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+createNVPTXMCSubtargetInfo(const TargetTuple &TT, StringRef CPU, StringRef FS) {
return createNVPTXMCSubtargetInfoImpl(TT, CPU, FS);
}
-static MCCodeGenInfo *createNVPTXMCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createNVPTXMCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createNVPTXMCInstPrinter(const Triple &T,
+static MCInstPrinter *createNVPTXMCInstPrinter(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
NVPTXSubtarget::NVPTXSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const NVPTXTargetMachine &TM)
- : NVPTXGenSubtargetInfo(TT, CPU, FS), PTXVersion(0), SmVersion(20), TM(TM),
- InstrInfo(), TLInfo(TM, initializeSubtargetDependencies(CPU, FS)),
+ : NVPTXGenSubtargetInfo(TargetTuple(TT), CPU, FS), PTXVersion(0),
+ SmVersion(20), TM(TM), InstrInfo(),
+ TLInfo(TM, initializeSubtargetDependencies(CPU, FS)), TSInfo(),
FrameLowering() {}
bool NVPTXSubtarget::hasImageHandles() const {
const MCTargetOptions &Options)
: MCTargetAsmParser(Options), STI(STI), MII(MII) {
// Check for 64-bit vs. 32-bit pointer mode.
- Triple TheTriple(STI.getTargetTriple());
- IsPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
- TheTriple.getArch() == Triple::ppc64le);
- IsDarwin = TheTriple.isMacOSX();
+ const TargetTuple &TT = STI.getTargetTuple();
+ IsPPC64 = (TT.getArch() == TargetTuple::ppc64 ||
+ TT.getArch() == TargetTuple::ppc64le);
+ IsDarwin = TT.isMacOSX();
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
MCAsmBackend *llvm::createPPCAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT, StringRef CPU) {
if (TT.isOSDarwin())
return new DarwinPPCAsmBackend(T);
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
- bool IsLittleEndian = TT.getArch() == Triple::ppc64le;
+ bool IsLittleEndian = TT.getArch() == TargetTuple::ppc64le;
return new ELFPPCAsmBackend(T, IsLittleEndian, OSABI);
}
//===----------------------------------------------------------------------===//
#include "PPCMCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
using namespace llvm;
void PPCMCAsmInfoDarwin::anchor() { }
-PPCMCAsmInfoDarwin::PPCMCAsmInfoDarwin(bool is64Bit, const Triple& T) {
+PPCMCAsmInfoDarwin::PPCMCAsmInfoDarwin(bool is64Bit, const TargetTuple &TT) {
if (is64Bit) {
PointerSize = CalleeSaveStackSlotSize = 8;
}
// The installed assembler for OSX < 10.6 lacks some directives.
// FIXME: this should really be a check on the assembler characteristics
// rather than OS version
- if (T.isMacOSX() && T.isMacOSXVersionLT(10, 6))
+ if (TT.isMacOSX() && TT.isMacOSXVersionLT(10, 6))
HasWeakDefCanBeHiddenDirective = false;
UseIntegratedAssembler = true;
void PPCELFMCAsmInfo::anchor() { }
-PPCELFMCAsmInfo::PPCELFMCAsmInfo(bool is64Bit, const Triple& T) {
+PPCELFMCAsmInfo::PPCELFMCAsmInfo(bool is64Bit, const TargetTuple &TT) {
// FIXME: This is not always needed. For example, it is not needed in the
// v2 abi.
NeedsLocalForSize = true;
if (is64Bit) {
PointerSize = CalleeSaveStackSlotSize = 8;
}
- IsLittleEndian = T.getArch() == Triple::ppc64le;
+ IsLittleEndian = TT.getArch() == TargetTuple::ppc64le;
// ".comm align is in bytes but .align is pow-2."
AlignmentIsInBytes = false;
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class PPCMCAsmInfoDarwin : public MCAsmInfoDarwin {
virtual void anchor();
public:
- explicit PPCMCAsmInfoDarwin(bool is64Bit, const Triple &);
+ explicit PPCMCAsmInfoDarwin(bool is64Bit, const TargetTuple &);
};
class PPCELFMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit PPCELFMCAsmInfo(bool is64Bit, const Triple &);
+ explicit PPCELFMCAsmInfo(bool is64Bit, const TargetTuple &);
};
} // namespace llvm
// Return the thread-pointer register's encoding.
