const TargetMachine &getTargetMachine() const { return TM; }
const DataLayout *getDataLayout() const { return TM.getDataLayout(); }
- bool isBigEndian() const { return !IsLittleEndian; }
- bool isLittleEndian() const { return IsLittleEndian; }
virtual bool useSoftFloat() const { return false; }
/// Return the pointer type for the given address space, defaults to
/// When splitting a value of the specified type into parts, does the Lo
/// or Hi part come first? This usually follows the endianness, except
/// for ppcf128, where the Hi part always comes first.
- bool hasBigEndianPartOrdering(EVT VT) const {
- return isBigEndian() || VT == MVT::ppcf128;
+ bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const {
+ return DL.isBigEndian() || VT == MVT::ppcf128;
}
/// If true, the target has custom DAG combine transformations that it can
private:
const TargetMachine &TM;
- /// True if this is a little endian target.
- bool IsLittleEndian;
-
/// Tells the code generator not to expand operations into sequences that use
/// the select operations if possible.
bool SelectIsExpensive;
// Do not change the width of a volatile load.
!cast<LoadSDNode>(N0)->isVolatile() &&
// Do not remove the cast if the types differ in endian layout.
- TLI.hasBigEndianPartOrdering(N0.getValueType()) ==
- TLI.hasBigEndianPartOrdering(VT) &&
+ TLI.hasBigEndianPartOrdering(N0.getValueType(), DAG.getDataLayout()) ==
+ TLI.hasBigEndianPartOrdering(VT, DAG.getDataLayout()) &&
(!LegalOperations || TLI.isOperationLegal(ISD::LOAD, VT)) &&
TLI.isLoadBitCastBeneficial(N0.getValueType(), VT)) {
LoadSDNode *LN0 = cast<LoadSDNode>(N0);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
case TargetLowering::TypeExpandInteger:
- case TargetLowering::TypeExpandFloat:
+ case TargetLowering::TypeExpandFloat: {
+ auto &DL = DAG.getDataLayout();
// Convert the expanded pieces of the input.
GetExpandedOp(InOp, Lo, Hi);
- if (TLI.hasBigEndianPartOrdering(InVT) !=
- TLI.hasBigEndianPartOrdering(OutVT))
+ if (TLI.hasBigEndianPartOrdering(InVT, DL) !=
+ TLI.hasBigEndianPartOrdering(OutVT, DL))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
return;
+ }
case TargetLowering::TypeSplitVector:
GetSplitVector(InOp, Lo, Hi);
- if (TLI.hasBigEndianPartOrdering(OutVT))
+ if (TLI.hasBigEndianPartOrdering(OutVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
EVT LoVT, HiVT;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(InVT);
std::tie(Lo, Hi) = DAG.SplitVector(InOp, dl, LoVT, HiVT);
- if (TLI.hasBigEndianPartOrdering(OutVT))
+ if (TLI.hasBigEndianPartOrdering(OutVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Lo = DAG.getNode(ISD::BITCAST, dl, NOutVT, Lo);
Hi = DAG.getNode(ISD::BITCAST, dl, NOutVT, Hi);
false, false, MinAlign(Alignment, IncrementSize));
// Handle endianness of the load.
- if (TLI.hasBigEndianPartOrdering(OutVT))
+ if (TLI.hasBigEndianPartOrdering(OutVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
}
Hi.getValue(1));
// Handle endianness of the load.
- if (TLI.hasBigEndianPartOrdering(ValueVT))
+ if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
// Modified the chain - switch anything that used the old chain to use
Hi = DAG.getVAArg(NVT, dl, Lo.getValue(1), Ptr, N->getOperand(2), 0);
// Handle endianness of the load.
- if (TLI.hasBigEndianPartOrdering(OVT))
+ if (TLI.hasBigEndianPartOrdering(OVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
// Modified the chain - switch anything that used the old chain to use
SDValue Lo, Hi;
GetExpandedOp(St->getValue(), Lo, Hi);
- if (TLI.hasBigEndianPartOrdering(ValueVT))
+ if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Lo = DAG.getStore(Chain, dl, Lo, Ptr, St->getPointerInfo(),
SDValue Lo, Hi;
Lo = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[0]);
Hi = DAG.getNode(ISD::BITCAST, DL, EVT(MVT::f64), Parts[1]);
- if (TLI.hasBigEndianPartOrdering(ValueVT))
+ if (TLI.hasBigEndianPartOrdering(ValueVT, DAG.getDataLayout()))
std::swap(Lo, Hi);
Val = DAG.getNode(ISD::BUILD_PAIR, DL, ValueVT, Lo, Hi);
} else {
initActions();
// Perform these initializations only once.
