[CodeGenPrepare] Move CodeGenPrepare into lib/CodeGen.
authorQuentin Colombet <qcolombet@apple.com>
Sat, 22 Feb 2014 00:07:45 +0000 (00:07 +0000)
committerQuentin Colombet <qcolombet@apple.com>
Sat, 22 Feb 2014 00:07:45 +0000 (00:07 +0000)
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.

Move CodeGenPrepare into libLLVMCodeGen to avoid that.

Follow-up of <rdar://problem/15519855>

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@201912 91177308-0d34-0410-b5e6-96231b3b80d8

15 files changed:
include/llvm/CodeGen/Passes.h
include/llvm/Transforms/Scalar.h
lib/CodeGen/CMakeLists.txt
lib/CodeGen/CodeGen.cpp
lib/CodeGen/CodeGenPrepare.cpp [new file with mode: 0644]
lib/Transforms/Scalar/CMakeLists.txt
lib/Transforms/Scalar/CodeGenPrepare.cpp [deleted file]
lib/Transforms/Scalar/Scalar.cpp
tools/bugpoint/CMakeLists.txt
tools/bugpoint/LLVMBuild.txt
tools/bugpoint/Makefile
tools/opt/CMakeLists.txt
tools/opt/LLVMBuild.txt
tools/opt/Makefile
tools/opt/opt.cpp

index 3be21e02421776c633b12ad9c7610b210e647b1f..5d68f8637b7471ff967b62995e57f887ec31bcb2 100644 (file)
@@ -370,6 +370,10 @@ namespace llvm {
   createMachineFunctionPrinterPass(raw_ostream &OS,
                                    const std::string &Banner ="");
 
+  /// createCodeGenPreparePass - Transform the code to expose more pattern
+  /// matching during instruction selection.
+  FunctionPass *createCodeGenPreparePass(const TargetMachine *TM = 0);
+
   /// MachineLoopInfo - This pass is a loop analysis pass.
   extern char &MachineLoopInfoID;
 
index e1890f68038ec56ab324f165d2eab2dca50f3db9..cacd4cb51b6738916b35404a850aa87764e29802 100644 (file)
@@ -316,12 +316,6 @@ Pass *createLoopDeletionPass();
 //
 FunctionPass *createConstantHoistingPass();
 
-//===----------------------------------------------------------------------===//
-//
-// CodeGenPrepare - This pass prepares a function for instruction selection.
-//
-FunctionPass *createCodeGenPreparePass(const TargetMachine *TM = 0);
-
 //===----------------------------------------------------------------------===//
 //
 // InstructionNamer - Give any unnamed non-void instructions "tmp" names.
index 123d86f9504f24eba7f3761a076a99c7851dc140..8943cb11c6b9b5d52b4712418b567abaf4ae613b 100644 (file)
@@ -7,6 +7,7 @@ add_llvm_library(LLVMCodeGen
   CalcSpillWeights.cpp
   CallingConvLower.cpp
   CodeGen.cpp
+  CodeGenPrepare.cpp
   CriticalAntiDepBreaker.cpp
   DFAPacketizer.cpp
   DeadMachineInstructionElim.cpp
index c0db5a54b874f1409b038c1c237ea25aa75bda37..17402f066da36b2a66c9c26f8dab240b8bcf3ecb 100644 (file)
@@ -22,6 +22,7 @@ using namespace llvm;
 void llvm::initializeCodeGen(PassRegistry &Registry) {
   initializeBasicTTIPass(Registry);
   initializeBranchFolderPassPass(Registry);
+  initializeCodeGenPreparePass(Registry);
   initializeDeadMachineInstructionElimPass(Registry);
   initializeEarlyIfConverterPass(Registry);
   initializeExpandPostRAPass(Registry);
diff --git a/lib/CodeGen/CodeGenPrepare.cpp b/lib/CodeGen/CodeGenPrepare.cpp
new file mode 100644 (file)
index 0000000..e81a909
--- /dev/null
@@ -0,0 +1,2914 @@
+//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
+//
+//                     The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass munges the code in the input function to better prepare it for
+// SelectionDAG-based code generation. This works around limitations in it's
+// basic-block-at-a-time approach. It should eventually be removed.
+//
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "codegenprepare"
+#include "llvm/CodeGen/Passes.h"
+#include "llvm/ADT/DenseMap.h"
+#include "llvm/ADT/SmallSet.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/ADT/ValueMap.h"
+#include "llvm/Analysis/InstructionSimplify.h"
+#include "llvm/IR/Constants.h"
+#include "llvm/IR/DataLayout.h"
+#include "llvm/IR/DerivedTypes.h"
+#include "llvm/IR/Dominators.h"
+#include "llvm/IR/Function.h"
+#include "llvm/IR/IRBuilder.h"
+#include "llvm/IR/InlineAsm.h"
+#include "llvm/IR/Instructions.h"
+#include "llvm/IR/IntrinsicInst.h"
+#include "llvm/Pass.h"
+#include "llvm/Support/CallSite.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/GetElementPtrTypeIterator.h"
+#include "llvm/Support/PatternMatch.h"
+#include "llvm/Support/ValueHandle.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Target/TargetLibraryInfo.h"
+#include "llvm/Target/TargetLowering.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/BuildLibCalls.h"
+#include "llvm/Transforms/Utils/BypassSlowDivision.h"
+#include "llvm/Transforms/Utils/Local.h"
+using namespace llvm;
+using namespace llvm::PatternMatch;
+
+STATISTIC(NumBlocksElim, "Number of blocks eliminated");
+STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
+STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
+STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
+                      "sunken Cmps");
+STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
+                       "of sunken Casts");
+STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
+                          "computations were sunk");
+STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
+STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
+STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
+STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
+STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
+
+static cl::opt<bool> DisableBranchOpts(
+  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
+  cl::desc("Disable branch optimizations in CodeGenPrepare"));
+
+static cl::opt<bool> DisableSelectToBranch(
+  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
+  cl::desc("Disable select to branch conversion."));
+
+namespace {
+typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
+typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
+
+  class CodeGenPrepare : public FunctionPass {
+    /// TLI - Keep a pointer of a TargetLowering to consult for determining
+    /// transformation profitability.
+    const TargetMachine *TM;
+    const TargetLowering *TLI;
+    const TargetLibraryInfo *TLInfo;
+    DominatorTree *DT;
+
+    /// CurInstIterator - As we scan instructions optimizing them, this is the
+    /// next instruction to optimize.  Xforms that can invalidate this should
+    /// update it.
+    BasicBlock::iterator CurInstIterator;
+
+    /// Keeps track of non-local addresses that have been sunk into a block.
+    /// This allows us to avoid inserting duplicate code for blocks with
+    /// multiple load/stores of the same address.
+    ValueMap<Value*, Value*> SunkAddrs;
+
+    /// Keeps track of all truncates inserted for the current function.
+    SetOfInstrs InsertedTruncsSet;
+    /// Keeps track of the type of the related instruction before their
+    /// promotion for the current function.
+    InstrToOrigTy PromotedInsts;
+
+    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
+    /// be updated.
+    bool ModifiedDT;
+
+    /// OptSize - True if optimizing for size.
+    bool OptSize;
+
+  public:
+    static char ID; // Pass identification, replacement for typeid
+    explicit CodeGenPrepare(const TargetMachine *TM = 0)
+      : FunctionPass(ID), TM(TM), TLI(0) {
+        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
+      }
+    bool runOnFunction(Function &F);
+
+    const char *getPassName() const { return "CodeGen Prepare"; }
+
+    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+      AU.addPreserved<DominatorTreeWrapperPass>();
+      AU.addRequired<TargetLibraryInfo>();
+    }
+
+  private:
+    bool EliminateFallThrough(Function &F);
+    bool EliminateMostlyEmptyBlocks(Function &F);
+    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
+    void EliminateMostlyEmptyBlock(BasicBlock *BB);
+    bool OptimizeBlock(BasicBlock &BB);
+    bool OptimizeInst(Instruction *I);
+    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
+    bool OptimizeInlineAsmInst(CallInst *CS);
+    bool OptimizeCallInst(CallInst *CI);
+    bool MoveExtToFormExtLoad(Instruction *I);
+    bool OptimizeExtUses(Instruction *I);
+    bool OptimizeSelectInst(SelectInst *SI);
+    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
+    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
+    bool PlaceDbgValues(Function &F);
+  };
+}
+
+char CodeGenPrepare::ID = 0;
+static void *initializeCodeGenPreparePassOnce(PassRegistry &Registry) {
+  initializeTargetLibraryInfoPass(Registry);
+  PassInfo *PI = new PassInfo(
+      "Optimize for code generation", "codegenprepare", &CodeGenPrepare::ID,
+      PassInfo::NormalCtor_t(callDefaultCtor<CodeGenPrepare>), false, false,
+      PassInfo::TargetMachineCtor_t(callTargetMachineCtor<CodeGenPrepare>));
+  Registry.registerPass(*PI, true);
+  return PI;
+}
+
+void llvm::initializeCodeGenPreparePass(PassRegistry &Registry) {
+  CALL_ONCE_INITIALIZATION(initializeCodeGenPreparePassOnce)
+}
+
+FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
+  return new CodeGenPrepare(TM);
+}
+
+bool CodeGenPrepare::runOnFunction(Function &F) {
+  bool EverMadeChange = false;
+  // Clear per function information.
+  InsertedTruncsSet.clear();
+  PromotedInsts.clear();
+
+  ModifiedDT = false;
+  if (TM) TLI = TM->getTargetLowering();
+  TLInfo = &getAnalysis<TargetLibraryInfo>();
+  DominatorTreeWrapperPass *DTWP =
+      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
+  DT = DTWP ? &DTWP->getDomTree() : 0;
+  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
+                                           Attribute::OptimizeForSize);
+
+  /// This optimization identifies DIV instructions that can be
+  /// profitably bypassed and carried out with a shorter, faster divide.
+  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
+    const DenseMap<unsigned int, unsigned int> &BypassWidths =
+       TLI->getBypassSlowDivWidths();
+    for (Function::iterator I = F.begin(); I != F.end(); I++)
+      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
+  }
+
+  // Eliminate blocks that contain only PHI nodes and an
+  // unconditional branch.
+  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
+
+  // llvm.dbg.value is far away from the value then iSel may not be able
+  // handle it properly. iSel will drop llvm.dbg.value if it can not
+  // find a node corresponding to the value.
+  EverMadeChange |= PlaceDbgValues(F);
+
+  bool MadeChange = true;
+  while (MadeChange) {
+    MadeChange = false;
+    for (Function::iterator I = F.begin(); I != F.end(); ) {
+      BasicBlock *BB = I++;
+      MadeChange |= OptimizeBlock(*BB);
+    }
+    EverMadeChange |= MadeChange;
+  }
+
+  SunkAddrs.clear();
+
+  if (!DisableBranchOpts) {
+    MadeChange = false;
+    SmallPtrSet<BasicBlock*, 8> WorkList;
+    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
+      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
+      MadeChange |= ConstantFoldTerminator(BB, true);
+      if (!MadeChange) continue;
+
+      for (SmallVectorImpl<BasicBlock*>::iterator
+             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
+        if (pred_begin(*II) == pred_end(*II))
+          WorkList.insert(*II);
+    }
+
+    // Delete the dead blocks and any of their dead successors.
+    MadeChange |= !WorkList.empty();
+    while (!WorkList.empty()) {
+      BasicBlock *BB = *WorkList.begin();
+      WorkList.erase(BB);
+      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
+
+      DeleteDeadBlock(BB);
+
+      for (SmallVectorImpl<BasicBlock*>::iterator
+             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
+        if (pred_begin(*II) == pred_end(*II))
+          WorkList.insert(*II);
+    }
+
+    // Merge pairs of basic blocks with unconditional branches, connected by
+    // a single edge.
+    if (EverMadeChange || MadeChange)
+      MadeChange |= EliminateFallThrough(F);
+
+    if (MadeChange)
+      ModifiedDT = true;
+    EverMadeChange |= MadeChange;
+  }
+
+  if (ModifiedDT && DT)
+    DT->recalculate(F);
+
+  return EverMadeChange;
+}
+
+/// EliminateFallThrough - Merge basic blocks which are connected
+/// by a single edge, where one of the basic blocks has a single successor
+/// pointing to the other basic block, which has a single predecessor.
+bool CodeGenPrepare::EliminateFallThrough(Function &F) {
+  bool Changed = false;
+  // Scan all of the blocks in the function, except for the entry block.
+  for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ) {
+    BasicBlock *BB = I++;
+    // If the destination block has a single pred, then this is a trivial
+    // edge, just collapse it.
+    BasicBlock *SinglePred = BB->getSinglePredecessor();
+
+    // Don't merge if BB's address is taken.
+    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
+
+    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
+    if (Term && !Term->isConditional()) {
+      Changed = true;
+      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
+      // Remember if SinglePred was the entry block of the function.
+      // If so, we will need to move BB back to the entry position.
+      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
+      MergeBasicBlockIntoOnlyPred(BB, this);
+
+      if (isEntry && BB != &BB->getParent()->getEntryBlock())
+        BB->moveBefore(&BB->getParent()->getEntryBlock());
+
+      // We have erased a block. Update the iterator.
+      I = BB;
+    }
+  }
+  return Changed;
+}
+
+/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
+/// debug info directives, and an unconditional branch.  Passes before isel
+/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
+/// isel.  Start by eliminating these blocks so we can split them the way we
+/// want them.
+bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
+  bool MadeChange = false;
+  // Note that this intentionally skips the entry block.
+  for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ) {
+    BasicBlock *BB = I++;
+
+    // If this block doesn't end with an uncond branch, ignore it.
+    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
+    if (!BI || !BI->isUnconditional())
+      continue;
+
+    // If the instruction before the branch (skipping debug info) isn't a phi
+    // node, then other stuff is happening here.
+    BasicBlock::iterator BBI = BI;
+    if (BBI != BB->begin()) {
+      --BBI;
+      while (isa<DbgInfoIntrinsic>(BBI)) {
+        if (BBI == BB->begin())
+          break;
+        --BBI;
+      }
+      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
+        continue;
+    }
+
+    // Do not break infinite loops.
+    BasicBlock *DestBB = BI->getSuccessor(0);
+    if (DestBB == BB)
+      continue;
+
+    if (!CanMergeBlocks(BB, DestBB))
+      continue;
+
+    EliminateMostlyEmptyBlock(BB);
+    MadeChange = true;
+  }
+  return MadeChange;
+}
+
+/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
+/// single uncond branch between them, and BB contains no other non-phi
+/// instructions.
+bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
+                                    const BasicBlock *DestBB) const {
+  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
+  // the successor.  If there are more complex condition (e.g. preheaders),
+  // don't mess around with them.
+  BasicBlock::const_iterator BBI = BB->begin();
+  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
+    for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
+         UI != E; ++UI) {
+      const Instruction *User = cast<Instruction>(*UI);
+      if (User->getParent() != DestBB || !isa<PHINode>(User))
+        return false;
+      // If User is inside DestBB block and it is a PHINode then check
+      // incoming value. If incoming value is not from BB then this is
+      // a complex condition (e.g. preheaders) we want to avoid here.
+      if (User->getParent() == DestBB) {
+        if (const PHINode *UPN = dyn_cast<PHINode>(User))
+          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
+            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
+            if (Insn && Insn->getParent() == BB &&
+                Insn->getParent() != UPN->getIncomingBlock(I))
+              return false;
+          }
+      }
+    }
+  }
+
+  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
+  // and DestBB may have conflicting incoming values for the block.  If so, we
+  // can't merge the block.
+  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
+  if (!DestBBPN) return true;  // no conflict.
+
+  // Collect the preds of BB.
+  SmallPtrSet<const BasicBlock*, 16> BBPreds;
+  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
+    // It is faster to get preds from a PHI than with pred_iterator.
+    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
+      BBPreds.insert(BBPN->getIncomingBlock(i));
+  } else {
+    BBPreds.insert(pred_begin(BB), pred_end(BB));
+  }
+
+  // Walk the preds of DestBB.
+  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
+    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
+    if (BBPreds.count(Pred)) {   // Common predecessor?
+      BBI = DestBB->begin();
+      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
+        const Value *V1 = PN->getIncomingValueForBlock(Pred);
+        const Value *V2 = PN->getIncomingValueForBlock(BB);
+
+        // If V2 is a phi node in BB, look up what the mapped value will be.
+        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
+          if (V2PN->getParent() == BB)
+            V2 = V2PN->getIncomingValueForBlock(Pred);
+
+        // If there is a conflict, bail out.
+        if (V1 != V2) return false;
+      }
+    }
+  }
+
+  return true;
+}
+
+
+/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
+/// an unconditional branch in it.
+void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
+  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
+  BasicBlock *DestBB = BI->getSuccessor(0);
+
+  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
+
+  // If the destination block has a single pred, then this is a trivial edge,
+  // just collapse it.
+  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
+    if (SinglePred != DestBB) {
+      // Remember if SinglePred was the entry block of the function.  If so, we
+      // will need to move BB back to the entry position.
+      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
+      MergeBasicBlockIntoOnlyPred(DestBB, this);
+
+      if (isEntry && BB != &BB->getParent()->getEntryBlock())
+        BB->moveBefore(&BB->getParent()->getEntryBlock());
+
+      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
+      return;
+    }
+  }
+
+  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
+  // to handle the new incoming edges it is about to have.
+  PHINode *PN;
+  for (BasicBlock::iterator BBI = DestBB->begin();
+       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
+    // Remove the incoming value for BB, and remember it.
+    Value *InVal = PN->removeIncomingValue(BB, false);
+
+    // Two options: either the InVal is a phi node defined in BB or it is some
+    // value that dominates BB.
+    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
+    if (InValPhi && InValPhi->getParent() == BB) {
+      // Add all of the input values of the input PHI as inputs of this phi.
+      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
+        PN->addIncoming(InValPhi->getIncomingValue(i),
+                        InValPhi->getIncomingBlock(i));
+    } else {
+      // Otherwise, add one instance of the dominating value for each edge that
+      // we will be adding.
+      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
+        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
+          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
+      } else {
+        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
+          PN->addIncoming(InVal, *PI);
+      }
+    }
+  }
+
+  // The PHIs are now updated, change everything that refers to BB to use
+  // DestBB and remove BB.
+  BB->replaceAllUsesWith(DestBB);
+  if (DT && !ModifiedDT) {
+    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
+    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
+    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
+    DT->changeImmediateDominator(DestBB, NewIDom);
+    DT->eraseNode(BB);
+  }
+  BB->eraseFromParent();
+  ++NumBlocksElim;
+
+  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
+}
+
+/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
+/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
+/// sink it into user blocks to reduce the number of virtual
+/// registers that must be created and coalesced.
+///
+/// Return true if any changes are made.
+///
+static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
+  // If this is a noop copy,
+  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
+  EVT DstVT = TLI.getValueType(CI->getType());
+
+  // This is an fp<->int conversion?
+  if (SrcVT.isInteger() != DstVT.isInteger())
+    return false;
+
+  // If this is an extension, it will be a zero or sign extension, which
+  // isn't a noop.
+  if (SrcVT.bitsLT(DstVT)) return false;
+
+  // If these values will be promoted, find out what they will be promoted
+  // to.  This helps us consider truncates on PPC as noop copies when they
+  // are.
+  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
+      TargetLowering::TypePromoteInteger)
+    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
+  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
+      TargetLowering::TypePromoteInteger)
+    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
+
+  // If, after promotion, these are the same types, this is a noop copy.
+  if (SrcVT != DstVT)
+    return false;
+
+  BasicBlock *DefBB = CI->getParent();
+
+  /// InsertedCasts - Only insert a cast in each block once.
+  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
+
+  bool MadeChange = false;
+  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
+       UI != E; ) {
+    Use &TheUse = UI.getUse();
+    Instruction *User = cast<Instruction>(*UI);
+
+    // Figure out which BB this cast is used in.  For PHI's this is the
+    // appropriate predecessor block.
+    BasicBlock *UserBB = User->getParent();
+    if (PHINode *PN = dyn_cast<PHINode>(User)) {
+      UserBB = PN->getIncomingBlock(UI);
+    }
+
+    // Preincrement use iterator so we don't invalidate it.
+    ++UI;
+
+    // If this user is in the same block as the cast, don't change the cast.
+    if (UserBB == DefBB) continue;
+
+    // If we have already inserted a cast into this block, use it.
+    CastInst *&InsertedCast = InsertedCasts[UserBB];
+
+    if (!InsertedCast) {
+      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
+      InsertedCast =
+        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
+                         InsertPt);
+      MadeChange = true;
+    }
+
+    // Replace a use of the cast with a use of the new cast.
+    TheUse = InsertedCast;
+    ++NumCastUses;
+  }
+
+  // If we removed all uses, nuke the cast.
+  if (CI->use_empty()) {
+    CI->eraseFromParent();
+    MadeChange = true;
+  }
+
+  return MadeChange;
+}
+
+/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
+/// the number of virtual registers that must be created and coalesced.  This is
+/// a clear win except on targets with multiple condition code registers
+///  (PowerPC), where it might lose; some adjustment may be wanted there.
+///
+/// Return true if any changes are made.
+static bool OptimizeCmpExpression(CmpInst *CI) {
+  BasicBlock *DefBB = CI->getParent();
+
+  /// InsertedCmp - Only insert a cmp in each block once.
+  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
+
+  bool MadeChange = false;
+  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
+       UI != E; ) {
+    Use &TheUse = UI.getUse();
+    Instruction *User = cast<Instruction>(*UI);
+
+    // Preincrement use iterator so we don't invalidate it.