Fixups.push_back(MCFixup::create(0, MO.getExpr(),
(MCFixupKind)PPC::fixup_ppc_nofixup));
- const Triple &TT = STI.getTargetTriple();
- bool isPPC64 = TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le;
+ const TargetTuple &TT = STI.getTargetTuple();
+ bool isPPC64 = TT.getArch() == TargetTuple::ppc64 ||
+ TT.getArch() == TargetTuple::ppc64le;
return CTX.getRegisterInfo()->getEncodingValue(isPPC64 ? PPC::X13 : PPC::R2);
}
return X;
}
-static MCRegisterInfo *createPPCMCRegisterInfo(const Triple &TT) {
- bool isPPC64 =
- (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le);
+static MCRegisterInfo *createPPCMCRegisterInfo(const TargetTuple &TT) {
+ bool isPPC64 = (TT.getArch() == TargetTuple::ppc64 ||
+ TT.getArch() == TargetTuple::ppc64le);
unsigned Flavour = isPPC64 ? 0 : 1;
unsigned RA = isPPC64 ? PPC::LR8 : PPC::LR;
return X;
}
-static MCSubtargetInfo *createPPCMCSubtargetInfo(const Triple &TT,
+static MCSubtargetInfo *createPPCMCSubtargetInfo(const TargetTuple &TT,
StringRef CPU, StringRef FS) {
return createPPCMCSubtargetInfoImpl(TT, CPU, FS);
}
static MCAsmInfo *createPPCMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TheTriple) {
- bool isPPC64 = (TheTriple.getArch() == Triple::ppc64 ||
- TheTriple.getArch() == Triple::ppc64le);
+ const TargetTuple &TT) {
+ bool isPPC64 = (TT.getArch() == TargetTuple::ppc64 ||
+ TT.getArch() == TargetTuple::ppc64le);
MCAsmInfo *MAI;
- if (TheTriple.isOSDarwin())
- MAI = new PPCMCAsmInfoDarwin(isPPC64, TheTriple);
+ if (TT.isOSDarwin())
+ MAI = new PPCMCAsmInfoDarwin(isPPC64, TT);
else
- MAI = new PPCELFMCAsmInfo(isPPC64, TheTriple);
+ MAI = new PPCELFMCAsmInfo(isPPC64, TT);
// Initial state of the frame pointer is R1.
unsigned Reg = isPPC64 ? PPC::X1 : PPC::R1;
return MAI;
}
-static MCCodeGenInfo *createPPCMCCodeGenInfo(const Triple &TT, Reloc::Model RM,
+static MCCodeGenInfo *createPPCMCCodeGenInfo(const TargetTuple &TT,
+ Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
RM = Reloc::Static;
}
if (CM == CodeModel::Default) {
- if (!TT.isOSDarwin() &&
- (TT.getArch() == Triple::ppc64 || TT.getArch() == Triple::ppc64le))
+ if (!TT.isOSDarwin() && (TT.getArch() == TargetTuple::ppc64 ||
+ TT.getArch() == TargetTuple::ppc64le))
CM = CodeModel::Medium;
}
X->initMCCodeGenInfo(RM, CM, OL);
static MCTargetStreamer *
createObjectTargetStreamer(MCStreamer &S, const MCSubtargetInfo &STI) {
- const Triple &TT = STI.getTargetTriple();
+ const TargetTuple &TT = STI.getTargetTuple();
if (TT.isOSBinFormatELF())
return new PPCTargetELFStreamer(S);
return new PPCTargetMachOStreamer(S);
}
-static MCInstPrinter *createPPCMCInstPrinter(const Triple &T,
+static MCInstPrinter *createPPCMCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
const MCRegisterInfo &MRI) {
- return new PPCInstPrinter(MAI, MII, MRI, T.isOSDarwin());
+ return new PPCInstPrinter(MAI, MII, MRI, TT.isOSDarwin());
}
extern "C" void LLVMInitializePowerPCTargetMC() {
class MCRegisterInfo;
class MCSubtargetInfo;
class Target;
-class Triple;
+class TargetTuple;
class StringRef;
class raw_pwrite_stream;
class raw_ostream;
MCContext &Ctx);
MCAsmBackend *createPPCAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
/// Construct an PPC ELF object writer.
