return 0;
}
+// Find the hardware loop instruction used to set-up the specified loop.
+// On Hexagon, we have two instructions used to set-up the hardware loop
+// (LOOP0, LOOP1) with corresponding endloop (ENDLOOP0, ENDLOOP1) instructions
+// to indicate the end of a loop.
+static MachineInstr *
+findLoopInstr(MachineBasicBlock *BB, int EndLoopOp,
+ SmallPtrSet<MachineBasicBlock *, 8> &Visited) {
+ int LOOPi;
+ int LOOPr;
+ if (EndLoopOp == Hexagon::ENDLOOP0) {
+ LOOPi = Hexagon::J2_loop0i;
+ LOOPr = Hexagon::J2_loop0r;
+ } else { // EndLoopOp == Hexagon::EndLOOP1
+ LOOPi = Hexagon::J2_loop1i;
+ LOOPr = Hexagon::J2_loop1r;
+ }
-unsigned
-HexagonInstrInfo::InsertBranch(MachineBasicBlock &MBB,MachineBasicBlock *TBB,
- MachineBasicBlock *FBB,
- const SmallVectorImpl<MachineOperand> &Cond,
- DebugLoc DL) const{
-
- int BOpc = Hexagon::J2_jump;
- int BccOpc = Hexagon::J2_jumpt;
-
- assert(TBB && "InsertBranch must not be told to insert a fallthrough");
-
- int regPos = 0;
- // Check if ReverseBranchCondition has asked to reverse this branch
- // If we want to reverse the branch an odd number of times, we want
- // JMP_f.
- if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
- BccOpc = Hexagon::J2_jumpf;
- regPos = 1;
+ // The loop set-up instruction will be in a predecessor block
+ for (MachineBasicBlock::pred_iterator PB = BB->pred_begin(),
+ PE = BB->pred_end(); PB != PE; ++PB) {
+ // If this has been visited, already skip it.
+ if (!Visited.insert(*PB).second)
+ continue;
+ if (*PB == BB)
+ continue;
+ for (MachineBasicBlock::reverse_instr_iterator I = (*PB)->instr_rbegin(),
+ E = (*PB)->instr_rend(); I != E; ++I) {
+ int Opc = I->getOpcode();
+ if (Opc == LOOPi || Opc == LOOPr)
+ return &*I;
+ // We've reached a different loop, which means the loop0 has been removed.
+ if (Opc == EndLoopOp)
+ return 0;
}
+ // Check the predecessors for the LOOP instruction.
+ MachineInstr *loop = findLoopInstr(*PB, EndLoopOp, Visited);
+ if (loop)
+ return loop;
+ }
+ return 0;
+}
- if (!FBB) {
- if (Cond.empty()) {
- // Due to a bug in TailMerging/CFG Optimization, we need to add a
- // special case handling of a predicated jump followed by an
- // unconditional jump. If not, Tail Merging and CFG Optimization go
- // into an infinite loop.
- MachineBasicBlock *NewTBB, *NewFBB;
- SmallVector<MachineOperand, 4> Cond;
- MachineInstr *Term = MBB.getFirstTerminator();
- if (isPredicated(Term) && !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond,
- false)) {
- MachineBasicBlock *NextBB =
- std::next(MachineFunction::iterator(&MBB));
- if (NewTBB == NextBB) {
- ReverseBranchCondition(Cond);
- RemoveBranch(MBB);
- return InsertBranch(MBB, TBB, nullptr, Cond, DL);
- }
+unsigned HexagonInstrInfo::InsertBranch(
+ MachineBasicBlock &MBB,MachineBasicBlock *TBB, MachineBasicBlock *FBB,
+ const SmallVectorImpl<MachineOperand> &Cond, DebugLoc DL) const {
+
+ Opcode_t BOpc = Hexagon::J2_jump;
+ Opcode_t BccOpc = Hexagon::J2_jumpt;
+
+ assert(TBB && "InsertBranch must not be told to insert a fallthrough");
+
+ // Check if ReverseBranchCondition has asked to reverse this branch
+ // If we want to reverse the branch an odd number of times, we want
+ // J2_jumpf.
+ if (!Cond.empty() && Cond[0].isImm())
+ BccOpc = Cond[0].getImm();
+
+ if (!FBB) {
+ if (Cond.empty()) {
+ // Due to a bug in TailMerging/CFG Optimization, we need to add a
+ // special case handling of a predicated jump followed by an
+ // unconditional jump. If not, Tail Merging and CFG Optimization go
+ // into an infinite loop.
+ MachineBasicBlock *NewTBB, *NewFBB;
+ SmallVector<MachineOperand, 4> Cond;
+ MachineInstr *Term = MBB.getFirstTerminator();
+ if (Term != MBB.end() && isPredicated(Term) &&
+ !AnalyzeBranch(MBB, NewTBB, NewFBB, Cond, false)) {
+ MachineBasicBlock *NextBB =
+ std::next(MachineFunction::iterator(&MBB));
+ if (NewTBB == NextBB) {
+ ReverseBranchCondition(Cond);
+ RemoveBranch(MBB);
+ return InsertBranch(MBB, TBB, nullptr, Cond, DL);
}
- BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
- } else {
- // If Cond[0] is a basic block, insert ENDLOOP0.