+    ++UI;
+
+    // Don't bother for PHI nodes.
+    if (isa<PHINode>(User))
+      continue;
+
+    // Figure out which BB this cmp is used in.
+    BasicBlock *UserBB = User->getParent();
+
+    // If this user is in the same block as the cmp, don't change the cmp.
+    if (UserBB == DefBB) continue;
+
+    // If we have already inserted a cmp into this block, use it.
+    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
+
+    if (!InsertedCmp) {
+      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
+      InsertedCmp =
+        CmpInst::Create(CI->getOpcode(),
+                        CI->getPredicate(),  CI->getOperand(0),
+                        CI->getOperand(1), "", InsertPt);
+      MadeChange = true;
+    }
+
+    // Replace a use of the cmp with a use of the new cmp.
+    TheUse = InsertedCmp;
+    ++NumCmpUses;
+  }
+
+  // If we removed all uses, nuke the cmp.
+  if (CI->use_empty())
+    CI->eraseFromParent();
+
+  return MadeChange;
+}
+
+namespace {
+class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
+protected:
+  void replaceCall(Value *With) {
+    CI->replaceAllUsesWith(With);
+    CI->eraseFromParent();
+  }
+  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
+      if (ConstantInt *SizeCI =
+                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
+        return SizeCI->isAllOnesValue();
+    return false;
+  }
+};
+} // end anonymous namespace
+
+bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
+  BasicBlock *BB = CI->getParent();
+
+  // Lower inline assembly if we can.
+  // If we found an inline asm expession, and if the target knows how to
+  // lower it to normal LLVM code, do so now.
+  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
+    if (TLI->ExpandInlineAsm(CI)) {
+      // Avoid invalidating the iterator.
+      CurInstIterator = BB->begin();
+      // Avoid processing instructions out of order, which could cause
+      // reuse before a value is defined.
+      SunkAddrs.clear();
+      return true;
+    }
+    // Sink address computing for memory operands into the block.
+    if (OptimizeInlineAsmInst(CI))
+      return true;
+  }
+
+  // Lower all uses of llvm.objectsize.*
+  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
+  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
+    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
+    Type *ReturnTy = CI->getType();
+    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
+
+    // Substituting this can cause recursive simplifications, which can
+    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
+    // happens.
+    WeakVH IterHandle(CurInstIterator);
+
+    replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
+                                  TLInfo, ModifiedDT ? 0 : DT);
+
+    // If the iterator instruction was recursively deleted, start over at the
+    // start of the block.
+    if (IterHandle != CurInstIterator) {
+      CurInstIterator = BB->begin();
+      SunkAddrs.clear();
+    }
+    return true;
+  }
+
+  if (II && TLI) {
+    SmallVector<Value*, 2> PtrOps;
+    Type *AccessTy;
+    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
+      while (!PtrOps.empty())
+        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
+          return true;
+  }
+
+  // From here on out we're working with named functions.
+  if (CI->getCalledFunction() == 0) return false;
+
+  // We'll need DataLayout from here on out.
+  const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
+  if (!TD) return false;
+
+  // Lower all default uses of _chk calls.  This is very similar
+  // to what InstCombineCalls does, but here we are only lowering calls
+  // that have the default "don't know" as the objectsize.  Anything else
+  // should be left alone.
+  CodeGenPrepareFortifiedLibCalls Simplifier;
+  return Simplifier.fold(CI, TD, TLInfo);
+}
+
+/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
+/// instructions to the predecessor to enable tail call optimizations. The
+/// case it is currently looking for is:
+/// @code
+/// bb0:
+///   %tmp0 = tail call i32 @f0()
+///   br label %return
+/// bb1:
+///   %tmp1 = tail call i32 @f1()
+///   br label %return
+/// bb2:
+///   %tmp2 = tail call i32 @f2()
+///   br label %return
+/// return:
+///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
+///   ret i32 %retval
+/// @endcode
+///
+/// =>
+///
+/// @code
+/// bb0:
+///   %tmp0 = tail call i32 @f0()
+///   ret i32 %tmp0
+/// bb1:
+///   %tmp1 = tail call i32 @f1()
+///   ret i32 %tmp1
+/// bb2:
+///   %tmp2 = tail call i32 @f2()
+///   ret i32 %tmp2
+/// @endcode
+bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
+  if (!TLI)
+    return false;
+
+  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
+  if (!RI)
+    return false;
+
+  PHINode *PN = 0;
+  BitCastInst *BCI = 0;
+  Value *V = RI->getReturnValue();
+  if (V) {
+    BCI = dyn_cast<BitCastInst>(V);
+    if (BCI)
+      V = BCI->getOperand(0);
+
+    PN = dyn_cast<PHINode>(V);
+    if (!PN)
+      return false;
+  }
+
+  if (PN && PN->getParent() != BB)
+    return false;
+
+  // It's not safe to eliminate the sign / zero extension of the return value.
+  // See llvm::isInTailCallPosition().
+  const Function *F = BB->getParent();
+  AttributeSet CallerAttrs = F->getAttributes();
+  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
+      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
+    return false;
+
+  // Make sure there are no instructions between the PHI and return, or that the
+  // return is the first instruction in the block.
+  if (PN) {
+    BasicBlock::iterator BI = BB->begin();
+    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
+    if (&*BI == BCI)
+      // Also skip over the bitcast.
+      ++BI;
+    if (&*BI != RI)
+      return false;
+  } else {
+    BasicBlock::iterator BI = BB->begin();
+    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
+    if (&*BI != RI)
+      return false;
+  }
+
+  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
+  /// call.
+  SmallVector<CallInst*, 4> TailCalls;
+  if (PN) {
+    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
+      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
+      // Make sure the phi value is indeed produced by the tail call.
+      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
+          TLI->mayBeEmittedAsTailCall(CI))
+        TailCalls.push_back(CI);
+    }
+  } else {
+    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
+    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
+      if (!VisitedBBs.insert(*PI))
+        continue;
+
+      BasicBlock::InstListType &InstList = (*PI)->getInstList();
+      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
+      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
+      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
+      if (RI == RE)
+        continue;
+
+      CallInst *CI = dyn_cast<CallInst>(&*RI);
+      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
+        TailCalls.push_back(CI);
+    }
+  }
+
+  bool Changed = false;
+  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
+    CallInst *CI = TailCalls[i];
+    CallSite CS(CI);
+
+    // Conservatively require the attributes of the call to match those of the
+    // return. Ignore noalias because it doesn't affect the call sequence.
+    AttributeSet CalleeAttrs = CS.getAttributes();
+    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
+          removeAttribute(Attribute::NoAlias) !=
+        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
+          removeAttribute(Attribute::NoAlias))
+      continue;
+
+    // Make sure the call instruction is followed by an unconditional branch to
+    // the return block.
+    BasicBlock *CallBB = CI->getParent();
+    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
+    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
+      continue;
+
+    // Duplicate the return into CallBB.
+    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
+    ModifiedDT = Changed = true;
+    ++NumRetsDup;
+  }
+
+  // If we eliminated all predecessors of the block, delete the block now.
+  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
+    BB->eraseFromParent();
+
+  return Changed;
+}
+
+//===----------------------------------------------------------------------===//
+// Memory Optimization
+//===----------------------------------------------------------------------===//
+
+namespace {
+
+/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
+/// which holds actual Value*'s for register values.
+struct ExtAddrMode : public TargetLowering::AddrMode {
+  Value *BaseReg;
+  Value *ScaledReg;
+  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
+  void print(raw_ostream &OS) const;
+  void dump() const;
+
+  bool operator==(const ExtAddrMode& O) const {
+    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
+           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
+           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
+  }
+};
+
+#ifndef NDEBUG
+static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
+  AM.print(OS);
+  return OS;
+}
+#endif
+
+void ExtAddrMode::print(raw_ostream &OS) const {
+  bool NeedPlus = false;
+  OS << "[";
+  if (BaseGV) {
+    OS << (NeedPlus ? " + " : "")
+       << "GV:";
+    BaseGV->printAsOperand(OS, /*PrintType=*/false);
+    NeedPlus = true;
+  }
+
+  if (BaseOffs)
+    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
+
+  if (BaseReg) {
+    OS << (NeedPlus ? " + " : "")
+       << "Base:";
+    BaseReg->printAsOperand(OS, /*PrintType=*/false);
+    NeedPlus = true;
+  }
+  if (Scale) {
+    OS << (NeedPlus ? " + " : "")
+       << Scale << "*";
+    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
+  }
+
+  OS << ']';
+}
+
+#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
+void ExtAddrMode::dump() const {
+  print(dbgs());
+  dbgs() << '\n';
+}
+#endif
+
+/// \brief This class provides transaction based operation on the IR.
+/// Every change made through this class is recorded in the internal state and
+/// can be undone (rollback) until commit is called.
+class TypePromotionTransaction {
+
+  /// \brief This represents the common interface of the individual transaction.
+  /// Each class implements the logic for doing one specific modification on
+  /// the IR via the TypePromotionTransaction.
+  class TypePromotionAction {
+  protected:
+    /// The Instruction modified.
+    Instruction *Inst;
+
+  public:
+    /// \brief Constructor of the action.
+    /// The constructor performs the related action on the IR.
+    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
+
+    virtual ~TypePromotionAction() {}
+
+    /// \brief Undo the modification done by this action.
+    /// When this method is called, the IR must be in the same state as it was
+    /// before this action was applied.
+    /// \pre Undoing the action works if and only if the IR is in the exact same
+    /// state as it was directly after this action was applied.
+    virtual void undo() = 0;
+
+    /// \brief Advocate every change made by this action.
+    /// When the results on the IR of the action are to be kept, it is important
+    /// to call this function, otherwise hidden information may be kept forever.
+    virtual void commit() {
+      // Nothing to be done, this action is not doing anything.
+    }
+  };
+
+  /// \brief Utility to remember the position of an instruction.
+  class InsertionHandler {
+    /// Position of an instruction.
+    /// Either an instruction:
+    /// - Is the first in a basic block: BB is used.
+    /// - Has a previous instructon: PrevInst is used.
+    union {
+      Instruction *PrevInst;
+      BasicBlock *BB;
+    } Point;
+    /// Remember whether or not the instruction had a previous instruction.
+    bool HasPrevInstruction;
+
+  public:
+    /// \brief Record the position of \p Inst.
+    InsertionHandler(Instruction *Inst) {
+      BasicBlock::iterator It = Inst;
+      HasPrevInstruction = (It != (Inst->getParent()->begin()));
+      if (HasPrevInstruction)
+        Point.PrevInst = --It;
+      else
+        Point.BB = Inst->getParent();
+    }
+
+    /// \brief Insert \p Inst at the recorded position.
+    void insert(Instruction *Inst) {
+      if (HasPrevInstruction) {
+        if (Inst->getParent())
+          Inst->removeFromParent();
+        Inst->insertAfter(Point.PrevInst);
+      } else {
+        Instruction *Position = Point.BB->getFirstInsertionPt();
+        if (Inst->getParent())
+          Inst->moveBefore(Position);
+        else
+          Inst->insertBefore(Position);
+      }
+    }
+  };
+
+  /// \brief Move an instruction before another.
+  class InstructionMoveBefore : public TypePromotionAction {
+    /// Original position of the instruction.
+    InsertionHandler Position;
+
+  public:
+    /// \brief Move \p Inst before \p Before.
+    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
+        : TypePromotionAction(Inst), Position(Inst) {
+      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
+      Inst->moveBefore(Before);
+    }
+
+    /// \brief Move the instruction back to its original position.
+    void undo() {
+      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
+      Position.insert(Inst);
+    }
+  };
+
+  /// \brief Set the operand of an instruction with a new value.
+  class OperandSetter : public TypePromotionAction {
+    /// Original operand of the instruction.
+    Value *Origin;
+    /// Index of the modified instruction.
+    unsigned Idx;
+
+  public:
+    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
+    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
+        : TypePromotionAction(Inst), Idx(Idx) {
+      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
+                   << "for:" << *Inst << "\n"
+                   << "with:" << *NewVal << "\n");
+      Origin = Inst->getOperand(Idx);
+      Inst->setOperand(Idx, NewVal);
+    }
+
+    /// \brief Restore the original value of the instruction.
+    void undo() {
+      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
+                   << "for: " << *Inst << "\n"
+                   << "with: " << *Origin << "\n");
+      Inst->setOperand(Idx, Origin);
+    }
+  };
+
+  /// \brief Hide the operands of an instruction.
+  /// Do as if this instruction was not using any of its operands.
+  class OperandsHider : public TypePromotionAction {
+    /// The list of original operands.
+    SmallVector<Value *, 4> OriginalValues;
+
+  public:
+    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
+    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
+      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
+      unsigned NumOpnds = Inst->getNumOperands();
+      OriginalValues.reserve(NumOpnds);
+      for (unsigned It = 0; It < NumOpnds; ++It) {
+        // Save the current operand.
+        Value *Val = Inst->getOperand(It);
+        OriginalValues.push_back(Val);
+        // Set a dummy one.
+        // We could use OperandSetter here, but that would implied an overhead
+        // that we are not willing to pay.
+        Inst->setOperand(It, UndefValue::get(Val->getType()));
+      }
+    }
+
+    /// \brief Restore the original list of uses.
+    void undo() {
+      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
+      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
+        Inst->setOperand(It, OriginalValues[It]);
+    }
+  };
+
+  /// \brief Build a truncate instruction.
+  class TruncBuilder : public TypePromotionAction {
+  public:
+    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
+    /// result.
+    /// trunc Opnd to Ty.
+    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
+      IRBuilder<> Builder(Opnd);
+      Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
+      DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
+    }
+
+    /// \brief Get the built instruction.
+    Instruction *getBuiltInstruction() { return Inst; }
+
+    /// \brief Remove the built instruction.
+    void undo() {
+      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
+      Inst->eraseFromParent();
+    }
+  };
+
+  /// \brief Build a sign extension instruction.
+  class SExtBuilder : public TypePromotionAction {
+  public:
+    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
+    /// result.
+    /// sext Opnd to Ty.
+    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
+        : TypePromotionAction(Inst) {
+      IRBuilder<> Builder(InsertPt);
+      Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
+      DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
+    }
+
+    /// \brief Get the built instruction.
+    Instruction *getBuiltInstruction() { return Inst; }
+
+    /// \brief Remove the built instruction.
+    void undo() {
+      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
+      Inst->eraseFromParent();
+    }
+  };
+
+  /// \brief Mutate an instruction to another type.
+  class TypeMutator : public TypePromotionAction {
+    /// Record the original type.
+    Type *OrigTy;
+
+  public:
+    /// \brief Mutate the type of \p Inst into \p NewTy.
+    TypeMutator(Instruction *Inst, Type *NewTy)
+        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
+      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
+                   << "\n");
+      Inst->mutateType(NewTy);
+    }
+
+    /// \brief Mutate the instruction back to its original type.
+    void undo() {
+      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
+                   << "\n");
+      Inst->mutateType(OrigTy);
+    }
+  };
+
+  /// \brief Replace the uses of an instruction by another instruction.
+  class UsesReplacer : public TypePromotionAction {
+    /// Helper structure to keep track of the replaced uses.
+    struct InstructionAndIdx {
+      /// The instruction using the instruction.
+      Instruction *Inst;
+      /// The index where this instruction is used for Inst.
+      unsigned Idx;
+      InstructionAndIdx(Instruction *Inst, unsigned Idx)
+          : Inst(Inst), Idx(Idx) {}
+    };
+
+    /// Keep track of the original uses (pair Instruction, Index).
+    SmallVector<InstructionAndIdx, 4> OriginalUses;
+    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
+
+  public:
+    /// \brief Replace all the use of \p Inst by \p New.
+    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
+      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
+                   << "\n");
+      // Record the original uses.
+      for (Value::use_iterator UseIt = Inst->use_begin(),
+                               EndIt = Inst->use_end();
+           UseIt != EndIt; ++UseIt) {
+        Instruction *Use = cast<Instruction>(*UseIt);
+        OriginalUses.push_back(InstructionAndIdx(Use, UseIt.getOperandNo()));
+      }
+      // Now, we can replace the uses.
+      Inst->replaceAllUsesWith(New);
+    }
+
+    /// \brief Reassign the original uses of Inst to Inst.
+    void undo() {
+      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
+      for (use_iterator UseIt = OriginalUses.begin(),
+                        EndIt = OriginalUses.end();
+           UseIt != EndIt; ++UseIt) {
+        UseIt->Inst->setOperand(UseIt->Idx, Inst);
+      }
+    }
+  };
+
+  /// \brief Remove an instruction from the IR.
+  class InstructionRemover : public TypePromotionAction {
+    /// Original position of the instruction.
+    InsertionHandler Inserter;
+    /// Helper structure to hide all the link to the instruction. In other
+    /// words, this helps to do as if the instruction was removed.
+    OperandsHider Hider;
+    /// Keep track of the uses replaced, if any.
+    UsesReplacer *Replacer;
+
+  public:
+    /// \brief Remove all reference of \p Inst and optinally replace all its
+    /// uses with New.
+    /// \pre If !Inst->use_empty(), then New != NULL
+    InstructionRemover(Instruction *Inst, Value *New = NULL)
+        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
+          Replacer(NULL) {
+      if (New)
+        Replacer = new UsesReplacer(Inst, New);
+      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
+      Inst->removeFromParent();
+    }
+
+    ~InstructionRemover() { delete Replacer; }
+
+    /// \brief Really remove the instruction.
+    void commit() { delete Inst; }
+
+    /// \brief Resurrect the instruction and reassign it to the proper uses if
+    /// new value was provided when build this action.
+    void undo() {
+      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
+      Inserter.insert(Inst);
+      if (Replacer)
+        Replacer->undo();
+      Hider.undo();
+    }
+  };
+
+public:
+  /// Restoration point.
+  /// The restoration point is a pointer to an action instead of an iterator
+  /// because the iterator may be invalidated but not the pointer.
+  typedef const TypePromotionAction *ConstRestorationPt;
+  /// Advocate every changes made in that transaction.
+  void commit();
+  /// Undo all the changes made after the given point.
+  void rollback(ConstRestorationPt Point);
+  /// Get the current restoration point.
+  ConstRestorationPt getRestorationPoint() const;
+
+  /// \name API for IR modification with state keeping to support rollback.
+  /// @{
+  /// Same as Instruction::setOperand.
+  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
+  /// Same as Instruction::eraseFromParent.
+  void eraseInstruction(Instruction *Inst, Value *NewVal = NULL);
+  /// Same as Value::replaceAllUsesWith.
+  void replaceAllUsesWith(Instruction *Inst, Value *New);
+  /// Same as Value::mutateType.
+  void mutateType(Instruction *Inst, Type *NewTy);
+  /// Same as IRBuilder::createTrunc.
+  Instruction *createTrunc(Instruction *Opnd, Type *Ty);
+  /// Same as IRBuilder::createSExt.
+  Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
+  /// Same as Instruction::moveBefore.
+  void moveBefore(Instruction *Inst, Instruction *Before);
+  /// @}
+
+  ~TypePromotionTransaction();
+
+private:
+  /// The ordered list of actions made so far.
+  SmallVector<TypePromotionAction *, 16> Actions;
+  typedef SmallVectorImpl<TypePromotionAction *>::iterator CommitPt;
+};
+
+void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
+                                          Value *NewVal) {
+  Actions.push_back(
+      new TypePromotionTransaction::OperandSetter(Inst, Idx, NewVal));
+}
+
+void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
+                                                Value *NewVal) {
+  Actions.push_back(
+      new TypePromotionTransaction::InstructionRemover(Inst, NewVal));
+}
+
+void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
+                                                  Value *New) {
+  Actions.push_back(new TypePromotionTransaction::UsesReplacer(Inst, New));
+}
+
+void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
+  Actions.push_back(new TypePromotionTransaction::TypeMutator(Inst, NewTy));
+}
+
+Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
+                                                   Type *Ty) {
+  TruncBuilder *TB = new TruncBuilder(Opnd, Ty);
+  Actions.push_back(TB);
+  return TB->getBuiltInstruction();
+}
+
+Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
+                                                  Value *Opnd, Type *Ty) {
+  SExtBuilder *SB = new SExtBuilder(Inst, Opnd, Ty);
+  Actions.push_back(SB);
+  return SB->getBuiltInstruction();
+}
+
+void TypePromotionTransaction::moveBefore(Instruction *Inst,
+                                          Instruction *Before) {
+  Actions.push_back(
+      new TypePromotionTransaction::InstructionMoveBefore(Inst, Before));
+}
+
+TypePromotionTransaction::ConstRestorationPt
+TypePromotionTransaction::getRestorationPoint() const {
+  return Actions.rbegin() != Actions.rend() ? *Actions.rbegin() : NULL;
+}
+
+void TypePromotionTransaction::commit() {
+  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
+       ++It) {
+    (*It)->commit();
+    delete *It;
+  }
+  Actions.clear();
+}
+
+void TypePromotionTransaction::rollback(
+    TypePromotionTransaction::ConstRestorationPt Point) {
+  while (!Actions.empty() && Point != (*Actions.rbegin())) {
+    TypePromotionAction *Curr = Actions.pop_back_val();
+    Curr->undo();
+    delete Curr;
+  }
+}
+
+TypePromotionTransaction::~TypePromotionTransaction() {
+  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It)
+    delete *It;
+  Actions.clear();
+}
+
+/// \brief A helper class for matching addressing modes.
+///
+/// This encapsulates the logic for matching the target-legal addressing modes.
+class AddressingModeMatcher {
+  SmallVectorImpl<Instruction*> &AddrModeInsts;
+  const TargetLowering &TLI;
+
+  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
+  /// the memory instruction that we're computing this address for.