MCObjectWriter *createPPCELFObjectWriter(raw_pwrite_stream &OS, bool Is64Bit,
PPCSubtarget::PPCSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const PPCTargetMachine &TM)
- : PPCGenSubtargetInfo(TT, CPU, FS), TargetTriple(TT),
+ : PPCGenSubtargetInfo(TargetTuple(TT), CPU, FS), TargetTriple(TT),
IsPPC64(TargetTriple.getArch() == Triple::ppc64 ||
TargetTriple.getArch() == Triple::ppc64le),
TM(TM), FrameLowering(initializeSubtargetDependencies(CPU, FS)),
bool parseDirectiveWord(unsigned Size, SMLoc L);
bool is64Bit() const {
- return STI.getTargetTriple().getArch() == Triple::sparcv9;
+ return STI.getTargetTuple().getArch() == TargetTuple::sparcv9;
}
void expandSET(MCInst &Inst, SMLoc IDLoc,
};
class ELFSparcAsmBackend : public SparcAsmBackend {
- Triple::OSType OSType;
+ TargetTuple::OSType OSType;
+
public:
- ELFSparcAsmBackend(const Target &T, Triple::OSType OSType) :
- SparcAsmBackend(T), OSType(OSType) { }
+ ELFSparcAsmBackend(const Target &T, TargetTuple::OSType OSType)
+ : SparcAsmBackend(T), OSType(OSType) {}
void applyFixup(const MCFixup &Fixup, char *Data, unsigned DataSize,
uint64_t Value, bool IsPCRel) const override {
MCAsmBackend *llvm::createSparcAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
return new ELFSparcAsmBackend(T, TT.getOS());
}
#include "SparcMCAsmInfo.h"
#include "SparcMCExpr.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCStreamer.h"
using namespace llvm;
void SparcELFMCAsmInfo::anchor() {}
-SparcELFMCAsmInfo::SparcELFMCAsmInfo(const Triple &TheTriple) {
- bool isV9 = (TheTriple.getArch() == Triple::sparcv9);
- IsLittleEndian = (TheTriple.getArch() == Triple::sparcel);
+SparcELFMCAsmInfo::SparcELFMCAsmInfo(const TargetTuple &TT) {
+ bool isV9 = (TT.getArch() == TargetTuple::sparcv9);
+ IsLittleEndian = (TT.getArch() == TargetTuple::sparcel);
if (isV9) {
PointerSize = CalleeSaveStackSlotSize = 8;
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class SparcELFMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit SparcELFMCAsmInfo(const Triple &TheTriple);
+ explicit SparcELFMCAsmInfo(const TargetTuple &TT);
const MCExpr*
getExprForPersonalitySymbol(const MCSymbol *Sym, unsigned Encoding,
MCStreamer &Streamer) const override;
#include "SparcGenRegisterInfo.inc"
static MCAsmInfo *createSparcMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TT) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI = new SparcELFMCAsmInfo(TT);
unsigned Reg = MRI.getDwarfRegNum(SP::O6, true);
MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, Reg, 0);
}
static MCAsmInfo *createSparcV9MCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TT) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI = new SparcELFMCAsmInfo(TT);
unsigned Reg = MRI.getDwarfRegNum(SP::O6, true);
MCCFIInstruction Inst = MCCFIInstruction::createDefCfa(nullptr, Reg, 2047);
return X;
}
-static MCRegisterInfo *createSparcMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createSparcMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitSparcMCRegisterInfo(X, SP::O7);
return X;
}
static MCSubtargetInfo *
-createSparcMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+createSparcMCSubtargetInfo(const TargetTuple &TT, StringRef CPU, StringRef FS) {
if (CPU.empty())
- CPU = (TT.getArch() == Triple::sparcv9) ? "v9" : "v8";
+ CPU = (TT.getArch() == TargetTuple::sparcv9) ? "v9" : "v8";
return createSparcMCSubtargetInfoImpl(TT, CPU, FS);
}
//
// All code models require that the text segment is smaller than 2GB.
-static MCCodeGenInfo *createSparcMCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createSparcMCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCCodeGenInfo *createSparcV9MCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createSparcV9MCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return new SparcTargetAsmStreamer(S, OS);
}
-static MCInstPrinter *createSparcMCInstPrinter(const Triple &T,
+static MCInstPrinter *createSparcMCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
class MCRegisterInfo;
class MCSubtargetInfo;
class Target;
-class Triple;
+class TargetTuple;
class StringRef;
class raw_pwrite_stream;
class raw_ostream;
const MCRegisterInfo &MRI,
MCContext &Ctx);
MCAsmBackend *createSparcAsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createSparcELFObjectWriter(raw_pwrite_stream &OS, bool Is64Bit,
bool IsLIttleEndian, uint8_t OSABI);
} // End llvm namespace
SparcSubtarget::SparcSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, TargetMachine &TM,
bool is64Bit)
- : SparcGenSubtargetInfo(TT, CPU, FS), Is64Bit(is64Bit),
+ : SparcGenSubtargetInfo(TargetTuple(TT), CPU, FS), Is64Bit(is64Bit),
InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
FrameLowering(*this) {}
MCAsmBackend *llvm::createSystemZMCAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU) {
+ const TargetTuple &TT,
+ StringRef CPU) {
uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new SystemZMCAsmBackend(OSABI);
}
using namespace llvm;
-SystemZMCAsmInfo::SystemZMCAsmInfo(const Triple &TT) {
+SystemZMCAsmInfo::SystemZMCAsmInfo(const TargetTuple &TT) {
PointerSize = 8;
CalleeSaveStackSlotSize = 8;
IsLittleEndian = false;
#include "llvm/Support/Compiler.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class SystemZMCAsmInfo : public MCAsmInfoELF {
public:
- explicit SystemZMCAsmInfo(const Triple &TT);
+ explicit SystemZMCAsmInfo(const TargetTuple &TT);
};
} // end namespace llvm
}
static MCAsmInfo *createSystemZMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TT) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI = new SystemZMCAsmInfo(TT);