- if (Cond[0].isMBB())
- BuildMI(&MBB, DL, get(Hexagon::ENDLOOP0)).addMBB(Cond[0].getMBB());
- else
- BuildMI(&MBB, DL,
- get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
}
- return 1;
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(TBB);
+ } else if (isEndLoopN(Cond[0].getImm())) {
+ int EndLoopOp = Cond[0].getImm();
+ assert(Cond[1].isMBB());
+ // Since we're adding an ENDLOOP, there better be a LOOP instruction.
+ // Check for it, and change the BB target if needed.
+ SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
+ MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
+ assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
+ Loop->getOperand(0).setMBB(TBB);
+ // Add the ENDLOOP after the finding the LOOP0.
+ BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
+ } else if (isNewValueJump(Cond[0].getImm())) {
+ assert((Cond.size() == 3) && "Only supporting rr/ri version of nvjump");
+ // New value jump
+ // (ins IntRegs:$src1, IntRegs:$src2, brtarget:$offset)
+ // (ins IntRegs:$src1, u5Imm:$src2, brtarget:$offset)
+ unsigned Flags1 = getUndefRegState(Cond[1].isUndef());
+ DEBUG(dbgs() << "\nInserting NVJump for BB#" << MBB.getNumber(););
+ if (Cond[2].isReg()) {
+ unsigned Flags2 = getUndefRegState(Cond[2].isUndef());
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
+ addReg(Cond[2].getReg(), Flags2).addMBB(TBB);
+ } else if(Cond[2].isImm()) {
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[1].getReg(), Flags1).
+ addImm(Cond[2].getImm()).addMBB(TBB);
+ } else
+ llvm_unreachable("Invalid condition for branching");
+ } else {
+ assert((Cond.size() == 2) && "Malformed cond vector");
+ const MachineOperand &RO = Cond[1];
+ unsigned Flags = getUndefRegState(RO.isUndef());
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
}
-
- // We don't handle ENDLOOP0 with a conditional branch in AnalyzeBranch.
- BuildMI(&MBB, DL, get(BccOpc)).addReg(Cond[regPos].getReg()).addMBB(TBB);
- BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
- return 2;
-}
-
-
+ return 1;
+ }
+ assert((!Cond.empty()) &&
+ "Cond. cannot be empty when multiple branchings are required");
+ assert((!isNewValueJump(Cond[0].getImm())) &&
+ "NV-jump cannot be inserted with another branch");
+ // Special case for hardware loops. The condition is a basic block.
+ if (isEndLoopN(Cond[0].getImm())) {
+ int EndLoopOp = Cond[0].getImm();
+ assert(Cond[1].isMBB());
+ // Since we're adding an ENDLOOP, there better be a LOOP instruction.
+ // Check for it, and change the BB target if needed.
+ SmallPtrSet<MachineBasicBlock *, 8> VisitedBBs;
+ MachineInstr *Loop = findLoopInstr(TBB, EndLoopOp, VisitedBBs);
+ assert(Loop != 0 && "Inserting an ENDLOOP without a LOOP");
+ Loop->getOperand(0).setMBB(TBB);
+ // Add the ENDLOOP after the finding the LOOP0.
+ BuildMI(&MBB, DL, get(EndLoopOp)).addMBB(TBB);
+ } else {
+ const MachineOperand &RO = Cond[1];
+ unsigned Flags = getUndefRegState(RO.isUndef());
+ BuildMI(&MBB, DL, get(BccOpc)).addReg(RO.getReg(), Flags).addMBB(TBB);
+ }
+ BuildMI(&MBB, DL, get(BOpc)).addMBB(FBB);
+
+ return 2;
+}
+
+
+/// This function can analyze one/two way branching only and should (mostly) be
+/// called by target independent side.
+/// First entry is always the opcode of the branching instruction, except when
+/// the Cond vector is supposed to be empty, e.g., when AnalyzeBranch fails, a
+/// BB with only unconditional jump. Subsequent entries depend upon the opcode,
+/// e.g. Jump_c p will have
+/// Cond[0] = Jump_c
+/// Cond[1] = p
+/// HW-loop ENDLOOP:
+/// Cond[0] = ENDLOOP
+/// Cond[1] = MBB
+/// New value jump:
+/// Cond[0] = Hexagon::CMPEQri_f_Jumpnv_t_V4 -- specific opcode
+/// Cond[1] = R
+/// Cond[2] = Imm
+/// @note Related function is \fn findInstrPredicate which fills in
+/// Cond. vector when a predicated instruction is passed to it.
+/// We follow same protocol in that case too.
+///
bool HexagonInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
- MachineBasicBlock *&FBB,
- SmallVectorImpl<MachineOperand> &Cond,
- bool AllowModify) const {
+ MachineBasicBlock *&FBB,
+ SmallVectorImpl<MachineOperand> &Cond,
+ bool AllowModify) const {
TBB = nullptr;
FBB = nullptr;
+ Cond.clear();
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::instr_iterator I = MBB.instr_end();
do {
--I;
if (I->isEHLabel())
+ // Don't analyze EH branches.
return true;
} while (I != MBB.instr_begin());
bool JumpToBlock = I->getOpcode() == Hexagon::J2_jump &&
I->getOperand(0).isMBB();
- // Delete the JMP if it's equivalent to a fall-through.