+  Type *AccessTy;
+  Instruction *MemoryInst;
+
+  /// AddrMode - This is the addressing mode that we're building up.  This is
+  /// part of the return value of this addressing mode matching stuff.
+  ExtAddrMode &AddrMode;
+
+  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
+  const SetOfInstrs &InsertedTruncs;
+  /// A map from the instructions to their type before promotion.
+  InstrToOrigTy &PromotedInsts;
+  /// The ongoing transaction where every action should be registered.
+  TypePromotionTransaction &TPT;
+
+  /// IgnoreProfitability - This is set to true when we should not do
+  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
+  /// always returns true.
+  bool IgnoreProfitability;
+
+  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
+                        const TargetLowering &T, Type *AT,
+                        Instruction *MI, ExtAddrMode &AM,
+                        const SetOfInstrs &InsertedTruncs,
+                        InstrToOrigTy &PromotedInsts,
+                        TypePromotionTransaction &TPT)
+      : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
+        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
+    IgnoreProfitability = false;
+  }
+public:
+
+  /// Match - Find the maximal addressing mode that a load/store of V can fold,
+  /// give an access type of AccessTy.  This returns a list of involved
+  /// instructions in AddrModeInsts.
+  /// \p InsertedTruncs The truncate instruction inserted by other
+  /// CodeGenPrepare
+  /// optimizations.
+  /// \p PromotedInsts maps the instructions to their type before promotion.
+  /// \p The ongoing transaction where every action should be registered.
+  static ExtAddrMode Match(Value *V, Type *AccessTy,
+                           Instruction *MemoryInst,
+                           SmallVectorImpl<Instruction*> &AddrModeInsts,
+                           const TargetLowering &TLI,
+                           const SetOfInstrs &InsertedTruncs,
+                           InstrToOrigTy &PromotedInsts,
+                           TypePromotionTransaction &TPT) {
+    ExtAddrMode Result;
+
+    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
+                                         MemoryInst, Result, InsertedTruncs,
+                                         PromotedInsts, TPT).MatchAddr(V, 0);
+    (void)Success; assert(Success && "Couldn't select *anything*?");
+    return Result;
+  }
+private:
+  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
+  bool MatchAddr(Value *V, unsigned Depth);
+  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
+                          bool *MovedAway = NULL);
+  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
+                                            ExtAddrMode &AMBefore,
+                                            ExtAddrMode &AMAfter);
+  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
+  bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
+                             Value *PromotedOperand) const;
+};
+
+/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
+/// Return true and update AddrMode if this addr mode is legal for the target,
+/// false if not.
+bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
+                                             unsigned Depth) {
+  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
+  // mode.  Just process that directly.
+  if (Scale == 1)
+    return MatchAddr(ScaleReg, Depth);
+
+  // If the scale is 0, it takes nothing to add this.
+  if (Scale == 0)
+    return true;
+
+  // If we already have a scale of this value, we can add to it, otherwise, we
+  // need an available scale field.
+  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
+    return false;
+
+  ExtAddrMode TestAddrMode = AddrMode;
+
+  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
+  // [A+B + A*7] -> [B+A*8].
+  TestAddrMode.Scale += Scale;
+  TestAddrMode.ScaledReg = ScaleReg;
+
+  // If the new address isn't legal, bail out.
+  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
+    return false;
+
+  // It was legal, so commit it.
+  AddrMode = TestAddrMode;
+
+  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
+  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
+  // X*Scale + C*Scale to addr mode.
+  ConstantInt *CI = 0; Value *AddLHS = 0;
+  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
+      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
+    TestAddrMode.ScaledReg = AddLHS;
+    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
+
+    // If this addressing mode is legal, commit it and remember that we folded
+    // this instruction.
+    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
+      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
+      AddrMode = TestAddrMode;
+      return true;
+    }
+  }
+
+  // Otherwise, not (x+c)*scale, just return what we have.
+  return true;
+}
+
+/// MightBeFoldableInst - This is a little filter, which returns true if an
+/// addressing computation involving I might be folded into a load/store
+/// accessing it.  This doesn't need to be perfect, but needs to accept at least
+/// the set of instructions that MatchOperationAddr can.
+static bool MightBeFoldableInst(Instruction *I) {
+  switch (I->getOpcode()) {
+  case Instruction::BitCast:
+    // Don't touch identity bitcasts.
+    if (I->getType() == I->getOperand(0)->getType())
+      return false;
+    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
+  case Instruction::PtrToInt:
+    // PtrToInt is always a noop, as we know that the int type is pointer sized.
+    return true;
+  case Instruction::IntToPtr:
+    // We know the input is intptr_t, so this is foldable.
+    return true;
+  case Instruction::Add:
+    return true;
+  case Instruction::Mul:
+  case Instruction::Shl:
+    // Can only handle X*C and X << C.
+    return isa<ConstantInt>(I->getOperand(1));
+  case Instruction::GetElementPtr:
+    return true;
+  default:
+    return false;
+  }
+}
+
+/// \brief Hepler class to perform type promotion.
+class TypePromotionHelper {
+  /// \brief Utility function to check whether or not a sign extension of
+  /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
+  /// using the operands of \p Inst or promoting \p Inst.
+  /// In other words, check if:
+  /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
+  /// #1 Promotion applies:
+  /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
+  /// #2 Operand reuses:
+  /// sext opnd1 to ConsideredSExtType.
+  /// \p PromotedInsts maps the instructions to their type before promotion.
+  static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
+                            const InstrToOrigTy &PromotedInsts);
+
+  /// \brief Utility function to determine if \p OpIdx should be promoted when
+  /// promoting \p Inst.
+  static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
+    if (isa<SelectInst>(Inst) && OpIdx == 0)
+      return false;
+    return true;
+  }
+
+  /// \brief Utility function to promote the operand of \p SExt when this
+  /// operand is a promotable trunc or sext.
+  /// \p PromotedInsts maps the instructions to their type before promotion.
+  /// \p CreatedInsts[out] contains how many non-free instructions have been
+  /// created to promote the operand of SExt.
+  /// Should never be called directly.
+  /// \return The promoted value which is used instead of SExt.
+  static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
+                                              TypePromotionTransaction &TPT,
+                                              InstrToOrigTy &PromotedInsts,
+                                              unsigned &CreatedInsts);
+
+  /// \brief Utility function to promote the operand of \p SExt when this
+  /// operand is promotable and is not a supported trunc or sext.
+  /// \p PromotedInsts maps the instructions to their type before promotion.
+  /// \p CreatedInsts[out] contains how many non-free instructions have been
+  /// created to promote the operand of SExt.
+  /// Should never be called directly.
+  /// \return The promoted value which is used instead of SExt.
+  static Value *promoteOperandForOther(Instruction *SExt,
+                                       TypePromotionTransaction &TPT,
+                                       InstrToOrigTy &PromotedInsts,
+                                       unsigned &CreatedInsts);
+
+public:
+  /// Type for the utility function that promotes the operand of SExt.
+  typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
+                           InstrToOrigTy &PromotedInsts,
+                           unsigned &CreatedInsts);
+  /// \brief Given a sign extend instruction \p SExt, return the approriate
+  /// action to promote the operand of \p SExt instead of using SExt.
+  /// \return NULL if no promotable action is possible with the current
+  /// sign extension.
+  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
+  /// the others CodeGenPrepare optimizations. This information is important
+  /// because we do not want to promote these instructions as CodeGenPrepare
+  /// will reinsert them later. Thus creating an infinite loop: create/remove.
+  /// \p PromotedInsts maps the instructions to their type before promotion.
+  static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
+                          const TargetLowering &TLI,
+                          const InstrToOrigTy &PromotedInsts);
+};
+
+bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
+                                        Type *ConsideredSExtType,
+                                        const InstrToOrigTy &PromotedInsts) {
+  // We can always get through sext.
+  if (isa<SExtInst>(Inst))
+    return true;
+
+  // We can get through binary operator, if it is legal. In other words, the
+  // binary operator must have a nuw or nsw flag.
+  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
+  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
+      (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
+    return true;
+
+  // Check if we can do the following simplification.
+  // sext(trunc(sext)) --> sext
+  if (!isa<TruncInst>(Inst))
+    return false;
+
+  Value *OpndVal = Inst->getOperand(0);
+  // Check if we can use this operand in the sext.
+  // If the type is larger than the result type of the sign extension,
+  // we cannot.
+  if (OpndVal->getType()->getIntegerBitWidth() >
+      ConsideredSExtType->getIntegerBitWidth())
+    return false;
+
+  // If the operand of the truncate is not an instruction, we will not have
+  // any information on the dropped bits.
+  // (Actually we could for constant but it is not worth the extra logic).
+  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
+  if (!Opnd)
+    return false;
+
+  // Check if the source of the type is narrow enough.
+  // I.e., check that trunc just drops sign extended bits.
+  // #1 get the type of the operand.
+  const Type *OpndType;
+  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
+  if (It != PromotedInsts.end())
+    OpndType = It->second;
+  else if (isa<SExtInst>(Opnd))
+    OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
+  else
+    return false;
+
+  // #2 check that the truncate just drop sign extended bits.
+  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
+    return true;
+
+  return false;
+}
+
+TypePromotionHelper::Action TypePromotionHelper::getAction(
+    Instruction *SExt, const SetOfInstrs &InsertedTruncs,
+    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
+  Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
+  Type *SExtTy = SExt->getType();
+  // If the operand of the sign extension is not an instruction, we cannot
+  // get through.
+  // If it, check we can get through.
+  if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
+    return NULL;
+
+  // Do not promote if the operand has been added by codegenprepare.
+  // Otherwise, it means we are undoing an optimization that is likely to be
+  // redone, thus causing potential infinite loop.
+  if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
+    return NULL;
+
+  // SExt or Trunc instructions.
+  // Return the related handler.
+  if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
+    return promoteOperandForTruncAndSExt;
+
+  // Regular instruction.
+  // Abort early if we will have to insert non-free instructions.
+  if (!SExtOpnd->hasOneUse() &&
+      !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
+    return NULL;
+  return promoteOperandForOther;
+}
+
+Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
+    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
+    InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
+  // By construction, the operand of SExt is an instruction. Otherwise we cannot
+  // get through it and this method should not be called.
+  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
+  // Replace sext(trunc(opnd)) or sext(sext(opnd))
+  // => sext(opnd).
+  TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
+  CreatedInsts = 0;
+
+  // Remove dead code.
+  if (SExtOpnd->use_empty())
+    TPT.eraseInstruction(SExtOpnd);
+
+  // Check if the sext is still needed.
+  if (SExt->getType() != SExt->getOperand(0)->getType())
+    return SExt;
+
+  // At this point we have: sext ty opnd to ty.
+  // Reassign the uses of SExt to the opnd and remove SExt.
+  Value *NextVal = SExt->getOperand(0);
+  TPT.eraseInstruction(SExt, NextVal);
+  return NextVal;
+}
+
+Value *
+TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
+                                            TypePromotionTransaction &TPT,
+                                            InstrToOrigTy &PromotedInsts,
+                                            unsigned &CreatedInsts) {
+  // By construction, the operand of SExt is an instruction. Otherwise we cannot
+  // get through it and this method should not be called.
+  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
+  CreatedInsts = 0;
+  if (!SExtOpnd->hasOneUse()) {
+    // SExtOpnd will be promoted.
+    // All its uses, but SExt, will need to use a truncated value of the
+    // promoted version.
+    // Create the truncate now.
+    Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
+    Trunc->removeFromParent();
+    // Insert it just after the definition.
+    Trunc->insertAfter(SExtOpnd);
+
+    TPT.replaceAllUsesWith(SExtOpnd, Trunc);
+    // Restore the operand of SExt (which has been replace by the previous call
+    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
+    TPT.setOperand(SExt, 0, SExtOpnd);
+  }
+
+  // Get through the Instruction:
+  // 1. Update its type.
+  // 2. Replace the uses of SExt by Inst.
+  // 3. Sign extend each operand that needs to be sign extended.
+
+  // Remember the original type of the instruction before promotion.
+  // This is useful to know that the high bits are sign extended bits.
+  PromotedInsts.insert(
+      std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
+  // Step #1.
+  TPT.mutateType(SExtOpnd, SExt->getType());
+  // Step #2.
+  TPT.replaceAllUsesWith(SExt, SExtOpnd);
+  // Step #3.
+  Instruction *SExtForOpnd = SExt;
+
+  DEBUG(dbgs() << "Propagate SExt to operands\n");
+  for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
+       ++OpIdx) {
+    DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
+    if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
+        !shouldSExtOperand(SExtOpnd, OpIdx)) {
+      DEBUG(dbgs() << "No need to propagate\n");
+      continue;
+    }
+    // Check if we can statically sign extend the operand.
+    Value *Opnd = SExtOpnd->getOperand(OpIdx);
+    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
+      DEBUG(dbgs() << "Statically sign extend\n");
+      TPT.setOperand(
+          SExtOpnd, OpIdx,
+          ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
+      continue;
+    }
+    // UndefValue are typed, so we have to statically sign extend them.
+    if (isa<UndefValue>(Opnd)) {
+      DEBUG(dbgs() << "Statically sign extend\n");
+      TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
+      continue;
+    }
+
+    // Otherwise we have to explicity sign extend the operand.
+    // Check if SExt was reused to sign extend an operand.
+    if (!SExtForOpnd) {
+      // If yes, create a new one.
+      DEBUG(dbgs() << "More operands to sext\n");
+      SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
+      ++CreatedInsts;
+    }
+
+    TPT.setOperand(SExtForOpnd, 0, Opnd);
+
+    // Move the sign extension before the insertion point.
+    TPT.moveBefore(SExtForOpnd, SExtOpnd);
+    TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
+    // If more sext are required, new instructions will have to be created.
+    SExtForOpnd = NULL;
+  }
+  if (SExtForOpnd == SExt) {
+    DEBUG(dbgs() << "Sign extension is useless now\n");
+    TPT.eraseInstruction(SExt);
+  }
+  return SExtOpnd;
+}
+
+/// IsPromotionProfitable - Check whether or not promoting an instruction
+/// to a wider type was profitable.
+/// \p MatchedSize gives the number of instructions that have been matched
+/// in the addressing mode after the promotion was applied.
+/// \p SizeWithPromotion gives the number of created instructions for
+/// the promotion plus the number of instructions that have been
+/// matched in the addressing mode before the promotion.
+/// \p PromotedOperand is the value that has been promoted.
+/// \return True if the promotion is profitable, false otherwise.
+bool
+AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
+                                             unsigned SizeWithPromotion,
+                                             Value *PromotedOperand) const {
+  // We folded less instructions than what we created to promote the operand.
+  // This is not profitable.
+  if (MatchedSize < SizeWithPromotion)
+    return false;
+  if (MatchedSize > SizeWithPromotion)
+    return true;
+  // The promotion is neutral but it may help folding the sign extension in
+  // loads for instance.
+  // Check that we did not create an illegal instruction.
+  Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
+  if (!PromotedInst)
+    return false;
+  return TLI.isOperationLegalOrCustom(PromotedInst->getOpcode(),
+                                      EVT::getEVT(PromotedInst->getType()));
+}
+
+/// MatchOperationAddr - Given an instruction or constant expr, see if we can
+/// fold the operation into the addressing mode.  If so, update the addressing
+/// mode and return true, otherwise return false without modifying AddrMode.
+/// If \p MovedAway is not NULL, it contains the information of whether or
+/// not AddrInst has to be folded into the addressing mode on success.
+/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
+/// because it has been moved away.
+/// Thus AddrInst must not be added in the matched instructions.
+/// This state can happen when AddrInst is a sext, since it may be moved away.
+/// Therefore, AddrInst may not be valid when MovedAway is true and it must
+/// not be referenced anymore.
+bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
+                                               unsigned Depth,
+                                               bool *MovedAway) {
+  // Avoid exponential behavior on extremely deep expression trees.
+  if (Depth >= 5) return false;
+
+  // By default, all matched instructions stay in place.
+  if (MovedAway)
+    *MovedAway = false;
+
+  switch (Opcode) {
+  case Instruction::PtrToInt:
+    // PtrToInt is always a noop, as we know that the int type is pointer sized.
+    return MatchAddr(AddrInst->getOperand(0), Depth);
+  case Instruction::IntToPtr:
+    // This inttoptr is a no-op if the integer type is pointer sized.
+    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
+        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
+      return MatchAddr(AddrInst->getOperand(0), Depth);
+    return false;
+  case Instruction::BitCast:
+    // BitCast is always a noop, and we can handle it as long as it is
+    // int->int or pointer->pointer (we don't want int<->fp or something).
+    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
+         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
+        // Don't touch identity bitcasts.  These were probably put here by LSR,
+        // and we don't want to mess around with them.  Assume it knows what it
+        // is doing.
+        AddrInst->getOperand(0)->getType() != AddrInst->getType())
+      return MatchAddr(AddrInst->getOperand(0), Depth);
+    return false;
+  case Instruction::Add: {
+    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
+    ExtAddrMode BackupAddrMode = AddrMode;
+    unsigned OldSize = AddrModeInsts.size();
+    // Start a transaction at this point.
+    // The LHS may match but not the RHS.
+    // Therefore, we need a higher level restoration point to undo partially
+    // matched operation.
+    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+        TPT.getRestorationPoint();
+
+    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
+        MatchAddr(AddrInst->getOperand(0), Depth+1))
+      return true;
+
+    // Restore the old addr mode info.
+    AddrMode = BackupAddrMode;
+    AddrModeInsts.resize(OldSize);
+    TPT.rollback(LastKnownGood);
+
+    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
+    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
+        MatchAddr(AddrInst->getOperand(1), Depth+1))
+      return true;
+
+    // Otherwise we definitely can't merge the ADD in.
+    AddrMode = BackupAddrMode;
+    AddrModeInsts.resize(OldSize);
+    TPT.rollback(LastKnownGood);
+    break;
+  }
+  //case Instruction::Or:
+  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
+  //break;
+  case Instruction::Mul:
+  case Instruction::Shl: {
+    // Can only handle X*C and X << C.
+    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
+    if (!RHS) return false;
+    int64_t Scale = RHS->getSExtValue();
+    if (Opcode == Instruction::Shl)
+      Scale = 1LL << Scale;
+
+    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
+  }
+  case Instruction::GetElementPtr: {
+    // Scan the GEP.  We check it if it contains constant offsets and at most
+    // one variable offset.
+    int VariableOperand = -1;
+    unsigned VariableScale = 0;
+
+    int64_t ConstantOffset = 0;
+    const DataLayout *TD = TLI.getDataLayout();
+    gep_type_iterator GTI = gep_type_begin(AddrInst);
+    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
+      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
+        const StructLayout *SL = TD->getStructLayout(STy);
+        unsigned Idx =
+          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
+        ConstantOffset += SL->getElementOffset(Idx);
+      } else {
+        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
+        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
+          ConstantOffset += CI->getSExtValue()*TypeSize;
+        } else if (TypeSize) {  // Scales of zero don't do anything.
+          // We only allow one variable index at the moment.
+          if (VariableOperand != -1)
+            return false;
+
+          // Remember the variable index.
+          VariableOperand = i;
+          VariableScale = TypeSize;
+        }
+      }
+    }
+
+    // A common case is for the GEP to only do a constant offset.  In this case,
+    // just add it to the disp field and check validity.
+    if (VariableOperand == -1) {
+      AddrMode.BaseOffs += ConstantOffset;
+      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
+        // Check to see if we can fold the base pointer in too.
+        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
+          return true;
+      }
+      AddrMode.BaseOffs -= ConstantOffset;
+      return false;
+    }
+
+    // Save the valid addressing mode in case we can't match.
+    ExtAddrMode BackupAddrMode = AddrMode;
+    unsigned OldSize = AddrModeInsts.size();
+
+    // See if the scale and offset amount is valid for this target.
+    AddrMode.BaseOffs += ConstantOffset;
+
+    // Match the base operand of the GEP.
+    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
+      // If it couldn't be matched, just stuff the value in a register.
+      if (AddrMode.HasBaseReg) {
+        AddrMode = BackupAddrMode;
+        AddrModeInsts.resize(OldSize);
+        return false;
+      }
+      AddrMode.HasBaseReg = true;
+      AddrMode.BaseReg = AddrInst->getOperand(0);
+    }
+
+    // Match the remaining variable portion of the GEP.
+    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
+                          Depth)) {
+      // If it couldn't be matched, try stuffing the base into a register
+      // instead of matching it, and retrying the match of the scale.
+      AddrMode = BackupAddrMode;
+      AddrModeInsts.resize(OldSize);
+      if (AddrMode.HasBaseReg)
+        return false;
+      AddrMode.HasBaseReg = true;
+      AddrMode.BaseReg = AddrInst->getOperand(0);
+      AddrMode.BaseOffs += ConstantOffset;
+      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
+                            VariableScale, Depth)) {
+        // If even that didn't work, bail.
+        AddrMode = BackupAddrMode;
+        AddrModeInsts.resize(OldSize);
+        return false;
+      }
+    }
+
+    return true;
+  }
+  case Instruction::SExt: {
+    // Try to move this sext out of the way of the addressing mode.
+    Instruction *SExt = cast<Instruction>(AddrInst);
+    // Ask for a method for doing so.
+    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
+        SExt, InsertedTruncs, TLI, PromotedInsts);
+    if (!TPH)
+      return false;
+
+    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+        TPT.getRestorationPoint();
+    unsigned CreatedInsts = 0;
+    Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
+    // SExt has been moved away.
+    // Thus either it will be rematched later in the recursive calls or it is
+    // gone. Anyway, we must not fold it into the addressing mode at this point.