MCCFIInstruction Inst =
MCCFIInstruction::createDefCfa(nullptr,
return X;
}
-static MCRegisterInfo *createSystemZMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createSystemZMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitSystemZMCRegisterInfo(X, SystemZ::R14D);
return X;
}
-static MCSubtargetInfo *
-createSystemZMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+static MCSubtargetInfo *createSystemZMCSubtargetInfo(const TargetTuple &TT,
+ StringRef CPU,
+ StringRef FS) {
return createSystemZMCSubtargetInfoImpl(TT, CPU, FS);
}
-static MCCodeGenInfo *createSystemZMCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createSystemZMCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createSystemZMCInstPrinter(const Triple &T,
+static MCInstPrinter *createSystemZMCInstPrinter(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
class MCSubtargetInfo;
class StringRef;
class Target;
-class Triple;
+class TargetTuple;
class raw_pwrite_stream;
class raw_ostream;
MCAsmBackend *createSystemZMCAsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCObjectWriter *createSystemZObjectWriter(raw_pwrite_stream &OS, uint8_t OSABI);
} // end namespace llvm
SystemZSubtarget::SystemZSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS,
const TargetMachine &TM)
- : SystemZGenSubtargetInfo(TT, CPU, FS), HasDistinctOps(false),
+ : SystemZGenSubtargetInfo(TargetTuple(TT), CPU, FS), HasDistinctOps(false),
HasLoadStoreOnCond(false), HasHighWord(false), HasFPExtension(false),
HasPopulationCount(false), HasFastSerialization(false),
HasInterlockedAccess1(false), HasMiscellaneousExtensions(false),
// TargetSubtargetInfo Class
//
TargetSubtargetInfo::TargetSubtargetInfo(
- const Triple &TT, StringRef CPU, StringRef FS,
+ const TargetTuple &TT, StringRef CPU, StringRef FS,
ArrayRef<SubtargetFeatureKV> PF, ArrayRef<SubtargetFeatureKV> PD,
const SubtargetInfoKV *ProcSched, const MCWriteProcResEntry *WPR,
const MCWriteLatencyEntry *WL, const MCReadAdvanceEntry *RA,
X86AsmInstrumentation *
CreateX86AsmInstrumentation(const MCTargetOptions &MCOptions,
const MCContext &Ctx, const MCSubtargetInfo &STI) {
- Triple T(STI.getTargetTriple());
- const bool hasCompilerRTSupport = T.isOSLinux();
+ const TargetTuple &TT = STI.getTargetTuple();
+ const bool hasCompilerRTSupport = TT.isOSLinux();
if (ClAsanInstrumentAssembly && hasCompilerRTSupport &&
MCOptions.SanitizeAddress) {
if (STI.getFeatureBits()[X86::Mode32Bit] != 0)
MCAsmBackend *llvm::createX86_32AsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TheTriple,
+ const TargetTuple &TT,
StringRef CPU) {
- if (TheTriple.isOSBinFormatMachO())
+ if (TT.isOSBinFormatMachO())
return new DarwinX86_32AsmBackend(T, MRI, CPU);
- if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
+ if (TT.isOSWindows() && !TT.isOSBinFormatELF())
return new WindowsX86AsmBackend(T, false, CPU);
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
return new ELFX86_32AsmBackend(T, OSABI, CPU);
}
MCAsmBackend *llvm::createX86_64AsmBackend(const Target &T,
const MCRegisterInfo &MRI,
- const Triple &TheTriple,
+ const TargetTuple &TT,
StringRef CPU) {
- if (TheTriple.isOSBinFormatMachO()) {
+ if (TT.isOSBinFormatMachO()) {
MachO::CPUSubTypeX86 CS =
- StringSwitch<MachO::CPUSubTypeX86>(TheTriple.getArchName())
+ StringSwitch<MachO::CPUSubTypeX86>(TT.getArchName())
.Case("x86_64h", MachO::CPU_SUBTYPE_X86_64_H)
.Default(MachO::CPU_SUBTYPE_X86_64_ALL);
return new DarwinX86_64AsmBackend(T, MRI, CPU, CS);
}
- if (TheTriple.isOSWindows() && !TheTriple.isOSBinFormatELF())
+ if (TT.isOSWindows() && !TT.isOSBinFormatELF())
return new WindowsX86AsmBackend(T, true, CPU);
- uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TheTriple.getOS());
+ uint8_t OSABI = MCELFObjectTargetWriter::getOSABI(TT.getOS());
- if (TheTriple.getEnvironment() == Triple::GNUX32)
+ if (TT.getEnvironment() == TargetTuple::GNUX32)
return new ELFX86_X32AsmBackend(T, OSABI, CPU);
return new ELFX86_64AsmBackend(T, OSABI, CPU);
}
//===----------------------------------------------------------------------===//
#include "X86MCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCSectionELF.h"
void X86MCAsmInfoDarwin::anchor() { }
-X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const Triple &T) {
- bool is64Bit = T.getArch() == Triple::x86_64;
+X86MCAsmInfoDarwin::X86MCAsmInfoDarwin(const TargetTuple &TT) {
+ bool is64Bit = TT.getArch() == TargetTuple::x86_64;
if (is64Bit)
PointerSize = CalleeSaveStackSlotSize = 8;
// old assembler lacks some directives
// FIXME: this should really be a check on the assembler characteristics
// rather than OS version
- if (T.isMacOSX() && T.isMacOSXVersionLT(10, 6))
+ if (TT.isMacOSX() && TT.isMacOSXVersionLT(10, 6))
HasWeakDefCanBeHiddenDirective = false;
// Assume ld64 is new enough that the abs-ified FDE relocs may be used
UseIntegratedAssembler = true;
}
-X86_64MCAsmInfoDarwin::X86_64MCAsmInfoDarwin(const Triple &Triple)
- : X86MCAsmInfoDarwin(Triple) {
-}
+X86_64MCAsmInfoDarwin::X86_64MCAsmInfoDarwin(const TargetTuple &TT)
+ : X86MCAsmInfoDarwin(TT) {}
void X86ELFMCAsmInfo::anchor() { }
-X86ELFMCAsmInfo::X86ELFMCAsmInfo(const Triple &T) {
- bool is64Bit = T.getArch() == Triple::x86_64;
- bool isX32 = T.getEnvironment() == Triple::GNUX32;
+X86ELFMCAsmInfo::X86ELFMCAsmInfo(const TargetTuple &TT) {
+ bool is64Bit = TT.getArch() == TargetTuple::x86_64;
+ bool isX32 = TT.getEnvironment() == TargetTuple::GNUX32;
// For ELF, x86-64 pointer size depends on the ABI.