+ // Delete the J2_jump if it's equivalent to a fall-through.
if (AllowModify && JumpToBlock &&
MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
DEBUG(dbgs()<< "\nErasing the jump to successor block\n";);
return true;
bool LastOpcodeHasJMP_c = PredOpcodeHasJMP_c(LastOpcode);
- bool LastOpcodeHasNot = PredOpcodeHasNot(LastOpcode);
+ bool LastOpcodeHasNVJump = isNewValueJump(LastInst);
// If there is only one terminator instruction, process it.
if (LastInst && !SecondLastInst) {
TBB = LastInst->getOperand(0).getMBB();
return false;
}
- if (LastOpcode == Hexagon::ENDLOOP0) {
+ if (isEndLoopN(LastOpcode)) {
TBB = LastInst->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
return false;
}
if (LastOpcodeHasJMP_c) {
TBB = LastInst->getOperand(1).getMBB();
- if (LastOpcodeHasNot) {
- Cond.push_back(MachineOperand::CreateImm(0));
- }
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
+ Cond.push_back(LastInst->getOperand(0));
+ return false;
+ }
+ // Only supporting rr/ri versions of new-value jumps.
+ if (LastOpcodeHasNVJump && (LastInst->getNumExplicitOperands() == 3)) {
+ TBB = LastInst->getOperand(2).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(LastInst->getOpcode()));
Cond.push_back(LastInst->getOperand(0));
+ Cond.push_back(LastInst->getOperand(1));
return false;
}
+ DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
+ << " with one jump\n";);
// Otherwise, don't know what this is.
return true;
}
bool SecLastOpcodeHasJMP_c = PredOpcodeHasJMP_c(SecLastOpcode);
- bool SecLastOpcodeHasNot = PredOpcodeHasNot(SecLastOpcode);
+ bool SecLastOpcodeHasNVJump = isNewValueJump(SecondLastInst);
if (SecLastOpcodeHasJMP_c && (LastOpcode == Hexagon::J2_jump)) {
TBB = SecondLastInst->getOperand(1).getMBB();
- if (SecLastOpcodeHasNot)
- Cond.push_back(MachineOperand::CreateImm(0));
+ Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
+ // Only supporting rr/ri versions of new-value jumps.
+ if (SecLastOpcodeHasNVJump &&
+ (SecondLastInst->getNumExplicitOperands() == 3) &&
+ (LastOpcode == Hexagon::J2_jump)) {
+ TBB = SecondLastInst->getOperand(2).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
+ Cond.push_back(SecondLastInst->getOperand(0));
+ Cond.push_back(SecondLastInst->getOperand(1));
+ FBB = LastInst->getOperand(0).getMBB();
+ return false;
+ }
+
// If the block ends with two Hexagon:JMPs, handle it. The second one is not
// executed, so remove it.
if (SecLastOpcode == Hexagon::J2_jump && LastOpcode == Hexagon::J2_jump) {
return false;
}
- // If the block ends with an ENDLOOP, and JMP, handle it.
- if (SecLastOpcode == Hexagon::ENDLOOP0 &&
- LastOpcode == Hexagon::J2_jump) {
+ // If the block ends with an ENDLOOP, and J2_jump, handle it.
+ if (isEndLoopN(SecLastOpcode) && LastOpcode == Hexagon::J2_jump) {
TBB = SecondLastInst->getOperand(0).getMBB();
+ Cond.push_back(MachineOperand::CreateImm(SecondLastInst->getOpcode()));
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
-
+ DEBUG(dbgs() << "\nCant analyze BB#" << MBB.getNumber()
+ << " with two jumps";);
// Otherwise, can't handle this.
return true;
}
-
unsigned HexagonInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
+ DEBUG(dbgs() << "\nRemoving branches out of BB#" << MBB.getNumber());
MachineBasicBlock::iterator I = MBB.end();
- if (I == MBB.begin()) return 0;
- --I;
- unsigned Opc1 = I->getOpcode();
- switch (Opc1) {
- case Hexagon::J2_jump:
- case Hexagon::J2_jumpt:
- case Hexagon::J2_jumpf:
- case Hexagon::ENDLOOP0:
- I->eraseFromParent();
- break;
- default:
- return 0;
- }
-
- I = MBB.end();
-
- if (I == MBB.begin()) return 1;
- --I;
- unsigned Opc2 = I->getOpcode();
- switch (Opc2) {
- case Hexagon::J2_jumpt:
- case Hexagon::J2_jumpf:
- case Hexagon::ENDLOOP0:
- I->eraseFromParent();
- return 2;
- default:
- return 1;
+ unsigned Count = 0;
+ while (I != MBB.begin()) {
+ --I;
+ if (I->isDebugValue())
+ continue;
+ // Only removing branches from end of MBB.
+ if (!I->isBranch())
+ return Count;
+ if (Count && (I->getOpcode() == Hexagon::J2_jump))
+ llvm_unreachable("Malformed basic block: unconditional branch not last");
+ MBB.erase(&MBB.back());
+ I = MBB.end();
+ ++Count;
}
+ return Count;
}
-
/// \brief For a comparison instruction, return the source registers in
/// \p SrcReg and \p SrcReg2 if having two register operands, and the value it
/// compares against in CmpValue. Return true if the comparison instruction
// Set mask and the first source register.