+    // E.g.,
+    // op = add opnd, 1
+    // idx = sext op
+    // addr = gep base, idx
+    // is now:
+    // promotedOpnd = sext opnd           <- no match here
+    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
+    // addr = gep base, op                <- match
+    if (MovedAway)
+      *MovedAway = true;
+
+    assert(PromotedOperand &&
+           "TypePromotionHelper should have filtered out those cases");
+
+    ExtAddrMode BackupAddrMode = AddrMode;
+    unsigned OldSize = AddrModeInsts.size();
+
+    if (!MatchAddr(PromotedOperand, Depth) ||
+        !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
+                               PromotedOperand)) {
+      AddrMode = BackupAddrMode;
+      AddrModeInsts.resize(OldSize);
+      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
+      TPT.rollback(LastKnownGood);
+      return false;
+    }
+    return true;
+  }
+  }
+  return false;
+}
+
+/// MatchAddr - If we can, try to add the value of 'Addr' into the current
+/// addressing mode.  If Addr can't be added to AddrMode this returns false and
+/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
+/// or intptr_t for the target.
+///
+bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
+  // Start a transaction at this point that we will rollback if the matching
+  // fails.
+  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+      TPT.getRestorationPoint();
+  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
+    // Fold in immediates if legal for the target.
+    AddrMode.BaseOffs += CI->getSExtValue();
+    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+      return true;
+    AddrMode.BaseOffs -= CI->getSExtValue();
+  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
+    // If this is a global variable, try to fold it into the addressing mode.
+    if (AddrMode.BaseGV == 0) {
+      AddrMode.BaseGV = GV;
+      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+        return true;
+      AddrMode.BaseGV = 0;
+    }
+  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
+    ExtAddrMode BackupAddrMode = AddrMode;
+    unsigned OldSize = AddrModeInsts.size();
+
+    // Check to see if it is possible to fold this operation.
+    bool MovedAway = false;
+    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
+      // This instruction may have been move away. If so, there is nothing
+      // to check here.
+      if (MovedAway)
+        return true;
+      // Okay, it's possible to fold this.  Check to see if it is actually
+      // *profitable* to do so.  We use a simple cost model to avoid increasing
+      // register pressure too much.
+      if (I->hasOneUse() ||
+          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
+        AddrModeInsts.push_back(I);
+        return true;
+      }
+
+      // It isn't profitable to do this, roll back.
+      //cerr << "NOT FOLDING: " << *I;
+      AddrMode = BackupAddrMode;
+      AddrModeInsts.resize(OldSize);
+      TPT.rollback(LastKnownGood);
+    }
+  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
+    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
+      return true;
+    TPT.rollback(LastKnownGood);
+  } else if (isa<ConstantPointerNull>(Addr)) {
+    // Null pointer gets folded without affecting the addressing mode.
+    return true;
+  }
+
+  // Worse case, the target should support [reg] addressing modes. :)
+  if (!AddrMode.HasBaseReg) {
+    AddrMode.HasBaseReg = true;
+    AddrMode.BaseReg = Addr;
+    // Still check for legality in case the target supports [imm] but not [i+r].
+    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+      return true;
+    AddrMode.HasBaseReg = false;
+    AddrMode.BaseReg = 0;
+  }
+
+  // If the base register is already taken, see if we can do [r+r].
+  if (AddrMode.Scale == 0) {
+    AddrMode.Scale = 1;
+    AddrMode.ScaledReg = Addr;
+    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
+      return true;
+    AddrMode.Scale = 0;
+    AddrMode.ScaledReg = 0;
+  }
+  // Couldn't match.
+  TPT.rollback(LastKnownGood);
+  return false;
+}
+
+/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
+/// inline asm call are due to memory operands.  If so, return true, otherwise
+/// return false.
+static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
+                                    const TargetLowering &TLI) {
+  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
+  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+    // Compute the constraint code and ConstraintType to use.
+    TLI.ComputeConstraintToUse(OpInfo, SDValue());
+
+    // If this asm operand is our Value*, and if it isn't an indirect memory
+    // operand, we can't fold it!
+    if (OpInfo.CallOperandVal == OpVal &&
+        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
+         !OpInfo.isIndirect))
+      return false;
+  }
+
+  return true;
+}
+
+/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
+/// memory use.  If we find an obviously non-foldable instruction, return true.
+/// Add the ultimately found memory instructions to MemoryUses.
+static bool FindAllMemoryUses(Instruction *I,
+                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
+                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
+                              const TargetLowering &TLI) {
+  // If we already considered this instruction, we're done.
+  if (!ConsideredInsts.insert(I))
+    return false;
+
+  // If this is an obviously unfoldable instruction, bail out.
+  if (!MightBeFoldableInst(I))
+    return true;
+
+  // Loop over all the uses, recursively processing them.
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+       UI != E; ++UI) {
+    User *U = *UI;
+
+    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
+      MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
+      continue;
+    }
+
+    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
+      unsigned opNo = UI.getOperandNo();
+      if (opNo == 0) return true; // Storing addr, not into addr.
+      MemoryUses.push_back(std::make_pair(SI, opNo));
+      continue;
+    }
+
+    if (CallInst *CI = dyn_cast<CallInst>(U)) {
+      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
+      if (!IA) return true;
+
+      // If this is a memory operand, we're cool, otherwise bail out.
+      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
+        return true;
+      continue;
+    }
+
+    if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
+                          TLI))
+      return true;
+  }
+
+  return false;
+}
+
+/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
+/// the use site that we're folding it into.  If so, there is no cost to
+/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
+/// that we know are live at the instruction already.
+bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
+                                                   Value *KnownLive2) {
+  // If Val is either of the known-live values, we know it is live!
+  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
+    return true;
+
+  // All values other than instructions and arguments (e.g. constants) are live.
+  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
+
+  // If Val is a constant sized alloca in the entry block, it is live, this is
+  // true because it is just a reference to the stack/frame pointer, which is
+  // live for the whole function.
+  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
+    if (AI->isStaticAlloca())
+      return true;
+
+  // Check to see if this value is already used in the memory instruction's
+  // block.  If so, it's already live into the block at the very least, so we
+  // can reasonably fold it.
+  return Val->isUsedInBasicBlock(MemoryInst->getParent());
+}
+
+/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
+/// mode of the machine to fold the specified instruction into a load or store
+/// that ultimately uses it.  However, the specified instruction has multiple
+/// uses.  Given this, it may actually increase register pressure to fold it
+/// into the load.  For example, consider this code:
+///
+///     X = ...
+///     Y = X+1
+///     use(Y)   -> nonload/store
+///     Z = Y+1
+///     load Z
+///
+/// In this case, Y has multiple uses, and can be folded into the load of Z
+/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
+/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
+/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
+/// number of computations either.
+///
+/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
+/// X was live across 'load Z' for other reasons, we actually *would* want to
+/// fold the addressing mode in the Z case.  This would make Y die earlier.
+bool AddressingModeMatcher::
+IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
+                                     ExtAddrMode &AMAfter) {
+  if (IgnoreProfitability) return true;
+
+  // AMBefore is the addressing mode before this instruction was folded into it,
+  // and AMAfter is the addressing mode after the instruction was folded.  Get
+  // the set of registers referenced by AMAfter and subtract out those
+  // referenced by AMBefore: this is the set of values which folding in this
+  // address extends the lifetime of.
+  //
+  // Note that there are only two potential values being referenced here,
+  // BaseReg and ScaleReg (global addresses are always available, as are any
+  // folded immediates).
+  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
+
+  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
+  // lifetime wasn't extended by adding this instruction.
+  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+    BaseReg = 0;
+  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
+    ScaledReg = 0;
+
+  // If folding this instruction (and it's subexprs) didn't extend any live
+  // ranges, we're ok with it.
+  if (BaseReg == 0 && ScaledReg == 0)
+    return true;
+
+  // If all uses of this instruction are ultimately load/store/inlineasm's,
+  // check to see if their addressing modes will include this instruction.  If
+  // so, we can fold it into all uses, so it doesn't matter if it has multiple
+  // uses.
+  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
+  SmallPtrSet<Instruction*, 16> ConsideredInsts;
+  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
+    return false;  // Has a non-memory, non-foldable use!
+
+  // Now that we know that all uses of this instruction are part of a chain of
+  // computation involving only operations that could theoretically be folded
+  // into a memory use, loop over each of these uses and see if they could
+  // *actually* fold the instruction.
+  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
+  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
+    Instruction *User = MemoryUses[i].first;
+    unsigned OpNo = MemoryUses[i].second;
+
+    // Get the access type of this use.  If the use isn't a pointer, we don't
+    // know what it accesses.
+    Value *Address = User->getOperand(OpNo);
+    if (!Address->getType()->isPointerTy())
+      return false;
+    Type *AddressAccessTy = Address->getType()->getPointerElementType();
+
+    // Do a match against the root of this address, ignoring profitability. This
+    // will tell us if the addressing mode for the memory operation will
+    // *actually* cover the shared instruction.
+    ExtAddrMode Result;
+    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+        TPT.getRestorationPoint();
+    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
+                                  MemoryInst, Result, InsertedTruncs,
+                                  PromotedInsts, TPT);
+    Matcher.IgnoreProfitability = true;
+    bool Success = Matcher.MatchAddr(Address, 0);
+    (void)Success; assert(Success && "Couldn't select *anything*?");
+
+    // The match was to check the profitability, the changes made are not
+    // part of the original matcher. Therefore, they should be dropped
+    // otherwise the original matcher will not present the right state.
+    TPT.rollback(LastKnownGood);
+
+    // If the match didn't cover I, then it won't be shared by it.
+    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
+                  I) == MatchedAddrModeInsts.end())
+      return false;
+
+    MatchedAddrModeInsts.clear();
+  }
+
+  return true;
+}
+
+} // end anonymous namespace
+
+/// IsNonLocalValue - Return true if the specified values are defined in a
+/// different basic block than BB.
+static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
+  if (Instruction *I = dyn_cast<Instruction>(V))
+    return I->getParent() != BB;
+  return false;
+}
+
+/// OptimizeMemoryInst - Load and Store Instructions often have
+/// addressing modes that can do significant amounts of computation.  As such,
+/// instruction selection will try to get the load or store to do as much
+/// computation as possible for the program.  The problem is that isel can only
+/// see within a single block.  As such, we sink as much legal addressing mode
+/// stuff into the block as possible.
+///
+/// This method is used to optimize both load/store and inline asms with memory
+/// operands.
+bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
+                                        Type *AccessTy) {
+  Value *Repl = Addr;
+
+  // Try to collapse single-value PHI nodes.  This is necessary to undo
+  // unprofitable PRE transformations.
+  SmallVector<Value*, 8> worklist;
+  SmallPtrSet<Value*, 16> Visited;
+  worklist.push_back(Addr);
+
+  // Use a worklist to iteratively look through PHI nodes, and ensure that
+  // the addressing mode obtained from the non-PHI roots of the graph
+  // are equivalent.
+  Value *Consensus = 0;
+  unsigned NumUsesConsensus = 0;
+  bool IsNumUsesConsensusValid = false;
+  SmallVector<Instruction*, 16> AddrModeInsts;
+  ExtAddrMode AddrMode;
+  TypePromotionTransaction TPT;
+  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
+      TPT.getRestorationPoint();
+  while (!worklist.empty()) {
+    Value *V = worklist.back();
+    worklist.pop_back();
+
+    // Break use-def graph loops.
+    if (!Visited.insert(V)) {
+      Consensus = 0;
+      break;
+    }
+
+    // For a PHI node, push all of its incoming values.
+    if (PHINode *P = dyn_cast<PHINode>(V)) {
+      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
+        worklist.push_back(P->getIncomingValue(i));
+      continue;
+    }
+
+    // For non-PHIs, determine the addressing mode being computed.
+    SmallVector<Instruction*, 16> NewAddrModeInsts;
+    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
+        V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
+        PromotedInsts, TPT);
+
+    // This check is broken into two cases with very similar code to avoid using
+    // getNumUses() as much as possible. Some values have a lot of uses, so
+    // calling getNumUses() unconditionally caused a significant compile-time
+    // regression.
+    if (!Consensus) {
+      Consensus = V;
+      AddrMode = NewAddrMode;
+      AddrModeInsts = NewAddrModeInsts;
+      continue;
+    } else if (NewAddrMode == AddrMode) {
+      if (!IsNumUsesConsensusValid) {
+        NumUsesConsensus = Consensus->getNumUses();
+        IsNumUsesConsensusValid = true;
+      }
+
+      // Ensure that the obtained addressing mode is equivalent to that obtained
+      // for all other roots of the PHI traversal.  Also, when choosing one
+      // such root as representative, select the one with the most uses in order
+      // to keep the cost modeling heuristics in AddressingModeMatcher
+      // applicable.
+      unsigned NumUses = V->getNumUses();
+      if (NumUses > NumUsesConsensus) {
+        Consensus = V;
+        NumUsesConsensus = NumUses;
+        AddrModeInsts = NewAddrModeInsts;
+      }
+      continue;
+    }
+
+    Consensus = 0;
+    break;
+  }
+
+  // If the addressing mode couldn't be determined, or if multiple different
+  // ones were determined, bail out now.
+  if (!Consensus) {
+    TPT.rollback(LastKnownGood);
+    return false;
+  }
+  TPT.commit();
+
+  // Check to see if any of the instructions supersumed by this addr mode are
+  // non-local to I's BB.
+  bool AnyNonLocal = false;
+  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
+    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
+      AnyNonLocal = true;
+      break;
+    }
+  }
+
+  // If all the instructions matched are already in this BB, don't do anything.
+  if (!AnyNonLocal) {
+    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
+    return false;
+  }
+
+  // Insert this computation right after this user.  Since our caller is
+  // scanning from the top of the BB to the bottom, reuse of the expr are
+  // guaranteed to happen later.
+  IRBuilder<> Builder(MemoryInst);
+
+  // Now that we determined the addressing expression we want to use and know
+  // that we have to sink it into this block.  Check to see if we have already
+  // done this for some other load/store instr in this block.  If so, reuse the
+  // computation.
+  Value *&SunkAddr = SunkAddrs[Addr];
+  if (SunkAddr) {
+    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
+                 << *MemoryInst);
+    if (SunkAddr->getType() != Addr->getType())
+      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
+  } else {
+    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
+                 << *MemoryInst);
+    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
+    Value *Result = 0;
+
+    // Start with the base register. Do this first so that subsequent address
+    // matching finds it last, which will prevent it from trying to match it
+    // as the scaled value in case it happens to be a mul. That would be
+    // problematic if we've sunk a different mul for the scale, because then
+    // we'd end up sinking both muls.
+    if (AddrMode.BaseReg) {
+      Value *V = AddrMode.BaseReg;
+      if (V->getType()->isPointerTy())
+        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
+      if (V->getType() != IntPtrTy)
+        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
+      Result = V;
+    }
+
+    // Add the scale value.
+    if (AddrMode.Scale) {
+      Value *V = AddrMode.ScaledReg;
+      if (V->getType() == IntPtrTy) {
+        // done.
+      } else if (V->getType()->isPointerTy()) {
+        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
+      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
+                 cast<IntegerType>(V->getType())->getBitWidth()) {
+        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
+      } else {
+        V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
+      }
+      if (AddrMode.Scale != 1)
+        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
+                              "sunkaddr");
+      if (Result)
+        Result = Builder.CreateAdd(Result, V, "sunkaddr");
+      else
+        Result = V;
+    }
+
+    // Add in the BaseGV if present.
+    if (AddrMode.BaseGV) {
+      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
+      if (Result)
+        Result = Builder.CreateAdd(Result, V, "sunkaddr");
+      else
+        Result = V;
+    }
+
+    // Add in the Base Offset if present.
+    if (AddrMode.BaseOffs) {
+      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
+      if (Result)
+        Result = Builder.CreateAdd(Result, V, "sunkaddr");
+      else
+        Result = V;
+    }
+
+    if (Result == 0)
+      SunkAddr = Constant::getNullValue(Addr->getType());
+    else
+      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
+  }
+
+  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
+
+  // If we have no uses, recursively delete the value and all dead instructions
+  // using it.
+  if (Repl->use_empty()) {
+    // This can cause recursive deletion, which can invalidate our iterator.
+    // Use a WeakVH to hold onto it in case this happens.
+    WeakVH IterHandle(CurInstIterator);
+    BasicBlock *BB = CurInstIterator->getParent();
+
+    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
+
+    if (IterHandle != CurInstIterator) {
+      // If the iterator instruction was recursively deleted, start over at the
+      // start of the block.
+      CurInstIterator = BB->begin();
+      SunkAddrs.clear();
+    }
+  }
+  ++NumMemoryInsts;
+  return true;
+}
+
+/// OptimizeInlineAsmInst - If there are any memory operands, use
+/// OptimizeMemoryInst to sink their address computing into the block when
+/// possible / profitable.
+bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
+  bool MadeChange = false;
+
+  TargetLowering::AsmOperandInfoVector
+    TargetConstraints = TLI->ParseConstraints(CS);
+  unsigned ArgNo = 0;
+  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
+    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
+
+    // Compute the constraint code and ConstraintType to use.
+    TLI->ComputeConstraintToUse(OpInfo, SDValue());
+
+    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
+        OpInfo.isIndirect) {
+      Value *OpVal = CS->getArgOperand(ArgNo++);
+      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
+    } else if (OpInfo.Type == InlineAsm::isInput)
+      ArgNo++;
+  }
+
+  return MadeChange;
+}
+
+/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
+/// basic block as the load, unless conditions are unfavorable. This allows
+/// SelectionDAG to fold the extend into the load.
+///
+bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
+  // Look for a load being extended.
+  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
+  if (!LI) return false;
+
+  // If they're already in the same block, there's nothing to do.
+  if (LI->getParent() == I->getParent())
+    return false;
+
+  // If the load has other users and the truncate is not free, this probably
+  // isn't worthwhile.
+  if (!LI->hasOneUse() &&
+      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
+              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
+      !TLI->isTruncateFree(I->getType(), LI->getType()))
+    return false;
+
+  // Check whether the target supports casts folded into loads.
+  unsigned LType;
+  if (isa<ZExtInst>(I))
+    LType = ISD::ZEXTLOAD;
+  else {
+    assert(isa<SExtInst>(I) && "Unexpected ext type!");
+    LType = ISD::SEXTLOAD;
+  }
+  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
+    return false;
+
+  // Move the extend into the same block as the load, so that SelectionDAG
+  // can fold it.
+  I->removeFromParent();
+  I->insertAfter(LI);
+  ++NumExtsMoved;
+  return true;
+}
+
+bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
+  BasicBlock *DefBB = I->getParent();
+
+  // If the result of a {s|z}ext and its source are both live out, rewrite all
+  // other uses of the source with result of extension.
+  Value *Src = I->getOperand(0);
+  if (Src->hasOneUse())
+    return false;
+
+  // Only do this xform if truncating is free.
+  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
+    return false;
+
+  // Only safe to perform the optimization if the source is also defined in
+  // this block.
+  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
+    return false;
+
+  bool DefIsLiveOut = false;
+  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
+       UI != E; ++UI) {
+    Instruction *User = cast<Instruction>(*UI);
+
+    // Figure out which BB this ext is used in.
+    BasicBlock *UserBB = User->getParent();
+    if (UserBB == DefBB) continue;
+    DefIsLiveOut = true;
+    break;
+  }
+  if (!DefIsLiveOut)
+    return false;
+
+  // Make sure none of the uses are PHI nodes.
+  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
+       UI != E; ++UI) {
+    Instruction *User = cast<Instruction>(*UI);
+    BasicBlock *UserBB = User->getParent();
+    if (UserBB == DefBB) continue;
+    // Be conservative. We don't want this xform to end up introducing
+    // reloads just before load / store instructions.
+    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
+      return false;
+  }
+
+  // InsertedTruncs - Only insert one trunc in each block once.
+  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
+
+  bool MadeChange = false;
+  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
+       UI != E; ++UI) {
+    Use &TheUse = UI.getUse();
+    Instruction *User = cast<Instruction>(*UI);
+
+    // Figure out which BB this ext is used in.
+    BasicBlock *UserBB = User->getParent();
+    if (UserBB == DefBB) continue;
+
+    // Both src and def are live in this block. Rewrite the use.
+    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
+
+    if (!InsertedTrunc) {
+      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
+      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
+      InsertedTruncsSet.insert(InsertedTrunc);
+    }
+
+    // Replace a use of the {s|z}ext source with a use of the result.
+    TheUse = InsertedTrunc;
+    ++NumExtUses;
+    MadeChange = true;
+  }
+
+  return MadeChange;
+}
+
+/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
+/// turned into an explicit branch.
+static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
+  // FIXME: This should use the same heuristics as IfConversion to determine
+  // whether a select is better represented as a branch.  This requires that
+  // branch probability metadata is preserved for the select, which is not the
+  // case currently.
+
+  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
+
+  // If the branch is predicted right, an out of order CPU can avoid blocking on
+  // the compare.  Emit cmovs on compares with a memory operand as branches to
+  // avoid stalls on the load from memory.  If the compare has more than one use
+  // there's probably another cmov or setcc around so it's not worth emitting a
+  // branch.
+  if (!Cmp)
+    return false;
+
+  Value *CmpOp0 = Cmp->getOperand(0);
+  Value *CmpOp1 = Cmp->getOperand(1);
+
+  // We check that the memory operand has one use to avoid uses of the loaded
+  // value directly after the compare, making branches unprofitable.
+  return Cmp->hasOneUse() &&
+         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
+          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
+}
+
+
+/// If we have a SelectInst that will likely profit from branch prediction,
+/// turn it into a branch.
+bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
+  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
+
+  // Can we convert the 'select' to CF ?
+  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
+    return false;
+
+  TargetLowering::SelectSupportKind SelectKind;
+  if (VectorCond)
+    SelectKind = TargetLowering::VectorMaskSelect;
+  else if (SI->getType()->isVectorTy())
+    SelectKind = TargetLowering::ScalarCondVectorVal;
+  else
+    SelectKind = TargetLowering::ScalarValSelect;
+
+  // Do we have efficient codegen support for this kind of 'selects' ?
+  if (TLI->isSelectSupported(SelectKind)) {
+    // We have efficient codegen support for the select instruction.
+    // Check if it is profitable to keep this 'select'.
+    if (!TLI->isPredictableSelectExpensive() ||
+        !isFormingBranchFromSelectProfitable(SI))
+      return false;
+  }
+
+  ModifiedDT = true;
+
+  // First, we split the block containing the select into 2 blocks.
+  BasicBlock *StartBlock = SI->getParent();
+  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
+  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
+
+  // Create a new block serving as the landing pad for the branch.
+  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
+                                             NextBlock->getParent(), NextBlock);
+
+  // Move the unconditional branch from the block with the select in it into our
+  // landing pad block.
+  StartBlock->getTerminator()->eraseFromParent();
+  BranchInst::Create(NextBlock, SmallBlock);
+
+  // Insert the real conditional branch based on the original condition.
+  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
+
+  // The select itself is replaced with a PHI Node.
+  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
+  PN->takeName(SI);
+  PN->addIncoming(SI->getTrueValue(), StartBlock);
+  PN->addIncoming(SI->getFalseValue(), SmallBlock);
+  SI->replaceAllUsesWith(PN);
+  SI->eraseFromParent();
+
+  // Instruct OptimizeBlock to skip to the next block.
+  CurInstIterator = StartBlock->end();
+  ++NumSelectsExpanded;
+  return true;
+}
+
+
+bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
+  SmallVector<int, 16> Mask(SVI->getShuffleMask());
+  int SplatElem = -1;
+  for (unsigned i = 0; i < Mask.size(); ++i) {
+    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
+      return false;
+    SplatElem = Mask[i];
+  }
+
+  return true;
+}
+
+/// Some targets have expensive vector shifts if the lanes aren't all the same
+/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
+/// it's often worth sinking a shufflevector splat down to its use so that
+/// codegen can spot all lanes are identical.
+bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
+  BasicBlock *DefBB = SVI->getParent();
+
+  // Only do this xform if variable vector shifts are particularly expensive.
+  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
+    return false;
+
+  // We only expect better codegen by sinking a shuffle if we can recognise a
+  // constant splat.
+  if (!isBroadcastShuffle(SVI))
+    return false;
+
+  // InsertedShuffles - Only insert a shuffle in each block once.
+  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
+
+  bool MadeChange = false;
+  for (Value::use_iterator UI = SVI->use_begin(), E = SVI->use_end();
+       UI != E; ++UI) {
+    Instruction *User = cast<Instruction>(*UI);
+
+    // Figure out which BB this ext is used in.
+    BasicBlock *UserBB = User->getParent();
+    if (UserBB == DefBB) continue;
+
+    // For now only apply this when the splat is used by a shift instruction.
+    if (!User->isShift()) continue;
+
+    // Everything checks out, sink the shuffle if the user's block doesn't
+    // already have a copy.
+    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
+
+    if (!InsertedShuffle) {
+      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
+      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
+                                              SVI->getOperand(1),
+                                              SVI->getOperand(2), "", InsertPt);
+    }
+
+    User->replaceUsesOfWith(SVI, InsertedShuffle);
+    MadeChange = true;
+  }
+
+  // If we removed all uses, nuke the shuffle.
+  if (SVI->use_empty()) {
+    SVI->eraseFromParent();
+    MadeChange = true;
+  }
+
+  return MadeChange;
+}
+
+bool CodeGenPrepare::OptimizeInst(Instruction *I) {
+  if (PHINode *P = dyn_cast<PHINode>(I)) {
+    // It is possible for very late stage optimizations (such as SimplifyCFG)
+    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
+    // trivial PHI, go ahead and zap it here.
+    if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : 0,
+                                       TLInfo, DT)) {
+      P->replaceAllUsesWith(V);
+      P->eraseFromParent();
+      ++NumPHIsElim;
+      return true;
+    }
+    return false;
+  }
+
+  if (CastInst *CI = dyn_cast<CastInst>(I)) {
+    // If the source of the cast is a constant, then this should have
+    // already been constant folded.  The only reason NOT to constant fold
+    // it is if something (e.g. LSR) was careful to place the constant
+    // evaluation in a block other than then one that uses it (e.g. to hoist
+    // the address of globals out of a loop).  If this is the case, we don't
+    // want to forward-subst the cast.
+    if (isa<Constant>(CI->getOperand(0)))
+      return false;
+
+    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
+      return true;
+
+    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
+      bool MadeChange = MoveExtToFormExtLoad(I);
+      return MadeChange | OptimizeExtUses(I);
+    }
+    return false;
+  }
+
+  if (CmpInst *CI = dyn_cast<CmpInst>(I))
+    if (!TLI || !TLI->hasMultipleConditionRegisters())
+      return OptimizeCmpExpression(CI);
+
+  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
+    if (TLI)
+      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
+    return false;
+  }
+
+  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
+    if (TLI)
+      return OptimizeMemoryInst(I, SI->getOperand(1),
+                                SI->getOperand(0)->getType());
+    return false;
+  }
+
+  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
+    if (GEPI->hasAllZeroIndices()) {
+      /// The GEP operand must be a pointer, so must its result -> BitCast
+      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
+                                        GEPI->getName(), GEPI);
+      GEPI->replaceAllUsesWith(NC);
+      GEPI->eraseFromParent();
+      ++NumGEPsElim;
+      OptimizeInst(NC);
+      return true;
+    }
+    return false;
+  }
+
+  if (CallInst *CI = dyn_cast<CallInst>(I))
+    return OptimizeCallInst(CI);
+
+  if (SelectInst *SI = dyn_cast<SelectInst>(I))
+    return OptimizeSelectInst(SI);
+
+  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
+    return OptimizeShuffleVectorInst(SVI);
+
+  return false;
+}
+
+// In this pass we look for GEP and cast instructions that are used
+// across basic blocks and rewrite them to improve basic-block-at-a-time
+// selection.
+bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
+  SunkAddrs.clear();
+  bool MadeChange = false;
+
+  CurInstIterator = BB.begin();
+  while (CurInstIterator != BB.end())
+    MadeChange |= OptimizeInst(CurInstIterator++);
+
+  MadeChange |= DupRetToEnableTailCallOpts(&BB);
+
+  return MadeChange;
+}
+
+// llvm.dbg.value is far away from the value then iSel may not be able
+// handle it properly. iSel will drop llvm.dbg.value if it can not
+// find a node corresponding to the value.
+bool CodeGenPrepare::PlaceDbgValues(Function &F) {
+  bool MadeChange = false;
+  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
+    Instruction *PrevNonDbgInst = NULL;
+    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
+      Instruction *Insn = BI; ++BI;
+      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
+      if (!DVI) {
+        PrevNonDbgInst = Insn;
+        continue;
+      }
+
+      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
+      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
+        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
+        DVI->removeFromParent();
+        if (isa<PHINode>(VI))
+          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
+        else
+          DVI->insertAfter(VI);
+        MadeChange = true;
+        ++NumDbgValueMoved;
+      }
+    }
+  }
+  return MadeChange;
+}
index 8a29b0c48cb42721080b41776098c6727b63e3e2..27434c1808a43b606c2d20e30db4b1ea5b0d99a5 100644 (file)
@@ -1,6 +1,5 @@
 add_llvm_library(LLVMScalarOpts
   ADCE.cpp
-  CodeGenPrepare.cpp
   ConstantHoisting.cpp
   ConstantProp.cpp
   CorrelatedValuePropagation.cpp
diff --git a/lib/Transforms/Scalar/CodeGenPrepare.cpp b/lib/Transforms/Scalar/CodeGenPrepare.cpp
deleted file mode 100644 (file)
index 3c9ecce..0000000
+++ /dev/null
@@ -1,2914 +0,0 @@
-//===- CodeGenPrepare.cpp - Prepare a function for code generation --------===//
-//
-//                     The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass munges the code in the input function to better prepare it for
-// SelectionDAG-based code generation. This works around limitations in it's
-// basic-block-at-a-time approach. It should eventually be removed.
-//
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "codegenprepare"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/ADT/DenseMap.h"
-#include "llvm/ADT/SmallSet.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/ADT/ValueMap.h"
-#include "llvm/Analysis/InstructionSimplify.h"
-#include "llvm/IR/Constants.h"
-#include "llvm/IR/DataLayout.h"
-#include "llvm/IR/DerivedTypes.h"
-#include "llvm/IR/Dominators.h"
-#include "llvm/IR/Function.h"
-#include "llvm/IR/IRBuilder.h"
-#include "llvm/IR/InlineAsm.h"
-#include "llvm/IR/Instructions.h"
-#include "llvm/IR/IntrinsicInst.h"
-#include "llvm/Pass.h"
-#include "llvm/Support/CallSite.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/GetElementPtrTypeIterator.h"
-#include "llvm/Support/PatternMatch.h"
-#include "llvm/Support/ValueHandle.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Target/TargetLibraryInfo.h"
-#include "llvm/Target/TargetLowering.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/BuildLibCalls.h"
-#include "llvm/Transforms/Utils/BypassSlowDivision.h"
-#include "llvm/Transforms/Utils/Local.h"
-using namespace llvm;
-using namespace llvm::PatternMatch;
-
-STATISTIC(NumBlocksElim, "Number of blocks eliminated");
-STATISTIC(NumPHIsElim,   "Number of trivial PHIs eliminated");
-STATISTIC(NumGEPsElim,   "Number of GEPs converted to casts");
-STATISTIC(NumCmpUses, "Number of uses of Cmp expressions replaced with uses of "
-                      "sunken Cmps");
-STATISTIC(NumCastUses, "Number of uses of Cast expressions replaced with uses "
-                       "of sunken Casts");
-STATISTIC(NumMemoryInsts, "Number of memory instructions whose address "
-                          "computations were sunk");
-STATISTIC(NumExtsMoved,  "Number of [s|z]ext instructions combined with loads");
-STATISTIC(NumExtUses,    "Number of uses of [s|z]ext instructions optimized");
-STATISTIC(NumRetsDup,    "Number of return instructions duplicated");
-STATISTIC(NumDbgValueMoved, "Number of debug value instructions moved");
-STATISTIC(NumSelectsExpanded, "Number of selects turned into branches");
-
-static cl::opt<bool> DisableBranchOpts(
-  "disable-cgp-branch-opts", cl::Hidden, cl::init(false),
-  cl::desc("Disable branch optimizations in CodeGenPrepare"));
-
-static cl::opt<bool> DisableSelectToBranch(
-  "disable-cgp-select2branch", cl::Hidden, cl::init(false),
-  cl::desc("Disable select to branch conversion."));
-
-namespace {
-typedef SmallPtrSet<Instruction *, 16> SetOfInstrs;
-typedef DenseMap<Instruction *, Type *> InstrToOrigTy;
-
-  class CodeGenPrepare : public FunctionPass {
-    /// TLI - Keep a pointer of a TargetLowering to consult for determining
-    /// transformation profitability.
-    const TargetMachine *TM;
-    const TargetLowering *TLI;
-    const TargetLibraryInfo *TLInfo;
-    DominatorTree *DT;
-
-    /// CurInstIterator - As we scan instructions optimizing them, this is the
-    /// next instruction to optimize.  Xforms that can invalidate this should
-    /// update it.
-    BasicBlock::iterator CurInstIterator;
-
-    /// Keeps track of non-local addresses that have been sunk into a block.
-    /// This allows us to avoid inserting duplicate code for blocks with
-    /// multiple load/stores of the same address.
-    ValueMap<Value*, Value*> SunkAddrs;
-
-    /// Keeps track of all truncates inserted for the current function.
-    SetOfInstrs InsertedTruncsSet;
-    /// Keeps track of the type of the related instruction before their
-    /// promotion for the current function.
-    InstrToOrigTy PromotedInsts;
-
-    /// ModifiedDT - If CFG is modified in anyway, dominator tree may need to
-    /// be updated.
-    bool ModifiedDT;
-
-    /// OptSize - True if optimizing for size.
-    bool OptSize;
-
-  public:
-    static char ID; // Pass identification, replacement for typeid
-    explicit CodeGenPrepare(const TargetMachine *TM = 0)
-      : FunctionPass(ID), TM(TM), TLI(0) {
-        initializeCodeGenPreparePass(*PassRegistry::getPassRegistry());
-      }
-    bool runOnFunction(Function &F);
-
-    const char *getPassName() const { return "CodeGen Prepare"; }
-
-    virtual void getAnalysisUsage(AnalysisUsage &AU) const {
-      AU.addPreserved<DominatorTreeWrapperPass>();
-      AU.addRequired<TargetLibraryInfo>();
-    }
-
-  private:
-    bool EliminateFallThrough(Function &F);
-    bool EliminateMostlyEmptyBlocks(Function &F);
-    bool CanMergeBlocks(const BasicBlock *BB, const BasicBlock *DestBB) const;
-    void EliminateMostlyEmptyBlock(BasicBlock *BB);
-    bool OptimizeBlock(BasicBlock &BB);
-    bool OptimizeInst(Instruction *I);
-    bool OptimizeMemoryInst(Instruction *I, Value *Addr, Type *AccessTy);
-    bool OptimizeInlineAsmInst(CallInst *CS);
-    bool OptimizeCallInst(CallInst *CI);
-    bool MoveExtToFormExtLoad(Instruction *I);
-    bool OptimizeExtUses(Instruction *I);
-    bool OptimizeSelectInst(SelectInst *SI);
-    bool OptimizeShuffleVectorInst(ShuffleVectorInst *SI);
-    bool DupRetToEnableTailCallOpts(BasicBlock *BB);
-    bool PlaceDbgValues(Function &F);
-  };
-}
-
-char CodeGenPrepare::ID = 0;
-static void *initializeCodeGenPreparePassOnce(PassRegistry &Registry) {
-  initializeTargetLibraryInfoPass(Registry);
-  PassInfo *PI = new PassInfo(
-      "Optimize for code generation", "codegenprepare", &CodeGenPrepare::ID,
-      PassInfo::NormalCtor_t(callDefaultCtor<CodeGenPrepare>), false, false,
-      PassInfo::TargetMachineCtor_t(callTargetMachineCtor<CodeGenPrepare>));
-  Registry.registerPass(*PI, true);
-  return PI;
-}
-
-void llvm::initializeCodeGenPreparePass(PassRegistry &Registry) {
-  CALL_ONCE_INITIALIZATION(initializeCodeGenPreparePassOnce)
-}
-
-FunctionPass *llvm::createCodeGenPreparePass(const TargetMachine *TM) {
-  return new CodeGenPrepare(TM);
-}
-
-bool CodeGenPrepare::runOnFunction(Function &F) {
-  bool EverMadeChange = false;
-  // Clear per function information.
-  InsertedTruncsSet.clear();
-  PromotedInsts.clear();
-
-  ModifiedDT = false;
-  if (TM) TLI = TM->getTargetLowering();
-  TLInfo = &getAnalysis<TargetLibraryInfo>();
-  DominatorTreeWrapperPass *DTWP =
-      getAnalysisIfAvailable<DominatorTreeWrapperPass>();
-  DT = DTWP ? &DTWP->getDomTree() : 0;
-  OptSize = F.getAttributes().hasAttribute(AttributeSet::FunctionIndex,
-                                           Attribute::OptimizeForSize);
-
-  /// This optimization identifies DIV instructions that can be
-  /// profitably bypassed and carried out with a shorter, faster divide.
-  if (!OptSize && TLI && TLI->isSlowDivBypassed()) {
-    const DenseMap<unsigned int, unsigned int> &BypassWidths =
-       TLI->getBypassSlowDivWidths();
-    for (Function::iterator I = F.begin(); I != F.end(); I++)
-      EverMadeChange |= bypassSlowDivision(F, I, BypassWidths);
-  }
-
-  // Eliminate blocks that contain only PHI nodes and an
-  // unconditional branch.
-  EverMadeChange |= EliminateMostlyEmptyBlocks(F);
-
-  // llvm.dbg.value is far away from the value then iSel may not be able
-  // handle it properly. iSel will drop llvm.dbg.value if it can not
-  // find a node corresponding to the value.
-  EverMadeChange |= PlaceDbgValues(F);
-
-  bool MadeChange = true;
-  while (MadeChange) {
-    MadeChange = false;
-    for (Function::iterator I = F.begin(); I != F.end(); ) {
-      BasicBlock *BB = I++;
-      MadeChange |= OptimizeBlock(*BB);
-    }
-    EverMadeChange |= MadeChange;
-  }
-
-  SunkAddrs.clear();
-
-  if (!DisableBranchOpts) {
-    MadeChange = false;
-    SmallPtrSet<BasicBlock*, 8> WorkList;
-    for (Function::iterator BB = F.begin(), E = F.end(); BB != E; ++BB) {
-      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
-      MadeChange |= ConstantFoldTerminator(BB, true);
-      if (!MadeChange) continue;
-
-      for (SmallVectorImpl<BasicBlock*>::iterator
-             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
-        if (pred_begin(*II) == pred_end(*II))
-          WorkList.insert(*II);
-    }
-
-    // Delete the dead blocks and any of their dead successors.
-    MadeChange |= !WorkList.empty();
-    while (!WorkList.empty()) {
-      BasicBlock *BB = *WorkList.begin();
-      WorkList.erase(BB);
-      SmallVector<BasicBlock*, 2> Successors(succ_begin(BB), succ_end(BB));
-
-      DeleteDeadBlock(BB);
-
-      for (SmallVectorImpl<BasicBlock*>::iterator
-             II = Successors.begin(), IE = Successors.end(); II != IE; ++II)
-        if (pred_begin(*II) == pred_end(*II))
-          WorkList.insert(*II);
-    }
-
-    // Merge pairs of basic blocks with unconditional branches, connected by
-    // a single edge.
-    if (EverMadeChange || MadeChange)
-      MadeChange |= EliminateFallThrough(F);
-
-    if (MadeChange)
-      ModifiedDT = true;
-    EverMadeChange |= MadeChange;
-  }
-
-  if (ModifiedDT && DT)
-    DT->recalculate(F);
-
-  return EverMadeChange;
-}
-
-/// EliminateFallThrough - Merge basic blocks which are connected
-/// by a single edge, where one of the basic blocks has a single successor
-/// pointing to the other basic block, which has a single predecessor.
-bool CodeGenPrepare::EliminateFallThrough(Function &F) {
-  bool Changed = false;
-  // Scan all of the blocks in the function, except for the entry block.
-  for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ) {
-    BasicBlock *BB = I++;
-    // If the destination block has a single pred, then this is a trivial
-    // edge, just collapse it.
-    BasicBlock *SinglePred = BB->getSinglePredecessor();
-
-    // Don't merge if BB's address is taken.
-    if (!SinglePred || SinglePred == BB || BB->hasAddressTaken()) continue;
-
-    BranchInst *Term = dyn_cast<BranchInst>(SinglePred->getTerminator());
-    if (Term && !Term->isConditional()) {
-      Changed = true;
-      DEBUG(dbgs() << "To merge:\n"<< *SinglePred << "\n\n\n");
-      // Remember if SinglePred was the entry block of the function.
-      // If so, we will need to move BB back to the entry position.
-      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
-      MergeBasicBlockIntoOnlyPred(BB, this);
-
-      if (isEntry && BB != &BB->getParent()->getEntryBlock())
-        BB->moveBefore(&BB->getParent()->getEntryBlock());
-
-      // We have erased a block. Update the iterator.
-      I = BB;
-    }
-  }
-  return Changed;
-}
-
-/// EliminateMostlyEmptyBlocks - eliminate blocks that contain only PHI nodes,
-/// debug info directives, and an unconditional branch.  Passes before isel
-/// (e.g. LSR/loopsimplify) often split edges in ways that are non-optimal for
-/// isel.  Start by eliminating these blocks so we can split them the way we
-/// want them.
-bool CodeGenPrepare::EliminateMostlyEmptyBlocks(Function &F) {
-  bool MadeChange = false;
-  // Note that this intentionally skips the entry block.
-  for (Function::iterator I = llvm::next(F.begin()), E = F.end(); I != E; ) {
-    BasicBlock *BB = I++;
-
-    // If this block doesn't end with an uncond branch, ignore it.
-    BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
-    if (!BI || !BI->isUnconditional())
-      continue;
-
-    // If the instruction before the branch (skipping debug info) isn't a phi
-    // node, then other stuff is happening here.
-    BasicBlock::iterator BBI = BI;
-    if (BBI != BB->begin()) {
-      --BBI;
-      while (isa<DbgInfoIntrinsic>(BBI)) {
-        if (BBI == BB->begin())
-          break;
-        --BBI;
-      }
-      if (!isa<DbgInfoIntrinsic>(BBI) && !isa<PHINode>(BBI))
-        continue;
-    }
-
-    // Do not break infinite loops.
-    BasicBlock *DestBB = BI->getSuccessor(0);
-    if (DestBB == BB)
-      continue;
-
-    if (!CanMergeBlocks(BB, DestBB))
-      continue;
-
-    EliminateMostlyEmptyBlock(BB);
-    MadeChange = true;
-  }
-  return MadeChange;
-}
-
-/// CanMergeBlocks - Return true if we can merge BB into DestBB if there is a
-/// single uncond branch between them, and BB contains no other non-phi
-/// instructions.