// For x86-64 without the x32 ABI, pointer size is 8. For x86 and for x86-64
void X86MCAsmInfoMicrosoft::anchor() { }
-X86MCAsmInfoMicrosoft::X86MCAsmInfoMicrosoft(const Triple &Triple) {
- if (Triple.getArch() == Triple::x86_64) {
+X86MCAsmInfoMicrosoft::X86MCAsmInfoMicrosoft(const TargetTuple &TT) {
+ if (TT.getArch() == TargetTuple::x86_64) {
PrivateGlobalPrefix = ".L";
PrivateLabelPrefix = ".L";
PointerSize = 8;
void X86MCAsmInfoGNUCOFF::anchor() { }
-X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const Triple &Triple) {
- assert(Triple.isOSWindows() && "Windows is the only supported COFF target");
- if (Triple.getArch() == Triple::x86_64) {
+X86MCAsmInfoGNUCOFF::X86MCAsmInfoGNUCOFF(const TargetTuple &TT) {
+ assert(TT.isOSWindows() && "Windows is the only supported COFF target");
+ if (TT.getArch() == TargetTuple::x86_64) {
PrivateGlobalPrefix = ".L";
PrivateLabelPrefix = ".L";
PointerSize = 8;
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class X86MCAsmInfoDarwin : public MCAsmInfoDarwin {
virtual void anchor();
public:
- explicit X86MCAsmInfoDarwin(const Triple &Triple);
+ explicit X86MCAsmInfoDarwin(const TargetTuple &TT);
};
struct X86_64MCAsmInfoDarwin : public X86MCAsmInfoDarwin {
- explicit X86_64MCAsmInfoDarwin(const Triple &Triple);
+ explicit X86_64MCAsmInfoDarwin(const TargetTuple &TT);
const MCExpr *
getExprForPersonalitySymbol(const MCSymbol *Sym, unsigned Encoding,
MCStreamer &Streamer) const override;
void anchor() override;
public:
- explicit X86ELFMCAsmInfo(const Triple &Triple);
+ explicit X86ELFMCAsmInfo(const TargetTuple &TT);
};
class X86MCAsmInfoMicrosoft : public MCAsmInfoMicrosoft {
void anchor() override;
public:
- explicit X86MCAsmInfoMicrosoft(const Triple &Triple);
+ explicit X86MCAsmInfoMicrosoft(const TargetTuple &TT);
};
class X86MCAsmInfoGNUCOFF : public MCAsmInfoGNUCOFF {
void anchor() override;
public:
- explicit X86MCAsmInfoGNUCOFF(const Triple &Triple);
+ explicit X86MCAsmInfoGNUCOFF(const TargetTuple &TT);
};
} // namespace llvm
#include "InstPrinter/X86ATTInstPrinter.h"
#include "InstPrinter/X86IntelInstPrinter.h"
#include "X86MCAsmInfo.h"
-#include "llvm/ADT/Triple.h"
+#include "llvm/ADT/TargetTuple.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrAnalysis.h"
#include "llvm/MC/MCInstrInfo.h"
#define GET_SUBTARGETINFO_MC_DESC
#include "X86GenSubtargetInfo.inc"
-std::string X86_MC::ParseX86Triple(const Triple &TT) {
+std::string X86_MC::ParseX86TargetTuple(const TargetTuple &TT) {
std::string FS;
- if (TT.getArch() == Triple::x86_64)
+ if (TT.getArch() == TargetTuple::x86_64)
FS = "+64bit-mode,-32bit-mode,-16bit-mode";
- else if (TT.getEnvironment() != Triple::CODE16)
+ else if (TT.getEnvironment() != TargetTuple::CODE16)
FS = "-64bit-mode,+32bit-mode,-16bit-mode";
else
FS = "-64bit-mode,-32bit-mode,+16bit-mode";
return FS;
}
-unsigned X86_MC::getDwarfRegFlavour(const Triple &TT, bool isEH) {
- if (TT.getArch() == Triple::x86_64)
+unsigned X86_MC::getDwarfRegFlavour(const TargetTuple &TT, bool isEH) {
+ if (TT.getArch() == TargetTuple::x86_64)
return DWARFFlavour::X86_64;
if (TT.isOSDarwin())
}
}
-MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const Triple &TT,
+MCSubtargetInfo *X86_MC::createX86MCSubtargetInfo(const TargetTuple &TT,
StringRef CPU, StringRef FS) {
- std::string ArchFS = X86_MC::ParseX86Triple(TT);
+ std::string ArchFS = X86_MC::ParseX86TargetTuple(TT);
if (!FS.empty()) {
if (!ArchFS.empty())
ArchFS = (Twine(ArchFS) + "," + FS).str();
return X;
}
-static MCRegisterInfo *createX86MCRegisterInfo(const Triple &TT) {
- unsigned RA = (TT.getArch() == Triple::x86_64)
+static MCRegisterInfo *createX86MCRegisterInfo(const TargetTuple &TT) {
+ unsigned RA = (TT.getArch() == TargetTuple::x86_64)
? X86::RIP // Should have dwarf #16.