switch (Opc) {
- case Hexagon::C2_cmpeqp:
- case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqp:
+ case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtp:
- case Hexagon::C2_cmpgtup:
- case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgtu:
+ case Hexagon::C2_cmpgtup:
+ case Hexagon::C4_cmpneq:
+ case Hexagon::C4_cmplte:
+ case Hexagon::C4_cmplteu:
+ case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgti:
- case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtui:
+ case Hexagon::C4_cmpneqi:
+ case Hexagon::C4_cmplteui:
+ case Hexagon::C4_cmpltei:
SrcReg = MI->getOperand(1).getReg();
Mask = ~0;
break;
- case Hexagon::A4_cmpbeqi:
case Hexagon::A4_cmpbeq:
- case Hexagon::A4_cmpbgtui:
- case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpbgt:
+ case Hexagon::A4_cmpbgtu:
+ case Hexagon::A4_cmpbeqi:
+ case Hexagon::A4_cmpbgti:
+ case Hexagon::A4_cmpbgtui:
SrcReg = MI->getOperand(1).getReg();
Mask = 0xFF;
break;
- case Hexagon::A4_cmpheqi:
case Hexagon::A4_cmpheq:
- case Hexagon::A4_cmphgtui:
- case Hexagon::A4_cmphgtu:
case Hexagon::A4_cmphgt:
+ case Hexagon::A4_cmphgtu:
+ case Hexagon::A4_cmpheqi:
+ case Hexagon::A4_cmphgti:
+ case Hexagon::A4_cmphgtui:
SrcReg = MI->getOperand(1).getReg();
Mask = 0xFFFF;
break;
// Set the value/second source register.
switch (Opc) {
- case Hexagon::C2_cmpeqp:
case Hexagon::C2_cmpeq:
+ case Hexagon::C2_cmpeqp:
+ case Hexagon::C2_cmpgt:
case Hexagon::C2_cmpgtp:
- case Hexagon::C2_cmpgtup:
case Hexagon::C2_cmpgtu:
- case Hexagon::C2_cmpgt:
+ case Hexagon::C2_cmpgtup:
case Hexagon::A4_cmpbeq:
- case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpbgt:
+ case Hexagon::A4_cmpbgtu:
case Hexagon::A4_cmpheq:
- case Hexagon::A4_cmphgtu:
case Hexagon::A4_cmphgt:
+ case Hexagon::A4_cmphgtu:
+ case Hexagon::C4_cmpneq:
+ case Hexagon::C4_cmplte:
+ case Hexagon::C4_cmplteu:
SrcReg2 = MI->getOperand(2).getReg();
return true;
case Hexagon::C2_cmpeqi:
case Hexagon::C2_cmpgtui:
case Hexagon::C2_cmpgti:
+ case Hexagon::C4_cmpneqi:
+ case Hexagon::C4_cmplteui:
+ case Hexagon::C4_cmpltei:
case Hexagon::A4_cmpbeqi:
+ case Hexagon::A4_cmpbgti:
case Hexagon::A4_cmpbgtui:
case Hexagon::A4_cmpheqi:
+ case Hexagon::A4_cmphgti:
case Hexagon::A4_cmphgtui:
SrcReg2 = 0;
Value = MI->getOperand(2).getImm();
return false;
}
+bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
+ const uint64_t F = MI->getDesc().TSFlags;
+ return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+}
+
+bool HexagonInstrInfo::isNewValue(Opcode_t Opcode) const {
+ const uint64_t F = get(Opcode).TSFlags;
+ return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+}
+
bool HexagonInstrInfo::isSaveCalleeSavedRegsCall(const MachineInstr *MI) const {
return MI->getOpcode() == Hexagon::SAVE_REGISTERS_CALL_V4;
}
bool HexagonInstrInfo::
PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond.empty() || isEndLoopN(Cond[0].getImm())) {
+ DEBUG(dbgs() << "\nCannot predicate:"; MI->dump(););
+ return false;
+ }
int Opc = MI->getOpcode();
assert (isPredicable(MI) && "Expected predicable instruction");
- bool invertJump = (!Cond.empty() && Cond[0].isImm() &&
- (Cond[0].getImm() == 0));
-
- // This will change MI's opcode to its predicate version.
- // However, its operand list is still the old one, i.e. the
- // non-predicate one.
- MI->setDesc(get(getCondOpcode(Opc, invertJump)));
-
- int oper = -1;
- unsigned int GAIdx = 0;
-
- // Indicates whether the current MI has a GlobalAddress operand
- bool hasGAOpnd = false;
- std::vector<MachineOperand> tmpOpnds;
-
- // Indicates whether we need to shift operands to right.
- bool needShift = true;
-
- // The predicate is ALWAYS the FIRST input operand !!!
- if (MI->getNumOperands() == 0) {
- // The non-predicate version of MI does not take any operands,
- // i.e. no outs and no ins. In this condition, the predicate
- // operand will be directly placed at Operands[0]. No operand
- // shift is needed.
- // Example: BARRIER
- needShift = false;
- oper = -1;
- }
- else if ( MI->getOperand(MI->getNumOperands()-1).isReg()
- && MI->getOperand(MI->getNumOperands()-1).isDef()
- && !MI->getOperand(MI->getNumOperands()-1).isImplicit()) {
- // The non-predicate version of MI does not have any input operands.
- // In this condition, we extend the length of Operands[] by one and
- // copy the original last operand to the newly allocated slot.
- // At this moment, it is just a place holder. Later, we will put
- // predicate operand directly into it. No operand shift is needed.
- // Example: r0=BARRIER (this is a faked insn used here for illustration)
- MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
- needShift = false;
- oper = MI->getNumOperands() - 2;
- }
- else {
- // We need to right shift all input operands by one. Duplicate the
- // last operand into the newly allocated slot.