-bool CodeGenPrepare::CanMergeBlocks(const BasicBlock *BB,
-                                    const BasicBlock *DestBB) const {
-  // We only want to eliminate blocks whose phi nodes are used by phi nodes in
-  // the successor.  If there are more complex condition (e.g. preheaders),
-  // don't mess around with them.
-  BasicBlock::const_iterator BBI = BB->begin();
-  while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
-    for (Value::const_use_iterator UI = PN->use_begin(), E = PN->use_end();
-         UI != E; ++UI) {
-      const Instruction *User = cast<Instruction>(*UI);
-      if (User->getParent() != DestBB || !isa<PHINode>(User))
-        return false;
-      // If User is inside DestBB block and it is a PHINode then check
-      // incoming value. If incoming value is not from BB then this is
-      // a complex condition (e.g. preheaders) we want to avoid here.
-      if (User->getParent() == DestBB) {
-        if (const PHINode *UPN = dyn_cast<PHINode>(User))
-          for (unsigned I = 0, E = UPN->getNumIncomingValues(); I != E; ++I) {
-            Instruction *Insn = dyn_cast<Instruction>(UPN->getIncomingValue(I));
-            if (Insn && Insn->getParent() == BB &&
-                Insn->getParent() != UPN->getIncomingBlock(I))
-              return false;
-          }
-      }
-    }
-  }
-
-  // If BB and DestBB contain any common predecessors, then the phi nodes in BB
-  // and DestBB may have conflicting incoming values for the block.  If so, we
-  // can't merge the block.
-  const PHINode *DestBBPN = dyn_cast<PHINode>(DestBB->begin());
-  if (!DestBBPN) return true;  // no conflict.
-
-  // Collect the preds of BB.
-  SmallPtrSet<const BasicBlock*, 16> BBPreds;
-  if (const PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
-    // It is faster to get preds from a PHI than with pred_iterator.
-    for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
-      BBPreds.insert(BBPN->getIncomingBlock(i));
-  } else {
-    BBPreds.insert(pred_begin(BB), pred_end(BB));
-  }
-
-  // Walk the preds of DestBB.
-  for (unsigned i = 0, e = DestBBPN->getNumIncomingValues(); i != e; ++i) {
-    BasicBlock *Pred = DestBBPN->getIncomingBlock(i);
-    if (BBPreds.count(Pred)) {   // Common predecessor?
-      BBI = DestBB->begin();
-      while (const PHINode *PN = dyn_cast<PHINode>(BBI++)) {
-        const Value *V1 = PN->getIncomingValueForBlock(Pred);
-        const Value *V2 = PN->getIncomingValueForBlock(BB);
-
-        // If V2 is a phi node in BB, look up what the mapped value will be.
-        if (const PHINode *V2PN = dyn_cast<PHINode>(V2))
-          if (V2PN->getParent() == BB)
-            V2 = V2PN->getIncomingValueForBlock(Pred);
-
-        // If there is a conflict, bail out.
-        if (V1 != V2) return false;
-      }
-    }
-  }
-
-  return true;
-}
-
-
-/// EliminateMostlyEmptyBlock - Eliminate a basic block that have only phi's and
-/// an unconditional branch in it.
-void CodeGenPrepare::EliminateMostlyEmptyBlock(BasicBlock *BB) {
-  BranchInst *BI = cast<BranchInst>(BB->getTerminator());
-  BasicBlock *DestBB = BI->getSuccessor(0);
-
-  DEBUG(dbgs() << "MERGING MOSTLY EMPTY BLOCKS - BEFORE:\n" << *BB << *DestBB);
-
-  // If the destination block has a single pred, then this is a trivial edge,
-  // just collapse it.
-  if (BasicBlock *SinglePred = DestBB->getSinglePredecessor()) {
-    if (SinglePred != DestBB) {
-      // Remember if SinglePred was the entry block of the function.  If so, we
-      // will need to move BB back to the entry position.
-      bool isEntry = SinglePred == &SinglePred->getParent()->getEntryBlock();
-      MergeBasicBlockIntoOnlyPred(DestBB, this);
-
-      if (isEntry && BB != &BB->getParent()->getEntryBlock())
-        BB->moveBefore(&BB->getParent()->getEntryBlock());
-
-      DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
-      return;
-    }
-  }
-
-  // Otherwise, we have multiple predecessors of BB.  Update the PHIs in DestBB
-  // to handle the new incoming edges it is about to have.
-  PHINode *PN;
-  for (BasicBlock::iterator BBI = DestBB->begin();
-       (PN = dyn_cast<PHINode>(BBI)); ++BBI) {
-    // Remove the incoming value for BB, and remember it.
-    Value *InVal = PN->removeIncomingValue(BB, false);
-
-    // Two options: either the InVal is a phi node defined in BB or it is some
-    // value that dominates BB.
-    PHINode *InValPhi = dyn_cast<PHINode>(InVal);
-    if (InValPhi && InValPhi->getParent() == BB) {
-      // Add all of the input values of the input PHI as inputs of this phi.
-      for (unsigned i = 0, e = InValPhi->getNumIncomingValues(); i != e; ++i)
-        PN->addIncoming(InValPhi->getIncomingValue(i),
-                        InValPhi->getIncomingBlock(i));
-    } else {
-      // Otherwise, add one instance of the dominating value for each edge that
-      // we will be adding.
-      if (PHINode *BBPN = dyn_cast<PHINode>(BB->begin())) {
-        for (unsigned i = 0, e = BBPN->getNumIncomingValues(); i != e; ++i)
-          PN->addIncoming(InVal, BBPN->getIncomingBlock(i));
-      } else {
-        for (pred_iterator PI = pred_begin(BB), E = pred_end(BB); PI != E; ++PI)
-          PN->addIncoming(InVal, *PI);
-      }
-    }
-  }
-
-  // The PHIs are now updated, change everything that refers to BB to use
-  // DestBB and remove BB.
-  BB->replaceAllUsesWith(DestBB);
-  if (DT && !ModifiedDT) {
-    BasicBlock *BBIDom  = DT->getNode(BB)->getIDom()->getBlock();
-    BasicBlock *DestBBIDom = DT->getNode(DestBB)->getIDom()->getBlock();
-    BasicBlock *NewIDom = DT->findNearestCommonDominator(BBIDom, DestBBIDom);
-    DT->changeImmediateDominator(DestBB, NewIDom);
-    DT->eraseNode(BB);
-  }
-  BB->eraseFromParent();
-  ++NumBlocksElim;
-
-  DEBUG(dbgs() << "AFTER:\n" << *DestBB << "\n\n\n");
-}
-
-/// OptimizeNoopCopyExpression - If the specified cast instruction is a noop
-/// copy (e.g. it's casting from one pointer type to another, i32->i8 on PPC),
-/// sink it into user blocks to reduce the number of virtual
-/// registers that must be created and coalesced.
-///
-/// Return true if any changes are made.
-///
-static bool OptimizeNoopCopyExpression(CastInst *CI, const TargetLowering &TLI){
-  // If this is a noop copy,
-  EVT SrcVT = TLI.getValueType(CI->getOperand(0)->getType());
-  EVT DstVT = TLI.getValueType(CI->getType());
-
-  // This is an fp<->int conversion?
-  if (SrcVT.isInteger() != DstVT.isInteger())
-    return false;
-
-  // If this is an extension, it will be a zero or sign extension, which
-  // isn't a noop.
-  if (SrcVT.bitsLT(DstVT)) return false;
-
-  // If these values will be promoted, find out what they will be promoted
-  // to.  This helps us consider truncates on PPC as noop copies when they
-  // are.
-  if (TLI.getTypeAction(CI->getContext(), SrcVT) ==
-      TargetLowering::TypePromoteInteger)
-    SrcVT = TLI.getTypeToTransformTo(CI->getContext(), SrcVT);
-  if (TLI.getTypeAction(CI->getContext(), DstVT) ==
-      TargetLowering::TypePromoteInteger)
-    DstVT = TLI.getTypeToTransformTo(CI->getContext(), DstVT);
-
-  // If, after promotion, these are the same types, this is a noop copy.
-  if (SrcVT != DstVT)
-    return false;
-
-  BasicBlock *DefBB = CI->getParent();
-
-  /// InsertedCasts - Only insert a cast in each block once.
-  DenseMap<BasicBlock*, CastInst*> InsertedCasts;
-
-  bool MadeChange = false;
-  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
-       UI != E; ) {
-    Use &TheUse = UI.getUse();
-    Instruction *User = cast<Instruction>(*UI);
-
-    // Figure out which BB this cast is used in.  For PHI's this is the
-    // appropriate predecessor block.
-    BasicBlock *UserBB = User->getParent();
-    if (PHINode *PN = dyn_cast<PHINode>(User)) {
-      UserBB = PN->getIncomingBlock(UI);
-    }
-
-    // Preincrement use iterator so we don't invalidate it.
-    ++UI;
-
-    // If this user is in the same block as the cast, don't change the cast.
-    if (UserBB == DefBB) continue;
-
-    // If we have already inserted a cast into this block, use it.
-    CastInst *&InsertedCast = InsertedCasts[UserBB];
-
-    if (!InsertedCast) {
-      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
-      InsertedCast =
-        CastInst::Create(CI->getOpcode(), CI->getOperand(0), CI->getType(), "",
-                         InsertPt);
-      MadeChange = true;
-    }
-
-    // Replace a use of the cast with a use of the new cast.
-    TheUse = InsertedCast;
-    ++NumCastUses;
-  }
-
-  // If we removed all uses, nuke the cast.
-  if (CI->use_empty()) {
-    CI->eraseFromParent();
-    MadeChange = true;
-  }
-
-  return MadeChange;
-}
-
-/// OptimizeCmpExpression - sink the given CmpInst into user blocks to reduce
-/// the number of virtual registers that must be created and coalesced.  This is
-/// a clear win except on targets with multiple condition code registers
-///  (PowerPC), where it might lose; some adjustment may be wanted there.
-///
-/// Return true if any changes are made.
-static bool OptimizeCmpExpression(CmpInst *CI) {
-  BasicBlock *DefBB = CI->getParent();
-
-  /// InsertedCmp - Only insert a cmp in each block once.
-  DenseMap<BasicBlock*, CmpInst*> InsertedCmps;
-
-  bool MadeChange = false;
-  for (Value::use_iterator UI = CI->use_begin(), E = CI->use_end();
-       UI != E; ) {
-    Use &TheUse = UI.getUse();
-    Instruction *User = cast<Instruction>(*UI);
-
-    // Preincrement use iterator so we don't invalidate it.
-    ++UI;
-
-    // Don't bother for PHI nodes.
-    if (isa<PHINode>(User))
-      continue;
-
-    // Figure out which BB this cmp is used in.
-    BasicBlock *UserBB = User->getParent();
-
-    // If this user is in the same block as the cmp, don't change the cmp.
-    if (UserBB == DefBB) continue;
-
-    // If we have already inserted a cmp into this block, use it.
-    CmpInst *&InsertedCmp = InsertedCmps[UserBB];
-
-    if (!InsertedCmp) {
-      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
-      InsertedCmp =
-        CmpInst::Create(CI->getOpcode(),
-                        CI->getPredicate(),  CI->getOperand(0),
-                        CI->getOperand(1), "", InsertPt);
-      MadeChange = true;
-    }
-
-    // Replace a use of the cmp with a use of the new cmp.
-    TheUse = InsertedCmp;
-    ++NumCmpUses;
-  }
-
-  // If we removed all uses, nuke the cmp.
-  if (CI->use_empty())
-    CI->eraseFromParent();
-
-  return MadeChange;
-}
-
-namespace {
-class CodeGenPrepareFortifiedLibCalls : public SimplifyFortifiedLibCalls {
-protected:
-  void replaceCall(Value *With) {
-    CI->replaceAllUsesWith(With);
-    CI->eraseFromParent();
-  }
-  bool isFoldable(unsigned SizeCIOp, unsigned, bool) const {
-      if (ConstantInt *SizeCI =
-                             dyn_cast<ConstantInt>(CI->getArgOperand(SizeCIOp)))
-        return SizeCI->isAllOnesValue();
-    return false;
-  }
-};
-} // end anonymous namespace
-
-bool CodeGenPrepare::OptimizeCallInst(CallInst *CI) {
-  BasicBlock *BB = CI->getParent();
-
-  // Lower inline assembly if we can.
-  // If we found an inline asm expession, and if the target knows how to
-  // lower it to normal LLVM code, do so now.
-  if (TLI && isa<InlineAsm>(CI->getCalledValue())) {
-    if (TLI->ExpandInlineAsm(CI)) {
-      // Avoid invalidating the iterator.
-      CurInstIterator = BB->begin();
-      // Avoid processing instructions out of order, which could cause
-      // reuse before a value is defined.
-      SunkAddrs.clear();
-      return true;
-    }
-    // Sink address computing for memory operands into the block.
-    if (OptimizeInlineAsmInst(CI))
-      return true;
-  }
-
-  // Lower all uses of llvm.objectsize.*
-  IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI);
-  if (II && II->getIntrinsicID() == Intrinsic::objectsize) {
-    bool Min = (cast<ConstantInt>(II->getArgOperand(1))->getZExtValue() == 1);
-    Type *ReturnTy = CI->getType();
-    Constant *RetVal = ConstantInt::get(ReturnTy, Min ? 0 : -1ULL);
-
-    // Substituting this can cause recursive simplifications, which can
-    // invalidate our iterator.  Use a WeakVH to hold onto it in case this
-    // happens.
-    WeakVH IterHandle(CurInstIterator);
-
-    replaceAndRecursivelySimplify(CI, RetVal, TLI ? TLI->getDataLayout() : 0,
-                                  TLInfo, ModifiedDT ? 0 : DT);
-
-    // If the iterator instruction was recursively deleted, start over at the
-    // start of the block.
-    if (IterHandle != CurInstIterator) {
-      CurInstIterator = BB->begin();
-      SunkAddrs.clear();
-    }
-    return true;
-  }
-
-  if (II && TLI) {
-    SmallVector<Value*, 2> PtrOps;
-    Type *AccessTy;
-    if (TLI->GetAddrModeArguments(II, PtrOps, AccessTy))
-      while (!PtrOps.empty())
-        if (OptimizeMemoryInst(II, PtrOps.pop_back_val(), AccessTy))
-          return true;
-  }
-
-  // From here on out we're working with named functions.
-  if (CI->getCalledFunction() == 0) return false;
-
-  // We'll need DataLayout from here on out.
-  const DataLayout *TD = TLI ? TLI->getDataLayout() : 0;
-  if (!TD) return false;
-
-  // Lower all default uses of _chk calls.  This is very similar
-  // to what InstCombineCalls does, but here we are only lowering calls
-  // that have the default "don't know" as the objectsize.  Anything else
-  // should be left alone.
-  CodeGenPrepareFortifiedLibCalls Simplifier;
-  return Simplifier.fold(CI, TD, TLInfo);
-}
-
-/// DupRetToEnableTailCallOpts - Look for opportunities to duplicate return
-/// instructions to the predecessor to enable tail call optimizations. The
-/// case it is currently looking for is:
-/// @code
-/// bb0:
-///   %tmp0 = tail call i32 @f0()
-///   br label %return
-/// bb1:
-///   %tmp1 = tail call i32 @f1()
-///   br label %return
-/// bb2:
-///   %tmp2 = tail call i32 @f2()
-///   br label %return
-/// return:
-///   %retval = phi i32 [ %tmp0, %bb0 ], [ %tmp1, %bb1 ], [ %tmp2, %bb2 ]
-///   ret i32 %retval
-/// @endcode
-///
-/// =>
-///
-/// @code
-/// bb0:
-///   %tmp0 = tail call i32 @f0()
-///   ret i32 %tmp0
-/// bb1:
-///   %tmp1 = tail call i32 @f1()
-///   ret i32 %tmp1
-/// bb2:
-///   %tmp2 = tail call i32 @f2()
-///   ret i32 %tmp2
-/// @endcode
-bool CodeGenPrepare::DupRetToEnableTailCallOpts(BasicBlock *BB) {
-  if (!TLI)
-    return false;
-
-  ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
-  if (!RI)
-    return false;
-
-  PHINode *PN = 0;
-  BitCastInst *BCI = 0;
-  Value *V = RI->getReturnValue();
-  if (V) {
-    BCI = dyn_cast<BitCastInst>(V);
-    if (BCI)
-      V = BCI->getOperand(0);
-
-    PN = dyn_cast<PHINode>(V);
-    if (!PN)
-      return false;
-  }
-
-  if (PN && PN->getParent() != BB)
-    return false;
-
-  // It's not safe to eliminate the sign / zero extension of the return value.
-  // See llvm::isInTailCallPosition().
-  const Function *F = BB->getParent();
-  AttributeSet CallerAttrs = F->getAttributes();
-  if (CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::ZExt) ||
-      CallerAttrs.hasAttribute(AttributeSet::ReturnIndex, Attribute::SExt))
-    return false;
-
-  // Make sure there are no instructions between the PHI and return, or that the
-  // return is the first instruction in the block.
-  if (PN) {
-    BasicBlock::iterator BI = BB->begin();
-    do { ++BI; } while (isa<DbgInfoIntrinsic>(BI));
-    if (&*BI == BCI)
-      // Also skip over the bitcast.
-      ++BI;
-    if (&*BI != RI)
-      return false;
-  } else {
-    BasicBlock::iterator BI = BB->begin();
-    while (isa<DbgInfoIntrinsic>(BI)) ++BI;
-    if (&*BI != RI)
-      return false;
-  }
-
-  /// Only dup the ReturnInst if the CallInst is likely to be emitted as a tail
-  /// call.
-  SmallVector<CallInst*, 4> TailCalls;
-  if (PN) {
-    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I) {
-      CallInst *CI = dyn_cast<CallInst>(PN->getIncomingValue(I));
-      // Make sure the phi value is indeed produced by the tail call.
-      if (CI && CI->hasOneUse() && CI->getParent() == PN->getIncomingBlock(I) &&
-          TLI->mayBeEmittedAsTailCall(CI))
-        TailCalls.push_back(CI);
-    }
-  } else {
-    SmallPtrSet<BasicBlock*, 4> VisitedBBs;
-    for (pred_iterator PI = pred_begin(BB), PE = pred_end(BB); PI != PE; ++PI) {
-      if (!VisitedBBs.insert(*PI))
-        continue;
-
-      BasicBlock::InstListType &InstList = (*PI)->getInstList();
-      BasicBlock::InstListType::reverse_iterator RI = InstList.rbegin();
-      BasicBlock::InstListType::reverse_iterator RE = InstList.rend();
-      do { ++RI; } while (RI != RE && isa<DbgInfoIntrinsic>(&*RI));
-      if (RI == RE)
-        continue;
-
-      CallInst *CI = dyn_cast<CallInst>(&*RI);
-      if (CI && CI->use_empty() && TLI->mayBeEmittedAsTailCall(CI))
-        TailCalls.push_back(CI);
-    }
-  }
-
-  bool Changed = false;
-  for (unsigned i = 0, e = TailCalls.size(); i != e; ++i) {
-    CallInst *CI = TailCalls[i];
-    CallSite CS(CI);
-
-    // Conservatively require the attributes of the call to match those of the
-    // return. Ignore noalias because it doesn't affect the call sequence.
-    AttributeSet CalleeAttrs = CS.getAttributes();
-    if (AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
-          removeAttribute(Attribute::NoAlias) !=
-        AttrBuilder(CalleeAttrs, AttributeSet::ReturnIndex).
-          removeAttribute(Attribute::NoAlias))
-      continue;
-
-    // Make sure the call instruction is followed by an unconditional branch to
-    // the return block.
-    BasicBlock *CallBB = CI->getParent();
-    BranchInst *BI = dyn_cast<BranchInst>(CallBB->getTerminator());
-    if (!BI || !BI->isUnconditional() || BI->getSuccessor(0) != BB)
-      continue;
-
-    // Duplicate the return into CallBB.
-    (void)FoldReturnIntoUncondBranch(RI, BB, CallBB);
-    ModifiedDT = Changed = true;
-    ++NumRetsDup;
-  }
-
-  // If we eliminated all predecessors of the block, delete the block now.
-  if (Changed && !BB->hasAddressTaken() && pred_begin(BB) == pred_end(BB))
-    BB->eraseFromParent();
-
-  return Changed;
-}
-
-//===----------------------------------------------------------------------===//
-// Memory Optimization
-//===----------------------------------------------------------------------===//
-
-namespace {
-
-/// ExtAddrMode - This is an extended version of TargetLowering::AddrMode
-/// which holds actual Value*'s for register values.