: X86::EIP; // Should have dwarf #8.
}
static MCAsmInfo *createX86MCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TheTriple) {
- bool is64Bit = TheTriple.getArch() == Triple::x86_64;
+ const TargetTuple &TT) {
+ bool is64Bit = TT.getArch() == TargetTuple::x86_64;
MCAsmInfo *MAI;
- if (TheTriple.isOSBinFormatMachO()) {
+ if (TT.isOSBinFormatMachO()) {
if (is64Bit)
- MAI = new X86_64MCAsmInfoDarwin(TheTriple);
+ MAI = new X86_64MCAsmInfoDarwin(TT);
else
- MAI = new X86MCAsmInfoDarwin(TheTriple);
- } else if (TheTriple.isOSBinFormatELF()) {
+ MAI = new X86MCAsmInfoDarwin(TT);
+ } else if (TT.isOSBinFormatELF()) {
// Force the use of an ELF container.
- MAI = new X86ELFMCAsmInfo(TheTriple);
- } else if (TheTriple.isWindowsMSVCEnvironment() ||
- TheTriple.isWindowsCoreCLREnvironment()) {
- MAI = new X86MCAsmInfoMicrosoft(TheTriple);
- } else if (TheTriple.isOSCygMing() ||
- TheTriple.isWindowsItaniumEnvironment()) {
- MAI = new X86MCAsmInfoGNUCOFF(TheTriple);
+ MAI = new X86ELFMCAsmInfo(TT);
+ } else if (TT.isWindowsMSVCEnvironment() ||
+ TT.isWindowsCoreCLREnvironment()) {
+ MAI = new X86MCAsmInfoMicrosoft(TT);
+ } else if (TT.isOSCygMing() || TT.isWindowsItaniumEnvironment()) {
+ MAI = new X86MCAsmInfoGNUCOFF(TT);
} else {
// The default is ELF.
- MAI = new X86ELFMCAsmInfo(TheTriple);
+ MAI = new X86ELFMCAsmInfo(TT);
}
// Initialize initial frame state.
return MAI;
}
-static MCCodeGenInfo *createX86MCCodeGenInfo(const Triple &TT, Reloc::Model RM,
+static MCCodeGenInfo *createX86MCCodeGenInfo(const TargetTuple &TT,
+ Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
MCCodeGenInfo *X = new MCCodeGenInfo();
- bool is64Bit = TT.getArch() == Triple::x86_64;
+ bool is64Bit = TT.getArch() == TargetTuple::x86_64;
if (RM == Reloc::Default) {
// Darwin defaults to PIC in 64 bit mode and dynamic-no-pic in 32 bit mode.
return X;
}
-static MCInstPrinter *createX86MCInstPrinter(const Triple &T,
+static MCInstPrinter *createX86MCInstPrinter(const TargetTuple &TT,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
return nullptr;
}
-static MCRelocationInfo *createX86MCRelocationInfo(const Triple &TheTriple,
+static MCRelocationInfo *createX86MCRelocationInfo(const TargetTuple &TT,
MCContext &Ctx) {
- if (TheTriple.isOSBinFormatMachO() && TheTriple.getArch() == Triple::x86_64)
+ if (TT.isOSBinFormatMachO() && TT.getArch() == TargetTuple::x86_64)
return createX86_64MachORelocationInfo(Ctx);
- else if (TheTriple.isOSBinFormatELF())
+ else if (TT.isOSBinFormatELF())
return createX86_64ELFRelocationInfo(Ctx);
// Default to the stock relocation info.