- MI->addOperand(MI->getOperand(MI->getNumOperands()-1));
- }
+ bool invertJump = predOpcodeHasNot(Cond);
- if (needShift)
- {
- // Operands[ MI->getNumOperands() - 2 ] has been copied into
- // Operands[ MI->getNumOperands() - 1 ], so we start from
- // Operands[ MI->getNumOperands() - 3 ].
- // oper is a signed int.
- // It is ok if "MI->getNumOperands()-3" is -3, -2, or -1.
- for (oper = MI->getNumOperands() - 3; oper >= 0; --oper)
- {
- MachineOperand &MO = MI->getOperand(oper);
-
- // Opnd[0] Opnd[1] Opnd[2] Opnd[3] Opnd[4] Opnd[5] Opnd[6] Opnd[7]
- // <Def0> <Def1> <Use0> <Use1> <ImpDef0> <ImpDef1> <ImpUse0> <ImpUse1>
- // /\~
- // /||\~
- // ||
- // Predicate Operand here
- if (MO.isReg() && !MO.isUse() && !MO.isImplicit()) {
- break;
- }
- if (MO.isReg()) {
- MI->getOperand(oper+1).ChangeToRegister(MO.getReg(), MO.isDef(),
- MO.isImplicit(), MO.isKill(),
- MO.isDead(), MO.isUndef(),
- MO.isDebug());
- }
- else if (MO.isImm()) {
- MI->getOperand(oper+1).ChangeToImmediate(MO.getImm());
- }
- else if (MO.isGlobal()) {
- // MI can not have more than one GlobalAddress operand.
- assert(hasGAOpnd == false && "MI can only have one GlobalAddress opnd");
-
- // There is no member function called "ChangeToGlobalAddress" in the
- // MachineOperand class (not like "ChangeToRegister" and
- // "ChangeToImmediate"). So we have to remove them from Operands[] list
- // first, and then add them back after we have inserted the predicate
- // operand. tmpOpnds[] is to remember these operands before we remove
- // them.
- tmpOpnds.push_back(MO);
-
- // Operands[oper] is a GlobalAddress operand;
- // Operands[oper+1] has been copied into Operands[oper+2];
- hasGAOpnd = true;
- GAIdx = oper;
- continue;
- }
- else {
- llvm_unreachable("Unexpected operand type");
- }
- }
- }
+ // We have to predicate MI "in place", i.e. after this function returns,
+ // MI will need to be transformed into a predicated form. To avoid com-
+ // plicated manipulations with the operands (handling tied operands,
+ // etc.), build a new temporary instruction, then overwrite MI with it.
- int regPos = invertJump ? 1 : 0;
- MachineOperand PredMO = Cond[regPos];
+ MachineBasicBlock &B = *MI->getParent();
+ DebugLoc DL = MI->getDebugLoc();
+ unsigned PredOpc = getCondOpcode(Opc, invertJump);
+ MachineInstrBuilder T = BuildMI(B, MI, DL, get(PredOpc));
+ unsigned NOp = 0, NumOps = MI->getNumOperands();
+ while (NOp < NumOps) {
+ MachineOperand &Op = MI->getOperand(NOp);
+ if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
+ break;
+ T.addOperand(Op);
+ NOp++;
+ }
- // [oper] now points to the last explicit Def. Predicate operand must be
- // located at [oper+1]. See diagram above.
- // This assumes that the predicate is always the first operand,
- // i.e. Operands[0+numResults], in the set of inputs
- // It is better to have an assert here to check this. But I don't know how
- // to write this assert because findFirstPredOperandIdx() would return -1
- if (oper < -1) oper = -1;
+ unsigned PredReg, PredRegPos, PredRegFlags;
+ bool GotPredReg = getPredReg(Cond, PredReg, PredRegPos, PredRegFlags);
+ (void)GotPredReg;
+ assert(GotPredReg);
+ T.addReg(PredReg, PredRegFlags);
+ while (NOp < NumOps)
+ T.addOperand(MI->getOperand(NOp++));
- MI->getOperand(oper+1).ChangeToRegister(PredMO.getReg(), PredMO.isDef(),
- PredMO.isImplicit(), false,
- PredMO.isDead(), PredMO.isUndef(),
- PredMO.isDebug());
+ MI->setDesc(get(PredOpc));
+ while (unsigned n = MI->getNumOperands())
+ MI->RemoveOperand(n-1);
+ for (unsigned i = 0, n = T->getNumOperands(); i < n; ++i)
+ MI->addOperand(T->getOperand(i));
- MachineRegisterInfo &RegInfo = MI->getParent()->getParent()->getRegInfo();
- RegInfo.clearKillFlags(PredMO.getReg());
+ MachineBasicBlock::instr_iterator TI = &*T;
+ B.erase(TI);
- if (hasGAOpnd)
- {
- unsigned int i;
-
- // Operands[GAIdx] is the original GlobalAddress operand, which is
- // already copied into tmpOpnds[0].
- // Operands[GAIdx] now stores a copy of Operands[GAIdx-1]
- // Operands[GAIdx+1] has already been copied into Operands[GAIdx+2],
- // so we start from [GAIdx+2]
- for (i = GAIdx + 2; i < MI->getNumOperands(); ++i)
- tmpOpnds.push_back(MI->getOperand(i));
-
- // Remove all operands in range [ (GAIdx+1) ... (MI->getNumOperands()-1) ]
- // It is very important that we always remove from the end of Operands[]
- // MI->getNumOperands() is at least 2 if program goes to here.