-struct ExtAddrMode : public TargetLowering::AddrMode {
-  Value *BaseReg;
-  Value *ScaledReg;
-  ExtAddrMode() : BaseReg(0), ScaledReg(0) {}
-  void print(raw_ostream &OS) const;
-  void dump() const;
-
-  bool operator==(const ExtAddrMode& O) const {
-    return (BaseReg == O.BaseReg) && (ScaledReg == O.ScaledReg) &&
-           (BaseGV == O.BaseGV) && (BaseOffs == O.BaseOffs) &&
-           (HasBaseReg == O.HasBaseReg) && (Scale == O.Scale);
-  }
-};
-
-#ifndef NDEBUG
-static inline raw_ostream &operator<<(raw_ostream &OS, const ExtAddrMode &AM) {
-  AM.print(OS);
-  return OS;
-}
-#endif
-
-void ExtAddrMode::print(raw_ostream &OS) const {
-  bool NeedPlus = false;
-  OS << "[";
-  if (BaseGV) {
-    OS << (NeedPlus ? " + " : "")
-       << "GV:";
-    BaseGV->printAsOperand(OS, /*PrintType=*/false);
-    NeedPlus = true;
-  }
-
-  if (BaseOffs)
-    OS << (NeedPlus ? " + " : "") << BaseOffs, NeedPlus = true;
-
-  if (BaseReg) {
-    OS << (NeedPlus ? " + " : "")
-       << "Base:";
-    BaseReg->printAsOperand(OS, /*PrintType=*/false);
-    NeedPlus = true;
-  }
-  if (Scale) {
-    OS << (NeedPlus ? " + " : "")
-       << Scale << "*";
-    ScaledReg->printAsOperand(OS, /*PrintType=*/false);
-  }
-
-  OS << ']';
-}
-
-#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
-void ExtAddrMode::dump() const {
-  print(dbgs());
-  dbgs() << '\n';
-}
-#endif
-
-/// \brief This class provides transaction based operation on the IR.
-/// Every change made through this class is recorded in the internal state and
-/// can be undone (rollback) until commit is called.
-class TypePromotionTransaction {
-
-  /// \brief This represents the common interface of the individual transaction.
-  /// Each class implements the logic for doing one specific modification on
-  /// the IR via the TypePromotionTransaction.
-  class TypePromotionAction {
-  protected:
-    /// The Instruction modified.
-    Instruction *Inst;
-
-  public:
-    /// \brief Constructor of the action.
-    /// The constructor performs the related action on the IR.
-    TypePromotionAction(Instruction *Inst) : Inst(Inst) {}
-
-    virtual ~TypePromotionAction() {}
-
-    /// \brief Undo the modification done by this action.
-    /// When this method is called, the IR must be in the same state as it was
-    /// before this action was applied.
-    /// \pre Undoing the action works if and only if the IR is in the exact same
-    /// state as it was directly after this action was applied.
-    virtual void undo() = 0;
-
-    /// \brief Advocate every change made by this action.
-    /// When the results on the IR of the action are to be kept, it is important
-    /// to call this function, otherwise hidden information may be kept forever.
-    virtual void commit() {
-      // Nothing to be done, this action is not doing anything.
-    }
-  };
-
-  /// \brief Utility to remember the position of an instruction.
-  class InsertionHandler {
-    /// Position of an instruction.
-    /// Either an instruction:
-    /// - Is the first in a basic block: BB is used.
-    /// - Has a previous instructon: PrevInst is used.
-    union {
-      Instruction *PrevInst;
-      BasicBlock *BB;
-    } Point;
-    /// Remember whether or not the instruction had a previous instruction.
-    bool HasPrevInstruction;
-
-  public:
-    /// \brief Record the position of \p Inst.
-    InsertionHandler(Instruction *Inst) {
-      BasicBlock::iterator It = Inst;
-      HasPrevInstruction = (It != (Inst->getParent()->begin()));
-      if (HasPrevInstruction)
-        Point.PrevInst = --It;
-      else
-        Point.BB = Inst->getParent();
-    }
-
-    /// \brief Insert \p Inst at the recorded position.
-    void insert(Instruction *Inst) {
-      if (HasPrevInstruction) {
-        if (Inst->getParent())
-          Inst->removeFromParent();
-        Inst->insertAfter(Point.PrevInst);
-      } else {
-        Instruction *Position = Point.BB->getFirstInsertionPt();
-        if (Inst->getParent())
-          Inst->moveBefore(Position);
-        else
-          Inst->insertBefore(Position);
-      }
-    }
-  };
-
-  /// \brief Move an instruction before another.
-  class InstructionMoveBefore : public TypePromotionAction {
-    /// Original position of the instruction.
-    InsertionHandler Position;
-
-  public:
-    /// \brief Move \p Inst before \p Before.
-    InstructionMoveBefore(Instruction *Inst, Instruction *Before)
-        : TypePromotionAction(Inst), Position(Inst) {
-      DEBUG(dbgs() << "Do: move: " << *Inst << "\nbefore: " << *Before << "\n");
-      Inst->moveBefore(Before);
-    }
-
-    /// \brief Move the instruction back to its original position.
-    void undo() {
-      DEBUG(dbgs() << "Undo: moveBefore: " << *Inst << "\n");
-      Position.insert(Inst);
-    }
-  };
-
-  /// \brief Set the operand of an instruction with a new value.
-  class OperandSetter : public TypePromotionAction {
-    /// Original operand of the instruction.
-    Value *Origin;
-    /// Index of the modified instruction.
-    unsigned Idx;
-
-  public:
-    /// \brief Set \p Idx operand of \p Inst with \p NewVal.
-    OperandSetter(Instruction *Inst, unsigned Idx, Value *NewVal)
-        : TypePromotionAction(Inst), Idx(Idx) {
-      DEBUG(dbgs() << "Do: setOperand: " << Idx << "\n"
-                   << "for:" << *Inst << "\n"
-                   << "with:" << *NewVal << "\n");
-      Origin = Inst->getOperand(Idx);
-      Inst->setOperand(Idx, NewVal);
-    }
-
-    /// \brief Restore the original value of the instruction.
-    void undo() {
-      DEBUG(dbgs() << "Undo: setOperand:" << Idx << "\n"
-                   << "for: " << *Inst << "\n"
-                   << "with: " << *Origin << "\n");
-      Inst->setOperand(Idx, Origin);
-    }
-  };
-
-  /// \brief Hide the operands of an instruction.
-  /// Do as if this instruction was not using any of its operands.
-  class OperandsHider : public TypePromotionAction {
-    /// The list of original operands.
-    SmallVector<Value *, 4> OriginalValues;
-
-  public:
-    /// \brief Remove \p Inst from the uses of the operands of \p Inst.
-    OperandsHider(Instruction *Inst) : TypePromotionAction(Inst) {
-      DEBUG(dbgs() << "Do: OperandsHider: " << *Inst << "\n");
-      unsigned NumOpnds = Inst->getNumOperands();
-      OriginalValues.reserve(NumOpnds);
-      for (unsigned It = 0; It < NumOpnds; ++It) {
-        // Save the current operand.
-        Value *Val = Inst->getOperand(It);
-        OriginalValues.push_back(Val);
-        // Set a dummy one.
-        // We could use OperandSetter here, but that would implied an overhead
-        // that we are not willing to pay.
-        Inst->setOperand(It, UndefValue::get(Val->getType()));
-      }
-    }
-
-    /// \brief Restore the original list of uses.
-    void undo() {
-      DEBUG(dbgs() << "Undo: OperandsHider: " << *Inst << "\n");
-      for (unsigned It = 0, EndIt = OriginalValues.size(); It != EndIt; ++It)
-        Inst->setOperand(It, OriginalValues[It]);
-    }
-  };
-
-  /// \brief Build a truncate instruction.
-  class TruncBuilder : public TypePromotionAction {
-  public:
-    /// \brief Build a truncate instruction of \p Opnd producing a \p Ty
-    /// result.
-    /// trunc Opnd to Ty.
-    TruncBuilder(Instruction *Opnd, Type *Ty) : TypePromotionAction(Opnd) {
-      IRBuilder<> Builder(Opnd);
-      Inst = cast<Instruction>(Builder.CreateTrunc(Opnd, Ty, "promoted"));
-      DEBUG(dbgs() << "Do: TruncBuilder: " << *Inst << "\n");
-    }
-
-    /// \brief Get the built instruction.
-    Instruction *getBuiltInstruction() { return Inst; }
-
-    /// \brief Remove the built instruction.
-    void undo() {
-      DEBUG(dbgs() << "Undo: TruncBuilder: " << *Inst << "\n");
-      Inst->eraseFromParent();
-    }
-  };
-
-  /// \brief Build a sign extension instruction.
-  class SExtBuilder : public TypePromotionAction {
-  public:
-    /// \brief Build a sign extension instruction of \p Opnd producing a \p Ty
-    /// result.
-    /// sext Opnd to Ty.
-    SExtBuilder(Instruction *InsertPt, Value *Opnd, Type *Ty)
-        : TypePromotionAction(Inst) {
-      IRBuilder<> Builder(InsertPt);
-      Inst = cast<Instruction>(Builder.CreateSExt(Opnd, Ty, "promoted"));
-      DEBUG(dbgs() << "Do: SExtBuilder: " << *Inst << "\n");
-    }
-
-    /// \brief Get the built instruction.
-    Instruction *getBuiltInstruction() { return Inst; }
-
-    /// \brief Remove the built instruction.
-    void undo() {
-      DEBUG(dbgs() << "Undo: SExtBuilder: " << *Inst << "\n");
-      Inst->eraseFromParent();
-    }
-  };
-
-  /// \brief Mutate an instruction to another type.
-  class TypeMutator : public TypePromotionAction {
-    /// Record the original type.
-    Type *OrigTy;
-
-  public:
-    /// \brief Mutate the type of \p Inst into \p NewTy.
-    TypeMutator(Instruction *Inst, Type *NewTy)
-        : TypePromotionAction(Inst), OrigTy(Inst->getType()) {
-      DEBUG(dbgs() << "Do: MutateType: " << *Inst << " with " << *NewTy
-                   << "\n");
-      Inst->mutateType(NewTy);
-    }
-
-    /// \brief Mutate the instruction back to its original type.
-    void undo() {
-      DEBUG(dbgs() << "Undo: MutateType: " << *Inst << " with " << *OrigTy
-                   << "\n");
-      Inst->mutateType(OrigTy);
-    }
-  };
-
-  /// \brief Replace the uses of an instruction by another instruction.
-  class UsesReplacer : public TypePromotionAction {
-    /// Helper structure to keep track of the replaced uses.
-    struct InstructionAndIdx {
-      /// The instruction using the instruction.
-      Instruction *Inst;
-      /// The index where this instruction is used for Inst.
-      unsigned Idx;
-      InstructionAndIdx(Instruction *Inst, unsigned Idx)
-          : Inst(Inst), Idx(Idx) {}
-    };
-
-    /// Keep track of the original uses (pair Instruction, Index).
-    SmallVector<InstructionAndIdx, 4> OriginalUses;
-    typedef SmallVectorImpl<InstructionAndIdx>::iterator use_iterator;
-
-  public:
-    /// \brief Replace all the use of \p Inst by \p New.
-    UsesReplacer(Instruction *Inst, Value *New) : TypePromotionAction(Inst) {
-      DEBUG(dbgs() << "Do: UsersReplacer: " << *Inst << " with " << *New
-                   << "\n");
-      // Record the original uses.
-      for (Value::use_iterator UseIt = Inst->use_begin(),
-                               EndIt = Inst->use_end();
-           UseIt != EndIt; ++UseIt) {
-        Instruction *Use = cast<Instruction>(*UseIt);
-        OriginalUses.push_back(InstructionAndIdx(Use, UseIt.getOperandNo()));
-      }
-      // Now, we can replace the uses.
-      Inst->replaceAllUsesWith(New);
-    }
-
-    /// \brief Reassign the original uses of Inst to Inst.
-    void undo() {
-      DEBUG(dbgs() << "Undo: UsersReplacer: " << *Inst << "\n");
-      for (use_iterator UseIt = OriginalUses.begin(),
-                        EndIt = OriginalUses.end();
-           UseIt != EndIt; ++UseIt) {
-        UseIt->Inst->setOperand(UseIt->Idx, Inst);
-      }
-    }
-  };
-
-  /// \brief Remove an instruction from the IR.
-  class InstructionRemover : public TypePromotionAction {
-    /// Original position of the instruction.
-    InsertionHandler Inserter;
-    /// Helper structure to hide all the link to the instruction. In other
-    /// words, this helps to do as if the instruction was removed.
-    OperandsHider Hider;
-    /// Keep track of the uses replaced, if any.
-    UsesReplacer *Replacer;
-
-  public:
-    /// \brief Remove all reference of \p Inst and optinally replace all its
-    /// uses with New.
-    /// \pre If !Inst->use_empty(), then New != NULL
-    InstructionRemover(Instruction *Inst, Value *New = NULL)
-        : TypePromotionAction(Inst), Inserter(Inst), Hider(Inst),
-          Replacer(NULL) {
-      if (New)
-        Replacer = new UsesReplacer(Inst, New);
-      DEBUG(dbgs() << "Do: InstructionRemover: " << *Inst << "\n");
-      Inst->removeFromParent();
-    }
-
-    ~InstructionRemover() { delete Replacer; }
-
-    /// \brief Really remove the instruction.
-    void commit() { delete Inst; }
-
-    /// \brief Resurrect the instruction and reassign it to the proper uses if
-    /// new value was provided when build this action.
-    void undo() {
-      DEBUG(dbgs() << "Undo: InstructionRemover: " << *Inst << "\n");
-      Inserter.insert(Inst);
-      if (Replacer)
-        Replacer->undo();
-      Hider.undo();
-    }
-  };
-
-public:
-  /// Restoration point.
-  /// The restoration point is a pointer to an action instead of an iterator
-  /// because the iterator may be invalidated but not the pointer.
-  typedef const TypePromotionAction *ConstRestorationPt;
-  /// Advocate every changes made in that transaction.
-  void commit();
-  /// Undo all the changes made after the given point.
-  void rollback(ConstRestorationPt Point);
-  /// Get the current restoration point.
-  ConstRestorationPt getRestorationPoint() const;
-
-  /// \name API for IR modification with state keeping to support rollback.
-  /// @{
-  /// Same as Instruction::setOperand.
-  void setOperand(Instruction *Inst, unsigned Idx, Value *NewVal);
-  /// Same as Instruction::eraseFromParent.
-  void eraseInstruction(Instruction *Inst, Value *NewVal = NULL);
-  /// Same as Value::replaceAllUsesWith.
-  void replaceAllUsesWith(Instruction *Inst, Value *New);
-  /// Same as Value::mutateType.
-  void mutateType(Instruction *Inst, Type *NewTy);
-  /// Same as IRBuilder::createTrunc.
-  Instruction *createTrunc(Instruction *Opnd, Type *Ty);
-  /// Same as IRBuilder::createSExt.
-  Instruction *createSExt(Instruction *Inst, Value *Opnd, Type *Ty);
-  /// Same as Instruction::moveBefore.
-  void moveBefore(Instruction *Inst, Instruction *Before);
-  /// @}
-
-  ~TypePromotionTransaction();
-
-private:
-  /// The ordered list of actions made so far.
-  SmallVector<TypePromotionAction *, 16> Actions;
-  typedef SmallVectorImpl<TypePromotionAction *>::iterator CommitPt;
-};
-
-void TypePromotionTransaction::setOperand(Instruction *Inst, unsigned Idx,
-                                          Value *NewVal) {
-  Actions.push_back(
-      new TypePromotionTransaction::OperandSetter(Inst, Idx, NewVal));
-}
-
-void TypePromotionTransaction::eraseInstruction(Instruction *Inst,
-                                                Value *NewVal) {
-  Actions.push_back(
-      new TypePromotionTransaction::InstructionRemover(Inst, NewVal));
-}
-
-void TypePromotionTransaction::replaceAllUsesWith(Instruction *Inst,
-                                                  Value *New) {
-  Actions.push_back(new TypePromotionTransaction::UsesReplacer(Inst, New));
-}
-
-void TypePromotionTransaction::mutateType(Instruction *Inst, Type *NewTy) {
-  Actions.push_back(new TypePromotionTransaction::TypeMutator(Inst, NewTy));
-}
-
-Instruction *TypePromotionTransaction::createTrunc(Instruction *Opnd,
-                                                   Type *Ty) {
-  TruncBuilder *TB = new TruncBuilder(Opnd, Ty);
-  Actions.push_back(TB);
-  return TB->getBuiltInstruction();
-}
-
-Instruction *TypePromotionTransaction::createSExt(Instruction *Inst,
-                                                  Value *Opnd, Type *Ty) {
-  SExtBuilder *SB = new SExtBuilder(Inst, Opnd, Ty);
-  Actions.push_back(SB);
-  return SB->getBuiltInstruction();
-}
-
-void TypePromotionTransaction::moveBefore(Instruction *Inst,
-                                          Instruction *Before) {
-  Actions.push_back(
-      new TypePromotionTransaction::InstructionMoveBefore(Inst, Before));
-}
-
-TypePromotionTransaction::ConstRestorationPt
-TypePromotionTransaction::getRestorationPoint() const {
-  return Actions.rbegin() != Actions.rend() ? *Actions.rbegin() : NULL;
-}
-
-void TypePromotionTransaction::commit() {
-  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt;
-       ++It) {
-    (*It)->commit();
-    delete *It;
-  }
-  Actions.clear();
-}
-
-void TypePromotionTransaction::rollback(
-    TypePromotionTransaction::ConstRestorationPt Point) {
-  while (!Actions.empty() && Point != (*Actions.rbegin())) {
-    TypePromotionAction *Curr = Actions.pop_back_val();
-    Curr->undo();
-    delete Curr;
-  }
-}
-
-TypePromotionTransaction::~TypePromotionTransaction() {
-  for (CommitPt It = Actions.begin(), EndIt = Actions.end(); It != EndIt; ++It)
-    delete *It;
-  Actions.clear();
-}
-
-/// \brief A helper class for matching addressing modes.
-///
-/// This encapsulates the logic for matching the target-legal addressing modes.
-class AddressingModeMatcher {
-  SmallVectorImpl<Instruction*> &AddrModeInsts;
-  const TargetLowering &TLI;
-
-  /// AccessTy/MemoryInst - This is the type for the access (e.g. double) and
-  /// the memory instruction that we're computing this address for.
-  Type *AccessTy;
-  Instruction *MemoryInst;
-
-  /// AddrMode - This is the addressing mode that we're building up.  This is
-  /// part of the return value of this addressing mode matching stuff.
-  ExtAddrMode &AddrMode;
-
-  /// The truncate instruction inserted by other CodeGenPrepare optimizations.
-  const SetOfInstrs &InsertedTruncs;
-  /// A map from the instructions to their type before promotion.
-  InstrToOrigTy &PromotedInsts;
-  /// The ongoing transaction where every action should be registered.
-  TypePromotionTransaction &TPT;
-
-  /// IgnoreProfitability - This is set to true when we should not do
-  /// profitability checks.  When true, IsProfitableToFoldIntoAddressingMode
-  /// always returns true.
-  bool IgnoreProfitability;
-
-  AddressingModeMatcher(SmallVectorImpl<Instruction*> &AMI,
-                        const TargetLowering &T, Type *AT,
-                        Instruction *MI, ExtAddrMode &AM,
-                        const SetOfInstrs &InsertedTruncs,
-                        InstrToOrigTy &PromotedInsts,
-                        TypePromotionTransaction &TPT)
-      : AddrModeInsts(AMI), TLI(T), AccessTy(AT), MemoryInst(MI), AddrMode(AM),
-        InsertedTruncs(InsertedTruncs), PromotedInsts(PromotedInsts), TPT(TPT) {
-    IgnoreProfitability = false;
-  }
-public:
-
-  /// Match - Find the maximal addressing mode that a load/store of V can fold,
-  /// give an access type of AccessTy.  This returns a list of involved
-  /// instructions in AddrModeInsts.
-  /// \p InsertedTruncs The truncate instruction inserted by other
-  /// CodeGenPrepare
-  /// optimizations.
-  /// \p PromotedInsts maps the instructions to their type before promotion.
-  /// \p The ongoing transaction where every action should be registered.
-  static ExtAddrMode Match(Value *V, Type *AccessTy,
-                           Instruction *MemoryInst,
-                           SmallVectorImpl<Instruction*> &AddrModeInsts,
-                           const TargetLowering &TLI,
-                           const SetOfInstrs &InsertedTruncs,
-                           InstrToOrigTy &PromotedInsts,
-                           TypePromotionTransaction &TPT) {
-    ExtAddrMode Result;
-
-    bool Success = AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
-                                         MemoryInst, Result, InsertedTruncs,
-                                         PromotedInsts, TPT).MatchAddr(V, 0);
-    (void)Success; assert(Success && "Couldn't select *anything*?");
-    return Result;
-  }
-private:
-  bool MatchScaledValue(Value *ScaleReg, int64_t Scale, unsigned Depth);
-  bool MatchAddr(Value *V, unsigned Depth);
-  bool MatchOperationAddr(User *Operation, unsigned Opcode, unsigned Depth,
-                          bool *MovedAway = NULL);
-  bool IsProfitableToFoldIntoAddressingMode(Instruction *I,
-                                            ExtAddrMode &AMBefore,
-                                            ExtAddrMode &AMAfter);
-  bool ValueAlreadyLiveAtInst(Value *Val, Value *KnownLive1, Value *KnownLive2);
-  bool IsPromotionProfitable(unsigned MatchedSize, unsigned SizeWithPromotion,
-                             Value *PromotedOperand) const;
-};
-
-/// MatchScaledValue - Try adding ScaleReg*Scale to the current addressing mode.
-/// Return true and update AddrMode if this addr mode is legal for the target,
-/// false if not.
-bool AddressingModeMatcher::MatchScaledValue(Value *ScaleReg, int64_t Scale,
-                                             unsigned Depth) {
-  // If Scale is 1, then this is the same as adding ScaleReg to the addressing
-  // mode.  Just process that directly.
-  if (Scale == 1)
-    return MatchAddr(ScaleReg, Depth);
-
-  // If the scale is 0, it takes nothing to add this.
-  if (Scale == 0)
-    return true;
-
-  // If we already have a scale of this value, we can add to it, otherwise, we
-  // need an available scale field.