- return llvm::createMCRelocationInfo(TheTriple, Ctx);
+ return llvm::createMCRelocationInfo(TT, Ctx);
}
static MCInstrAnalysis *createX86MCInstrAnalysis(const MCInstrInfo *Info) {
class MCRelocationInfo;
class MCStreamer;
class Target;
-class Triple;
+class TargetTuple;
class StringRef;
class raw_ostream;
class raw_pwrite_stream;
}
namespace X86_MC {
-std::string ParseX86Triple(const Triple &TT);
+std::string ParseX86TargetTuple(const TargetTuple &TT);
-unsigned getDwarfRegFlavour(const Triple &TT, bool isEH);
+unsigned getDwarfRegFlavour(const TargetTuple &TT, bool isEH);
void InitLLVM2SEHRegisterMapping(MCRegisterInfo *MRI);
/// Create a X86 MCSubtargetInfo instance. This is exposed so Asm parser, etc.
/// do not need to go through TargetRegistry.
-MCSubtargetInfo *createX86MCSubtargetInfo(const Triple &TT, StringRef CPU,
+MCSubtargetInfo *createX86MCSubtargetInfo(const TargetTuple &TT, StringRef CPU,
StringRef FS);
}
MCContext &Ctx);
MCAsmBackend *createX86_32AsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
MCAsmBackend *createX86_64AsmBackend(const Target &T, const MCRegisterInfo &MRI,
- const Triple &TT, StringRef CPU);
+ const TargetTuple &TT, StringRef CPU);
/// Construct an X86 Windows COFF machine code streamer which will generate
/// PE/COFF format object files.
X86RegisterInfo::X86RegisterInfo(const Triple &TT)
: X86GenRegisterInfo((TT.isArch64Bit() ? X86::RIP : X86::EIP),
- X86_MC::getDwarfRegFlavour(TT, false),
- X86_MC::getDwarfRegFlavour(TT, true),
+ X86_MC::getDwarfRegFlavour(TargetTuple(TT), false),
+ X86_MC::getDwarfRegFlavour(TargetTuple(TT), true),
(TT.isArch64Bit() ? X86::RIP : X86::EIP)) {
X86_MC::InitLLVM2SEHRegisterMapping(this);
X86Subtarget::X86Subtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const X86TargetMachine &TM,
unsigned StackAlignOverride)
- : X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
+ : X86GenSubtargetInfo(TargetTuple(TT), CPU, FS), X86ProcFamily(Others),
PICStyle(PICStyles::None), TargetTriple(TT),
StackAlignOverride(StackAlignOverride),
In64BitMode(TargetTriple.getArch() == Triple::x86_64),
void XCoreMCAsmInfo::anchor() { }
-XCoreMCAsmInfo::XCoreMCAsmInfo(const Triple &TT) {
+XCoreMCAsmInfo::XCoreMCAsmInfo(const TargetTuple &TT) {
SupportsDebugInformation = true;
Data16bitsDirective = "\t.short\t";
Data32bitsDirective = "\t.long\t";
#include "llvm/MC/MCAsmInfoELF.h"
namespace llvm {
-class Triple;
+class TargetTuple;
class XCoreMCAsmInfo : public MCAsmInfoELF {
void anchor() override;
public:
- explicit XCoreMCAsmInfo(const Triple &TT);
+ explicit XCoreMCAsmInfo(const TargetTuple &TT);
};
} // namespace llvm
return X;
}
-static MCRegisterInfo *createXCoreMCRegisterInfo(const Triple &TT) {
+static MCRegisterInfo *createXCoreMCRegisterInfo(const TargetTuple &TT) {
MCRegisterInfo *X = new MCRegisterInfo();
InitXCoreMCRegisterInfo(X, XCore::LR);
return X;
}
static MCSubtargetInfo *
-createXCoreMCSubtargetInfo(const Triple &TT, StringRef CPU, StringRef FS) {
+createXCoreMCSubtargetInfo(const TargetTuple &TT, StringRef CPU, StringRef FS) {
return createXCoreMCSubtargetInfoImpl(TT, CPU, FS);
}
static MCAsmInfo *createXCoreMCAsmInfo(const MCRegisterInfo &MRI,
- const Triple &TT) {
+ const TargetTuple &TT) {
MCAsmInfo *MAI = new XCoreMCAsmInfo(TT);
// Initial state of the frame pointer is SP.