- for (i = MI->getNumOperands() - 1; i > GAIdx; --i)
- MI->RemoveOperand(i);
-
- for (i = 0; i < tmpOpnds.size(); ++i)
- MI->addOperand(tmpOpnds[i]);
- }
+ MachineRegisterInfo &MRI = B.getParent()->getRegInfo();
+ MRI.clearKillFlags(PredReg);
return true;
}
//
// We indicate that we want to reverse the branch by
-// inserting a 0 at the beginning of the Cond vector.
+// inserting the reversed branching opcode.
//
-bool HexagonInstrInfo::
-ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
- if (!Cond.empty() && Cond[0].isMBB())
+bool HexagonInstrInfo::ReverseBranchCondition(
+ SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond.empty())
return true;
- if (!Cond.empty() && Cond[0].isImm() && Cond[0].getImm() == 0) {
- Cond.erase(Cond.begin());
- } else {
- Cond.insert(Cond.begin(), MachineOperand::CreateImm(0));
- }
+ assert(Cond[0].isImm() && "First entry in the cond vector not imm-val");
+ Opcode_t opcode = Cond[0].getImm();
+ //unsigned temp;
+ assert(get(opcode).isBranch() && "Should be a branching condition.");
+ if (isEndLoopN(opcode))
+ return true;
+ Opcode_t NewOpcode = getInvertedPredicatedOpcode(opcode);
+ Cond[0].setImm(NewOpcode);
return false;
}
return false;
}
-bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
- return (getAddrMode(MI) == HexagonII::PostInc);
+bool HexagonInstrInfo::isNewValueJump(Opcode_t Opcode) const {
+ return isNewValue(Opcode) && get(Opcode).isBranch() && isPredicated(Opcode);
}
-bool HexagonInstrInfo::isNewValue(const MachineInstr* MI) const {
- const uint64_t F = MI->getDesc().TSFlags;
- return ((F >> HexagonII::NewValuePos) & HexagonII::NewValueMask);
+bool HexagonInstrInfo::isPostIncrement (const MachineInstr* MI) const {
+ return (getAddrMode(MI) == HexagonII::PostInc);
}
// Returns true, if any one of the operands is a dot new
(Opcode == Hexagon::J2_jumpf);
}
-bool HexagonInstrInfo::PredOpcodeHasNot(Opcode_t Opcode) const {
- return (Opcode == Hexagon::J2_jumpf) ||
- (Opcode == Hexagon::J2_jumpfnewpt) ||
- (Opcode == Hexagon::J2_jumpfnew);
+bool HexagonInstrInfo::predOpcodeHasNot(
+ const SmallVectorImpl<MachineOperand> &Cond) const {
+ if (Cond.empty() || !isPredicated(Cond[0].getImm()))
+ return false;
+ return !isPredicatedTrue(Cond[0].getImm());
+}
+
+bool HexagonInstrInfo::isEndLoopN(Opcode_t Opcode) const {
+ return (Opcode == Hexagon::ENDLOOP0 ||
+ Opcode == Hexagon::ENDLOOP1);
}
+
+bool HexagonInstrInfo::getPredReg(const SmallVectorImpl<MachineOperand> &Cond,
+ unsigned &PredReg, unsigned &PredRegPos,
+ unsigned &PredRegFlags) const {
+ if (Cond.empty())
+ return false;
+ assert(Cond.size() == 2);
+ if (isNewValueJump(Cond[0].getImm()) || Cond[1].isMBB()) {
+ DEBUG(dbgs() << "No predregs for new-value jumps/endloop");
+ return false;
+ }
+ PredReg = Cond[1].getReg();
+ PredRegPos = 1;
+ // See IfConversion.cpp why we add RegState::Implicit | RegState::Undef
+ PredRegFlags = 0;
+ if (Cond[1].isImplicit())
+ PredRegFlags = RegState::Implicit;
+ if (Cond[1].isUndef())
+ PredRegFlags |= RegState::Undef;
+ return true;
+}
+
--- /dev/null
+; RUN: llc -march=hexagon < %s | FileCheck %s
+
+; CHECK-LABEL: @test00
+; CHECK: p0 = cmp.eq(r1:0, r3:2)
+define i32 @test00(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.C2.cmpeqp(i64 %Rs, i64 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test01
+; CHECK: p0 = cmp.gt(r1:0, r3:2)
+define i32 @test01(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.C2.cmpgtp(i64 %Rs, i64 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test02
+; CHECK: p0 = cmp.gtu(r1:0, r3:2)
+define i32 @test02(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.C2.cmpgtup(i64 %Rs, i64 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test10
+; CHECK: r0 = cmp.eq(r0, r1)
+define i32 @test10(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.rcmpeq(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test11
+; CHECK: r0 = !cmp.eq(r0, r1)
+define i32 @test11(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.rcmpneq(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test12
+; CHECK: r0 = cmp.eq(r0, #23)
+define i32 @test12(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.rcmpeqi(i32 %Rs, i32 23)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test13
+; CHECK: r0 = !cmp.eq(r0, #47)
+define i32 @test13(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.rcmpneqi(i32 %Rs, i32 47)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test20
+; CHECK: p0 = cmpb.eq(r0, r1)
+define i32 @test20(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpbeq(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test21
+; CHECK: p0 = cmpb.gt(r0, r1)
+define i32 @test21(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpbgt(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test22
+; CHECK: p0 = cmpb.gtu(r0, r1)
+define i32 @test22(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpbgtu(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test23
+; CHECK: p0 = cmpb.eq(r0, #56)
+define i32 @test23(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpbeqi(i32 %Rs, i32 56)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test24
+; CHECK: p0 = cmpb.gt(r0, #29)
+define i32 @test24(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpbgti(i32 %Rs, i32 29)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test25
+; CHECK: p0 = cmpb.gtu(r0, #111)
+define i32 @test25(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpbgtui(i32 %Rs, i32 111)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test30
+; CHECK: p0 = cmph.eq(r0, r1)
+define i32 @test30(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpheq(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test31
+; CHECK: p0 = cmph.gt(r0, r1)
+define i32 @test31(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmphgt(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test32
+; CHECK: p0 = cmph.gtu(r0, r1)
+define i32 @test32(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmphgtu(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test33
+; CHECK: p0 = cmph.eq(r0, #-123)
+define i32 @test33(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmpheqi(i32 %Rs, i32 -123)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test34