- IsLittleEndian = getDataLayout()->isLittleEndian();
MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove = 8;
MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize
= MaxStoresPerMemmoveOptSize = 4;
// Turn f64->i64 into VMOVRRD.
if (DstVT == MVT::i64 && TLI.isTypeLegal(SrcVT)) {
SDValue Cvt;
- if (TLI.isBigEndian() && SrcVT.isVector() &&
+ if (DAG.getDataLayout().isBigEndian() && SrcVT.isVector() &&
SrcVT.getVectorNumElements() > 1)
Cvt = DAG.getNode(ARMISD::VMOVRRD, dl,
DAG.getVTList(MVT::i32, MVT::i32),
ImmMask <<= 1;
}
- if (DAG.getTargetLoweringInfo().isBigEndian())
+ if (DAG.getDataLayout().isBigEndian())
// swap higher and lower 32 bit word
Imm = ((Imm & 0xf) << 4) | ((Imm & 0xf0) >> 4);
if (BVN->getValueType(0) != MVT::v4i32 ||
BVN->getOpcode() != ISD::BUILD_VECTOR)
return false;
- unsigned LoElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ unsigned LoElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
unsigned HiElt = 1 - LoElt;
ConstantSDNode *Lo0 = dyn_cast<ConstantSDNode>(BVN->getOperand(LoElt));
ConstantSDNode *Hi0 = dyn_cast<ConstantSDNode>(BVN->getOperand(HiElt));
SDNode *BVN = N->getOperand(0).getNode();
assert(BVN->getOpcode() == ISD::BUILD_VECTOR &&
BVN->getValueType(0) == MVT::v4i32 && "expected v4i32 BUILD_VECTOR");
- unsigned LowElt = DAG.getTargetLoweringInfo().isBigEndian() ? 1 : 0;
+ unsigned LowElt = DAG.getDataLayout().isBigEndian() ? 1 : 0;
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(N), MVT::v2i32,
BVN->getOperand(LowElt), BVN->getOperand(LowElt+2));
}
std::min(4U, LD->getAlignment() / 2));
DAG.ReplaceAllUsesOfValueWith(SDValue(LD, 1), NewLD2.getValue(1));
- if (DCI.DAG.getTargetLoweringInfo().isBigEndian())
+ if (DCI.DAG.getDataLayout().isBigEndian())
std::swap (NewLD1, NewLD2);
SDValue Result = DCI.CombineTo(N, NewLD1, NewLD2);
return Result;
SDValue WideVec = DAG.getNode(ISD::BITCAST, DL, WideVecVT, StVal);
SmallVector<int, 8> ShuffleVec(NumElems * SizeRatio, -1);
for (unsigned i = 0; i < NumElems; ++i)
- ShuffleVec[i] = TLI.isBigEndian() ? (i+1) * SizeRatio - 1 : i * SizeRatio;
+ ShuffleVec[i] = DAG.getDataLayout().isBigEndian()
+ ? (i + 1) * SizeRatio - 1
+ : i * SizeRatio;
// Can't shuffle using an illegal type.
if (!TLI.isTypeLegal(WideVecVT)) return SDValue();
if (StVal.getNode()->getOpcode() == ARMISD::VMOVDRR &&
StVal.getNode()->hasOneUse()) {
SelectionDAG &DAG = DCI.DAG;
- bool isBigEndian = DAG.getTargetLoweringInfo().isBigEndian();
+ bool isBigEndian = DAG.getDataLayout().isBigEndian();
SDLoc DL(St);
SDValue BasePtr = St->getBasePtr();
SDValue NewST1 = DAG.getStore(St->getChain(), DL,
// For any little-endian targets with neon, we can support unaligned ld/st
// of D and Q (e.g. {D0,D1}) registers by using vld1.i8/vst1.i8.
// A big-endian target may also explicitly support unaligned accesses
- if (Subtarget->hasNEON() && (AllowsUnaligned || isLittleEndian())) {
+ if (Subtarget->hasNEON() && (AllowsUnaligned || Subtarget->isLittle())) {
if (Fast)
*Fast = true;
return true;
def UseVMOVSR : Predicate<"Subtarget->isCortexA9() || !Subtarget->useNEONForSinglePrecisionFP()">;
def DontUseVMOVSR : Predicate<"!Subtarget->isCortexA9() && Subtarget->useNEONForSinglePrecisionFP()">;
-def IsLE : Predicate<"getTargetLowering()->isLittleEndian()">;
-def IsBE : Predicate<"getTargetLowering()->isBigEndian()">;
+def IsLE : Predicate<"MF->getDataLayout().isLittleEndian()">;
+def IsBE : Predicate<"MF->getDataLayout().isBigEndian()">;
//===----------------------------------------------------------------------===//
// ARM Flag Definitions.