return MAI;
}
-static MCCodeGenInfo *createXCoreMCCodeGenInfo(const Triple &TT,
+static MCCodeGenInfo *createXCoreMCCodeGenInfo(const TargetTuple &TT,
Reloc::Model RM,
CodeModel::Model CM,
CodeGenOpt::Level OL) {
return X;
}
-static MCInstPrinter *createXCoreMCInstPrinter(const Triple &T,
+static MCInstPrinter *createXCoreMCInstPrinter(const TargetTuple &T,
unsigned SyntaxVariant,
const MCAsmInfo &MAI,
const MCInstrInfo &MII,
XCoreSubtarget::XCoreSubtarget(const Triple &TT, const std::string &CPU,
const std::string &FS, const TargetMachine &TM)
- : XCoreGenSubtargetInfo(TT, CPU, FS), InstrInfo(), FrameLowering(*this),
- TLInfo(TM, *this), TSInfo() {}
+ : XCoreGenSubtargetInfo(TargetTuple(TT), CPU, FS), InstrInfo(),
+ FrameLowering(*this), TLInfo(TM, *this), TSInfo() {}
if (EC)
return error(Twine(OutputFilename) + ": " + EC.message(), Context);
- MS = TheTarget->createMCObjectStreamer(TheTriple, *MC, *MAB, *OutFile, MCE,
- *MSTI, false,
+ MS = TheTarget->createMCObjectStreamer(TargetTuple(TheTriple), *MC, *MAB,
+ *OutFile, MCE, *MSTI, false,
/*DWARFMustBeAtTheEnd*/ false);
if (!MS)
return error("no object streamer for target " + TripleName, Context);
MCInstPrinter *IP = nullptr;
if (FileType == OFT_AssemblyFile) {
- IP = TheTarget->createMCInstPrinter(Triple(TripleName), OutputAsmVariant,
- *MAI, *MCII, *MRI);
+ IP = TheTarget->createMCInstPrinter(TargetTuple(Triple(TripleName)),
+ OutputAsmVariant, *MAI, *MCII, *MRI);
// Set the display preference for hex vs. decimal immediates.
IP->setPrintImmHex(PrintImmHex);
MCCodeEmitter *CE = TheTarget->createMCCodeEmitter(*MCII, *MRI, Ctx);
MCAsmBackend *MAB = TheTarget->createMCAsmBackend(*MRI, TripleName, MCPU);
- Str.reset(TheTarget->createMCObjectStreamer(TheTriple, Ctx, *MAB, *OS, CE,
- *STI, RelaxAll,
+ Str.reset(TheTarget->createMCObjectStreamer(TargetTuple(TheTriple), Ctx,
+ *MAB, *OS, CE, *STI, RelaxAll,
/*DWARFMustBeAtTheEnd*/ false));
if (NoExecStack)
Str->InitSections(true);
}
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
- Triple(TripleName), AsmPrinterVariant, *AsmInfo, *InstrInfo, *MRI));
+ TargetTuple(Triple(TripleName)), AsmPrinterVariant, *AsmInfo, *InstrInfo,
+ *MRI));
// Set the display preference for hex vs. decimal immediates.
IP->setPrintImmHex(PrintImmHex);
// Comment stream and backing vector.
}
int ThumbAsmPrinterVariant = ThumbAsmInfo->getAssemblerDialect();
ThumbIP.reset(ThumbTarget->createMCInstPrinter(
- Triple(ThumbTripleName), ThumbAsmPrinterVariant, *ThumbAsmInfo,
- *ThumbInstrInfo, *ThumbMRI));
+ TargetTuple(Triple(ThumbTripleName)), ThumbAsmPrinterVariant,
+ *ThumbAsmInfo, *ThumbInstrInfo, *ThumbMRI));
// Set the display preference for hex vs. decimal immediates.
ThumbIP->setPrintImmHex(PrintImmHex);
}
TheTarget->createMCInstrAnalysis(MII.get()));
int AsmPrinterVariant = AsmInfo->getAssemblerDialect();
- std::unique_ptr<MCInstPrinter> IP(TheTarget->createMCInstPrinter(
- Triple(TripleName), AsmPrinterVariant, *AsmInfo, *MII, *MRI));
+ std::unique_ptr<MCInstPrinter> IP(
+ TheTarget->createMCInstPrinter(TargetTuple(Triple(TripleName)),
+ AsmPrinterVariant, *AsmInfo, *MII, *MRI));
if (!IP) {
errs() << "error: no instruction printer for target " << TripleName
<< '\n';
std::unique_ptr<MCInstrInfo> MII(TheTarget->createMCInstrInfo());
- std::unique_ptr<MCInstPrinter> InstPrinter(
- TheTarget->createMCInstPrinter(Triple(TripleName), 0, *MAI, *MII, *MRI));
+ std::unique_ptr<MCInstPrinter> InstPrinter(TheTarget->createMCInstPrinter(
+ TargetTuple(Triple(TripleName)), 0, *MAI, *MII, *MRI));
// Load any dylibs requested on the command line.
loadDylibs();
// MCInstrInfo initialization routine.
OS << "static inline MCSubtargetInfo *create" << Target
<< "MCSubtargetInfoImpl("
- << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
+ << "const TargetTuple &TT, StringRef CPU, StringRef FS) {\n";
OS << " return new MCSubtargetInfo(TT, CPU, FS, ";
if (NumFeatures)
OS << Target << "FeatureKV, ";
OS << "namespace llvm {\n";
OS << "class DFAPacketizer;\n";
OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
- << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
+ << " explicit " << ClassName << "(const TargetTuple &TT, StringRef CPU, "
<< "StringRef FS);\n"
<< "public:\n"
<< " unsigned resolveSchedClass(unsigned SchedClass, "
OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
}
- OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
- << "StringRef FS)\n"
+ OS << ClassName << "::" << ClassName
+ << "(const TargetTuple &TT, StringRef CPU, StringRef FS)\n"
<< " : TargetSubtargetInfo(TT, CPU, FS, ";
if (NumFeatures)
OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";