BlockFrequency BiasP;
/// Value - Output value of this node computed from the Bias and links.
- /// This is always in the range [-1;1]. A positive number means the variable
- /// should go in a register through this bundle.
+ /// This is always on of the values {-1, 0, 1}. A positive number means the
+ /// variable should go in a register through this bundle.
int Value;
typedef SmallVector<std::pair<BlockFrequency, unsigned>, 4> LinkVector;
/// Links - (Weight, BundleNo) for all transparent blocks connecting to other
- /// bundles. The weights are all positive and add up to at most 2, weights
- /// from ingoing and outgoing nodes separately add up to a most 1. The weight
- /// sum can be less than 2 when the variable is not live into / out of some
- /// connected basic blocks.
+ /// bundles. The weights are all positive block frequencies.
LinkVector Links;
/// SumLinkWeights - Cached sum of the weights of all links + ThresHold.
SumP += I->first;
}
- // The weighted sum is going to be in the range [-2;2]. Ideally, we should
- // simply set Value = sign(Sum), but we will add a dead zone around 0 for
- // two reasons:
+ // Each weighted sum is going to be less than the total frequency of the
+ // bundle. Ideally, we should simply set Value = sign(SumP - SumN), but we
+ // will add a dead zone around 0 for two reasons:
+ //
// 1. It avoids arbitrary bias when all links are 0 as is possible during
// initial iterations.
// 2. It helps tame rounding errors when the links nominally sum to 0.
+ //
bool Before = preferReg();
if (SumN >= SumP + Threshold)
Value = -1;
// landing pads, or loops with many 'continue' statements. It is difficult to
// allocate registers when so many different blocks are involved.
//
- // Give a small negative bias to large bundles such that 1/32 of the
- // connected blocks need to be interested before we consider expanding the
- // region through the bundle. This helps compile time by limiting the number
- // of blocks visited and the number of links in the Hopfield network.
+ // Give a small negative bias to large bundles such that a substantial
+ // fraction of the connected blocks need to be interested before we consider
+ // expanding the region through the bundle. This helps compile time by
+ // limiting the number of blocks visited and the number of links in the
+ // Hopfield network.
if (bundles->getBlocks(n).size() > 100) {
nodes[n].BiasP = 0;
nodes[n].BiasN = (BlockFrequency::getEntryFrequency() / 16);