+; CHECK: p0 = cmph.gt(r0, #-3)
+define i32 @test34(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmphgti(i32 %Rs, i32 -3)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test35
+; CHECK: p0 = cmph.gtu(r0, #13)
+define i32 @test35(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.cmphgtui(i32 %Rs, i32 13)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test40
+; CHECK: r1:0 = vmux(p0, r3:2, r5:4)
+define i64 @test40(i32 %Pu, i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.C2.vmux(i32 %Pu, i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test41
+; CHECK: p0 = any8(vcmpb.eq(r1:0, r3:2))
+define i32 @test41(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.vcmpbeq.any(i64 %Rs, i64 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test50
+; CHECK: r1:0 = add(r1:0, r3:2)
+define i64 @test50(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.addp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test51
+; CHECK: r1:0 = add(r1:0, r3:2):sat
+define i64 @test51(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.addpsat(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test52
+; CHECK: r1:0 = sub(r1:0, r3:2)
+define i64 @test52(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.subp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test53
+; CHECK: r1:0 = add(r0, r3:2)
+define i64 @test53(i32 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.addsp(i32 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test54
+; CHECK: r1:0 = and(r1:0, r3:2)
+define i64 @test54(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.andp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test55
+; CHECK: r1:0 = or(r1:0, r3:2)
+define i64 @test55(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.orp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test56
+; CHECK: r1:0 = xor(r1:0, r3:2)
+define i64 @test56(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A2.xorp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test57
+; CHECK: r1:0 = and(r1:0, ~r3:2)
+define i64 @test57(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A4.andnp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test58
+; CHECK: r1:0 = or(r1:0, ~r3:2)
+define i64 @test58(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A4.ornp(i64 %Rs, i64 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test60
+; CHECK: r0 = add(r0.l, r1.l)
+define i32 @test60(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.l16.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test61
+; CHECK: r0 = add(r0.l, r1.h)
+define i32 @test61(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.l16.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test62
+; CHECK: r0 = add(r0.l, r1.l):sat
+define i32 @test62(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.l16.sat.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test63
+; CHECK: r0 = add(r0.l, r1.h):sat
+define i32 @test63(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.l16.sat.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test64
+; CHECK: r0 = add(r0.l, r1.l):<<16
+define i32 @test64(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test65
+; CHECK: r0 = add(r0.l, r1.h):<<16
+define i32 @test65(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.lh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test66
+; CHECK: r0 = add(r0.h, r1.l):<<16
+define i32 @test66(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test67
+; CHECK: r0 = add(r0.h, r1.h):<<16
+define i32 @test67(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.hh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test68
+; CHECK: r0 = add(r0.l, r1.l):sat:<<16
+define i32 @test68(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.sat.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test69
+; CHECK: r0 = add(r0.l, r1.h):sat:<<16
+define i32 @test69(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.sat.lh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test6A
+; CHECK: r0 = add(r0.h, r1.l):sat:<<16
+define i32 @test6A(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.sat.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test6B
+; CHECK: r0 = add(r0.h, r1.h):sat:<<16
+define i32 @test6B(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.addh.h16.sat.hh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test70
+; CHECK: r0 = sub(r0.l, r1.l)
+define i32 @test70(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.l16.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test71
+; CHECK: r0 = sub(r0.l, r1.h)
+define i32 @test71(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.l16.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test72
+; CHECK: r0 = sub(r0.l, r1.l):sat
+define i32 @test72(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.l16.sat.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test73
+; CHECK: r0 = sub(r0.l, r1.h):sat
+define i32 @test73(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.l16.sat.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test74
+; CHECK: r0 = sub(r0.l, r1.l):<<16
+define i32 @test74(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test75
+; CHECK: r0 = sub(r0.l, r1.h):<<16
+define i32 @test75(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.lh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test76
+; CHECK: r0 = sub(r0.h, r1.l):<<16
+define i32 @test76(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test77
+; CHECK: r0 = sub(r0.h, r1.h):<<16
+define i32 @test77(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.hh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test78
+; CHECK: r0 = sub(r0.l, r1.l):sat:<<16
+define i32 @test78(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.sat.ll(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test79
+; CHECK: r0 = sub(r0.l, r1.h):sat:<<16
+define i32 @test79(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.sat.lh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test7A
+; CHECK: r0 = sub(r0.h, r1.l):sat:<<16
+define i32 @test7A(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.sat.hl(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test7B
+; CHECK: r0 = sub(r0.h, r1.h):sat:<<16
+define i32 @test7B(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A2.subh.h16.sat.hh(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test90
+; CHECK: r0 = and(#1, asl(r0, #2))
+define i32 @test90(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.andi.asl.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test91
+; CHECK: r0 = or(#1, asl(r0, #2))
+define i32 @test91(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.ori.asl.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test92
+; CHECK: r0 = add(#1, asl(r0, #2))
+define i32 @test92(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.addi.asl.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test93
+; CHECK: r0 = sub(#1, asl(r0, #2))
+define i32 @test93(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.subi.asl.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test94
+; CHECK: r0 = and(#1, lsr(r0, #2))
+define i32 @test94(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.andi.lsr.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test95
+; CHECK: r0 = or(#1, lsr(r0, #2))
+define i32 @test95(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.ori.lsr.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test96
+; CHECK: r0 = add(#1, lsr(r0, #2))
+define i32 @test96(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.addi.lsr.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test97
+; CHECK: r0 = sub(#1, lsr(r0, #2))
+define i32 @test97(i32 %Rs) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.subi.lsr.ri(i32 1, i32 %Rs, i32 2)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test100
+; CHECK: r1:0 = bitsplit(r0, r1)
+define i64 @test100(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i64 @llvm.hexagon.A4.bitsplit(i32 %Rs, i32 %Rt)
+ ret i64 %0
+}
+
+; CHECK-LABEL: @test101
+; CHECK: r0 = modwrap(r0, r1)
+define i32 @test101(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.A4.modwrapu(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test102
+; CHECK: r0 = parity(r1:0, r3:2)
+define i32 @test102(i64 %Rs, i64 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S2.parityp(i64 %Rs, i64 %Rt)
+ ret i32 %0
+}
+
+; CHECK-LABEL: @test103
+; CHECK: r0 = parity(r0, r1)
+define i32 @test103(i32 %Rs, i32 %Rt) #0 {
+entry:
+ %0 = tail call i32 @llvm.hexagon.S4.parity(i32 %Rs, i32 %Rt)
+ ret i32 %0
+}
+
+declare i32 @llvm.hexagon.C2.cmpeqp(i64, i64) #1
+declare i32 @llvm.hexagon.C2.cmpgtp(i64, i64) #1
+declare i32 @llvm.hexagon.C2.cmpgtup(i64, i64) #1
+declare i32 @llvm.hexagon.A4.rcmpeq(i32, i32) #1
+declare i32 @llvm.hexagon.A4.rcmpneq(i32, i32) #1
+declare i32 @llvm.hexagon.A4.rcmpeqi(i32, i32) #1
+declare i32 @llvm.hexagon.A4.rcmpneqi(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpbeq(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpbgt(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpbgtu(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpbeqi(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpbgti(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpbgtui(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpheq(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmphgt(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmphgtu(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmpheqi(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmphgti(i32, i32) #1
+declare i32 @llvm.hexagon.A4.cmphgtui(i32, i32) #1
+declare i64 @llvm.hexagon.C2.vmux(i32, i64, i64) #1
+declare i32 @llvm.hexagon.A4.vcmpbeq.any(i64, i64) #1
+declare i64 @llvm.hexagon.A2.addp(i64, i64) #1
+declare i64 @llvm.hexagon.A2.addpsat(i64, i64) #1
+declare i64 @llvm.hexagon.A2.subp(i64, i64) #1
+declare i64 @llvm.hexagon.A2.addsp(i32, i64) #1
+declare i64 @llvm.hexagon.A2.andp(i64, i64) #1
+declare i64 @llvm.hexagon.A2.orp(i64, i64) #1
+declare i64 @llvm.hexagon.A2.xorp(i64, i64) #1
+declare i64 @llvm.hexagon.A4.ornp(i64, i64) #1
+declare i64 @llvm.hexagon.A4.andnp(i64, i64) #1
+declare i32 @llvm.hexagon.A2.addh.l16.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.l16.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.l16.sat.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.l16.sat.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.lh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.hh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.sat.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.sat.lh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.sat.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.addh.h16.sat.hh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.l16.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.l16.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.l16.sat.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.l16.sat.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.lh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.hh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.sat.ll(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.sat.lh(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.sat.hl(i32, i32) #1
+declare i32 @llvm.hexagon.A2.subh.h16.sat.hh(i32, i32) #1
+declare i64 @llvm.hexagon.A4.bitsplit(i32, i32) #1
+declare i32 @llvm.hexagon.A4.modwrapu(i32, i32) #1
+declare i32 @llvm.hexagon.S2.parityp(i64, i64) #1
+declare i32 @llvm.hexagon.S4.parity(i32, i32) #1
+declare i32 @llvm.hexagon.S4.andi.asl.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.ori.asl.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.addi.asl.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.subi.asl.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.andi.lsr.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.ori.lsr.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.addi.lsr.ri(i32, i32, i32) #1
+declare i32 @llvm.hexagon.S4.subi.lsr.ri(i32, i32, i32) #1
+
+attributes #0 = { nounwind readnone "less-precise-fpmad"="false" "no-frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf" "no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-float"="false" }
+attributes #1 = { nounwind readnone }