-  if (AddrMode.Scale != 0 && AddrMode.ScaledReg != ScaleReg)
-    return false;
-
-  ExtAddrMode TestAddrMode = AddrMode;
-
-  // Add scale to turn X*4+X*3 -> X*7.  This could also do things like
-  // [A+B + A*7] -> [B+A*8].
-  TestAddrMode.Scale += Scale;
-  TestAddrMode.ScaledReg = ScaleReg;
-
-  // If the new address isn't legal, bail out.
-  if (!TLI.isLegalAddressingMode(TestAddrMode, AccessTy))
-    return false;
-
-  // It was legal, so commit it.
-  AddrMode = TestAddrMode;
-
-  // Okay, we decided that we can add ScaleReg+Scale to AddrMode.  Check now
-  // to see if ScaleReg is actually X+C.  If so, we can turn this into adding
-  // X*Scale + C*Scale to addr mode.
-  ConstantInt *CI = 0; Value *AddLHS = 0;
-  if (isa<Instruction>(ScaleReg) &&  // not a constant expr.
-      match(ScaleReg, m_Add(m_Value(AddLHS), m_ConstantInt(CI)))) {
-    TestAddrMode.ScaledReg = AddLHS;
-    TestAddrMode.BaseOffs += CI->getSExtValue()*TestAddrMode.Scale;
-
-    // If this addressing mode is legal, commit it and remember that we folded
-    // this instruction.
-    if (TLI.isLegalAddressingMode(TestAddrMode, AccessTy)) {
-      AddrModeInsts.push_back(cast<Instruction>(ScaleReg));
-      AddrMode = TestAddrMode;
-      return true;
-    }
-  }
-
-  // Otherwise, not (x+c)*scale, just return what we have.
-  return true;
-}
-
-/// MightBeFoldableInst - This is a little filter, which returns true if an
-/// addressing computation involving I might be folded into a load/store
-/// accessing it.  This doesn't need to be perfect, but needs to accept at least
-/// the set of instructions that MatchOperationAddr can.
-static bool MightBeFoldableInst(Instruction *I) {
-  switch (I->getOpcode()) {
-  case Instruction::BitCast:
-    // Don't touch identity bitcasts.
-    if (I->getType() == I->getOperand(0)->getType())
-      return false;
-    return I->getType()->isPointerTy() || I->getType()->isIntegerTy();
-  case Instruction::PtrToInt:
-    // PtrToInt is always a noop, as we know that the int type is pointer sized.
-    return true;
-  case Instruction::IntToPtr:
-    // We know the input is intptr_t, so this is foldable.
-    return true;
-  case Instruction::Add:
-    return true;
-  case Instruction::Mul:
-  case Instruction::Shl:
-    // Can only handle X*C and X << C.
-    return isa<ConstantInt>(I->getOperand(1));
-  case Instruction::GetElementPtr:
-    return true;
-  default:
-    return false;
-  }
-}
-
-/// \brief Hepler class to perform type promotion.
-class TypePromotionHelper {
-  /// \brief Utility function to check whether or not a sign extension of
-  /// \p Inst with \p ConsideredSExtType can be moved through \p Inst by either
-  /// using the operands of \p Inst or promoting \p Inst.
-  /// In other words, check if:
-  /// sext (Ty Inst opnd1 opnd2 ... opndN) to ConsideredSExtType.
-  /// #1 Promotion applies:
-  /// ConsideredSExtType Inst (sext opnd1 to ConsideredSExtType, ...).
-  /// #2 Operand reuses:
-  /// sext opnd1 to ConsideredSExtType.
-  /// \p PromotedInsts maps the instructions to their type before promotion.
-  static bool canGetThrough(const Instruction *Inst, Type *ConsideredSExtType,
-                            const InstrToOrigTy &PromotedInsts);
-
-  /// \brief Utility function to determine if \p OpIdx should be promoted when
-  /// promoting \p Inst.
-  static bool shouldSExtOperand(const Instruction *Inst, int OpIdx) {
-    if (isa<SelectInst>(Inst) && OpIdx == 0)
-      return false;
-    return true;
-  }
-
-  /// \brief Utility function to promote the operand of \p SExt when this
-  /// operand is a promotable trunc or sext.
-  /// \p PromotedInsts maps the instructions to their type before promotion.
-  /// \p CreatedInsts[out] contains how many non-free instructions have been
-  /// created to promote the operand of SExt.
-  /// Should never be called directly.
-  /// \return The promoted value which is used instead of SExt.
-  static Value *promoteOperandForTruncAndSExt(Instruction *SExt,
-                                              TypePromotionTransaction &TPT,
-                                              InstrToOrigTy &PromotedInsts,
-                                              unsigned &CreatedInsts);
-
-  /// \brief Utility function to promote the operand of \p SExt when this
-  /// operand is promotable and is not a supported trunc or sext.
-  /// \p PromotedInsts maps the instructions to their type before promotion.
-  /// \p CreatedInsts[out] contains how many non-free instructions have been
-  /// created to promote the operand of SExt.
-  /// Should never be called directly.
-  /// \return The promoted value which is used instead of SExt.
-  static Value *promoteOperandForOther(Instruction *SExt,
-                                       TypePromotionTransaction &TPT,
-                                       InstrToOrigTy &PromotedInsts,
-                                       unsigned &CreatedInsts);
-
-public:
-  /// Type for the utility function that promotes the operand of SExt.
-  typedef Value *(*Action)(Instruction *SExt, TypePromotionTransaction &TPT,
-                           InstrToOrigTy &PromotedInsts,
-                           unsigned &CreatedInsts);
-  /// \brief Given a sign extend instruction \p SExt, return the approriate
-  /// action to promote the operand of \p SExt instead of using SExt.
-  /// \return NULL if no promotable action is possible with the current
-  /// sign extension.
-  /// \p InsertedTruncs keeps track of all the truncate instructions inserted by
-  /// the others CodeGenPrepare optimizations. This information is important
-  /// because we do not want to promote these instructions as CodeGenPrepare
-  /// will reinsert them later. Thus creating an infinite loop: create/remove.
-  /// \p PromotedInsts maps the instructions to their type before promotion.
-  static Action getAction(Instruction *SExt, const SetOfInstrs &InsertedTruncs,
-                          const TargetLowering &TLI,
-                          const InstrToOrigTy &PromotedInsts);
-};
-
-bool TypePromotionHelper::canGetThrough(const Instruction *Inst,
-                                        Type *ConsideredSExtType,
-                                        const InstrToOrigTy &PromotedInsts) {
-  // We can always get through sext.
-  if (isa<SExtInst>(Inst))
-    return true;
-
-  // We can get through binary operator, if it is legal. In other words, the
-  // binary operator must have a nuw or nsw flag.
-  const BinaryOperator *BinOp = dyn_cast<BinaryOperator>(Inst);
-  if (BinOp && isa<OverflowingBinaryOperator>(BinOp) &&
-      (BinOp->hasNoUnsignedWrap() || BinOp->hasNoSignedWrap()))
-    return true;
-
-  // Check if we can do the following simplification.
-  // sext(trunc(sext)) --> sext
-  if (!isa<TruncInst>(Inst))
-    return false;
-
-  Value *OpndVal = Inst->getOperand(0);
-  // Check if we can use this operand in the sext.
-  // If the type is larger than the result type of the sign extension,
-  // we cannot.
-  if (OpndVal->getType()->getIntegerBitWidth() >
-      ConsideredSExtType->getIntegerBitWidth())
-    return false;
-
-  // If the operand of the truncate is not an instruction, we will not have
-  // any information on the dropped bits.
-  // (Actually we could for constant but it is not worth the extra logic).
-  Instruction *Opnd = dyn_cast<Instruction>(OpndVal);
-  if (!Opnd)
-    return false;
-
-  // Check if the source of the type is narrow enough.
-  // I.e., check that trunc just drops sign extended bits.
-  // #1 get the type of the operand.
-  const Type *OpndType;
-  InstrToOrigTy::const_iterator It = PromotedInsts.find(Opnd);
-  if (It != PromotedInsts.end())
-    OpndType = It->second;
-  else if (isa<SExtInst>(Opnd))
-    OpndType = cast<Instruction>(Opnd)->getOperand(0)->getType();
-  else
-    return false;
-
-  // #2 check that the truncate just drop sign extended bits.
-  if (Inst->getType()->getIntegerBitWidth() >= OpndType->getIntegerBitWidth())
-    return true;
-
-  return false;
-}
-
-TypePromotionHelper::Action TypePromotionHelper::getAction(
-    Instruction *SExt, const SetOfInstrs &InsertedTruncs,
-    const TargetLowering &TLI, const InstrToOrigTy &PromotedInsts) {
-  Instruction *SExtOpnd = dyn_cast<Instruction>(SExt->getOperand(0));
-  Type *SExtTy = SExt->getType();
-  // If the operand of the sign extension is not an instruction, we cannot
-  // get through.
-  // If it, check we can get through.
-  if (!SExtOpnd || !canGetThrough(SExtOpnd, SExtTy, PromotedInsts))
-    return NULL;
-
-  // Do not promote if the operand has been added by codegenprepare.
-  // Otherwise, it means we are undoing an optimization that is likely to be
-  // redone, thus causing potential infinite loop.
-  if (isa<TruncInst>(SExtOpnd) && InsertedTruncs.count(SExtOpnd))
-    return NULL;
-
-  // SExt or Trunc instructions.
-  // Return the related handler.
-  if (isa<SExtInst>(SExtOpnd) || isa<TruncInst>(SExtOpnd))
-    return promoteOperandForTruncAndSExt;
-
-  // Regular instruction.
-  // Abort early if we will have to insert non-free instructions.
-  if (!SExtOpnd->hasOneUse() &&
-      !TLI.isTruncateFree(SExtTy, SExtOpnd->getType()))
-    return NULL;
-  return promoteOperandForOther;
-}
-
-Value *TypePromotionHelper::promoteOperandForTruncAndSExt(
-    llvm::Instruction *SExt, TypePromotionTransaction &TPT,
-    InstrToOrigTy &PromotedInsts, unsigned &CreatedInsts) {
-  // By construction, the operand of SExt is an instruction. Otherwise we cannot
-  // get through it and this method should not be called.
-  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
-  // Replace sext(trunc(opnd)) or sext(sext(opnd))
-  // => sext(opnd).
-  TPT.setOperand(SExt, 0, SExtOpnd->getOperand(0));
-  CreatedInsts = 0;
-
-  // Remove dead code.
-  if (SExtOpnd->use_empty())
-    TPT.eraseInstruction(SExtOpnd);
-
-  // Check if the sext is still needed.
-  if (SExt->getType() != SExt->getOperand(0)->getType())
-    return SExt;
-
-  // At this point we have: sext ty opnd to ty.
-  // Reassign the uses of SExt to the opnd and remove SExt.
-  Value *NextVal = SExt->getOperand(0);
-  TPT.eraseInstruction(SExt, NextVal);
-  return NextVal;
-}
-
-Value *
-TypePromotionHelper::promoteOperandForOther(Instruction *SExt,
-                                            TypePromotionTransaction &TPT,
-                                            InstrToOrigTy &PromotedInsts,
-                                            unsigned &CreatedInsts) {
-  // By construction, the operand of SExt is an instruction. Otherwise we cannot
-  // get through it and this method should not be called.
-  Instruction *SExtOpnd = cast<Instruction>(SExt->getOperand(0));
-  CreatedInsts = 0;
-  if (!SExtOpnd->hasOneUse()) {
-    // SExtOpnd will be promoted.
-    // All its uses, but SExt, will need to use a truncated value of the
-    // promoted version.
-    // Create the truncate now.
-    Instruction *Trunc = TPT.createTrunc(SExt, SExtOpnd->getType());
-    Trunc->removeFromParent();
-    // Insert it just after the definition.
-    Trunc->insertAfter(SExtOpnd);
-
-    TPT.replaceAllUsesWith(SExtOpnd, Trunc);
-    // Restore the operand of SExt (which has been replace by the previous call
-    // to replaceAllUsesWith) to avoid creating a cycle trunc <-> sext.
-    TPT.setOperand(SExt, 0, SExtOpnd);
-  }
-
-  // Get through the Instruction:
-  // 1. Update its type.
-  // 2. Replace the uses of SExt by Inst.
-  // 3. Sign extend each operand that needs to be sign extended.
-
-  // Remember the original type of the instruction before promotion.
-  // This is useful to know that the high bits are sign extended bits.
-  PromotedInsts.insert(
-      std::pair<Instruction *, Type *>(SExtOpnd, SExtOpnd->getType()));
-  // Step #1.
-  TPT.mutateType(SExtOpnd, SExt->getType());
-  // Step #2.
-  TPT.replaceAllUsesWith(SExt, SExtOpnd);
-  // Step #3.
-  Instruction *SExtForOpnd = SExt;
-
-  DEBUG(dbgs() << "Propagate SExt to operands\n");
-  for (int OpIdx = 0, EndOpIdx = SExtOpnd->getNumOperands(); OpIdx != EndOpIdx;
-       ++OpIdx) {
-    DEBUG(dbgs() << "Operand:\n" << *(SExtOpnd->getOperand(OpIdx)) << '\n');
-    if (SExtOpnd->getOperand(OpIdx)->getType() == SExt->getType() ||
-        !shouldSExtOperand(SExtOpnd, OpIdx)) {
-      DEBUG(dbgs() << "No need to propagate\n");
-      continue;
-    }
-    // Check if we can statically sign extend the operand.
-    Value *Opnd = SExtOpnd->getOperand(OpIdx);
-    if (const ConstantInt *Cst = dyn_cast<ConstantInt>(Opnd)) {
-      DEBUG(dbgs() << "Statically sign extend\n");
-      TPT.setOperand(
-          SExtOpnd, OpIdx,
-          ConstantInt::getSigned(SExt->getType(), Cst->getSExtValue()));
-      continue;
-    }
-    // UndefValue are typed, so we have to statically sign extend them.
-    if (isa<UndefValue>(Opnd)) {
-      DEBUG(dbgs() << "Statically sign extend\n");
-      TPT.setOperand(SExtOpnd, OpIdx, UndefValue::get(SExt->getType()));
-      continue;
-    }
-
-    // Otherwise we have to explicity sign extend the operand.
-    // Check if SExt was reused to sign extend an operand.
-    if (!SExtForOpnd) {
-      // If yes, create a new one.
-      DEBUG(dbgs() << "More operands to sext\n");
-      SExtForOpnd = TPT.createSExt(SExt, Opnd, SExt->getType());
-      ++CreatedInsts;
-    }
-
-    TPT.setOperand(SExtForOpnd, 0, Opnd);
-
-    // Move the sign extension before the insertion point.
-    TPT.moveBefore(SExtForOpnd, SExtOpnd);
-    TPT.setOperand(SExtOpnd, OpIdx, SExtForOpnd);
-    // If more sext are required, new instructions will have to be created.
-    SExtForOpnd = NULL;
-  }
-  if (SExtForOpnd == SExt) {
-    DEBUG(dbgs() << "Sign extension is useless now\n");
-    TPT.eraseInstruction(SExt);
-  }
-  return SExtOpnd;
-}
-
-/// IsPromotionProfitable - Check whether or not promoting an instruction
-/// to a wider type was profitable.
-/// \p MatchedSize gives the number of instructions that have been matched
-/// in the addressing mode after the promotion was applied.
-/// \p SizeWithPromotion gives the number of created instructions for
-/// the promotion plus the number of instructions that have been
-/// matched in the addressing mode before the promotion.
-/// \p PromotedOperand is the value that has been promoted.
-/// \return True if the promotion is profitable, false otherwise.
-bool
-AddressingModeMatcher::IsPromotionProfitable(unsigned MatchedSize,
-                                             unsigned SizeWithPromotion,
-                                             Value *PromotedOperand) const {
-  // We folded less instructions than what we created to promote the operand.
-  // This is not profitable.
-  if (MatchedSize < SizeWithPromotion)
-    return false;
-  if (MatchedSize > SizeWithPromotion)
-    return true;
-  // The promotion is neutral but it may help folding the sign extension in
-  // loads for instance.
-  // Check that we did not create an illegal instruction.
-  Instruction *PromotedInst = dyn_cast<Instruction>(PromotedOperand);
-  if (!PromotedInst)
-    return false;
-  return TLI.isOperationLegalOrCustom(PromotedInst->getOpcode(),
-                                      EVT::getEVT(PromotedInst->getType()));
-}
-
-/// MatchOperationAddr - Given an instruction or constant expr, see if we can
-/// fold the operation into the addressing mode.  If so, update the addressing
-/// mode and return true, otherwise return false without modifying AddrMode.
-/// If \p MovedAway is not NULL, it contains the information of whether or
-/// not AddrInst has to be folded into the addressing mode on success.
-/// If \p MovedAway == true, \p AddrInst will not be part of the addressing
-/// because it has been moved away.
-/// Thus AddrInst must not be added in the matched instructions.
-/// This state can happen when AddrInst is a sext, since it may be moved away.
-/// Therefore, AddrInst may not be valid when MovedAway is true and it must
-/// not be referenced anymore.
-bool AddressingModeMatcher::MatchOperationAddr(User *AddrInst, unsigned Opcode,
-                                               unsigned Depth,
-                                               bool *MovedAway) {
-  // Avoid exponential behavior on extremely deep expression trees.
-  if (Depth >= 5) return false;
-
-  // By default, all matched instructions stay in place.
-  if (MovedAway)
-    *MovedAway = false;
-
-  switch (Opcode) {
-  case Instruction::PtrToInt:
-    // PtrToInt is always a noop, as we know that the int type is pointer sized.
-    return MatchAddr(AddrInst->getOperand(0), Depth);
-  case Instruction::IntToPtr:
-    // This inttoptr is a no-op if the integer type is pointer sized.
-    if (TLI.getValueType(AddrInst->getOperand(0)->getType()) ==
-        TLI.getPointerTy(AddrInst->getType()->getPointerAddressSpace()))
-      return MatchAddr(AddrInst->getOperand(0), Depth);
-    return false;
-  case Instruction::BitCast:
-    // BitCast is always a noop, and we can handle it as long as it is
-    // int->int or pointer->pointer (we don't want int<->fp or something).
-    if ((AddrInst->getOperand(0)->getType()->isPointerTy() ||
-         AddrInst->getOperand(0)->getType()->isIntegerTy()) &&
-        // Don't touch identity bitcasts.  These were probably put here by LSR,
-        // and we don't want to mess around with them.  Assume it knows what it
-        // is doing.
-        AddrInst->getOperand(0)->getType() != AddrInst->getType())
-      return MatchAddr(AddrInst->getOperand(0), Depth);
-    return false;
-  case Instruction::Add: {
-    // Check to see if we can merge in the RHS then the LHS.  If so, we win.
-    ExtAddrMode BackupAddrMode = AddrMode;
-    unsigned OldSize = AddrModeInsts.size();
-    // Start a transaction at this point.
-    // The LHS may match but not the RHS.
-    // Therefore, we need a higher level restoration point to undo partially
-    // matched operation.
-    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
-        TPT.getRestorationPoint();
-
-    if (MatchAddr(AddrInst->getOperand(1), Depth+1) &&
-        MatchAddr(AddrInst->getOperand(0), Depth+1))
-      return true;
-
-    // Restore the old addr mode info.
-    AddrMode = BackupAddrMode;
-    AddrModeInsts.resize(OldSize);
-    TPT.rollback(LastKnownGood);
-
-    // Otherwise this was over-aggressive.  Try merging in the LHS then the RHS.
-    if (MatchAddr(AddrInst->getOperand(0), Depth+1) &&
-        MatchAddr(AddrInst->getOperand(1), Depth+1))
-      return true;
-
-    // Otherwise we definitely can't merge the ADD in.
-    AddrMode = BackupAddrMode;
-    AddrModeInsts.resize(OldSize);
-    TPT.rollback(LastKnownGood);
-    break;
-  }
-  //case Instruction::Or:
-  // TODO: We can handle "Or Val, Imm" iff this OR is equivalent to an ADD.
-  //break;
-  case Instruction::Mul:
-  case Instruction::Shl: {
-    // Can only handle X*C and X << C.
-    ConstantInt *RHS = dyn_cast<ConstantInt>(AddrInst->getOperand(1));
-    if (!RHS) return false;
-    int64_t Scale = RHS->getSExtValue();
-    if (Opcode == Instruction::Shl)
-      Scale = 1LL << Scale;
-
-    return MatchScaledValue(AddrInst->getOperand(0), Scale, Depth);
-  }
-  case Instruction::GetElementPtr: {
-    // Scan the GEP.  We check it if it contains constant offsets and at most
-    // one variable offset.
-    int VariableOperand = -1;
-    unsigned VariableScale = 0;
-
-    int64_t ConstantOffset = 0;
-    const DataLayout *TD = TLI.getDataLayout();
-    gep_type_iterator GTI = gep_type_begin(AddrInst);
-    for (unsigned i = 1, e = AddrInst->getNumOperands(); i != e; ++i, ++GTI) {
-      if (StructType *STy = dyn_cast<StructType>(*GTI)) {
-        const StructLayout *SL = TD->getStructLayout(STy);
-        unsigned Idx =
-          cast<ConstantInt>(AddrInst->getOperand(i))->getZExtValue();
-        ConstantOffset += SL->getElementOffset(Idx);
-      } else {
-        uint64_t TypeSize = TD->getTypeAllocSize(GTI.getIndexedType());
-        if (ConstantInt *CI = dyn_cast<ConstantInt>(AddrInst->getOperand(i))) {
-          ConstantOffset += CI->getSExtValue()*TypeSize;
-        } else if (TypeSize) {  // Scales of zero don't do anything.
-          // We only allow one variable index at the moment.
-          if (VariableOperand != -1)
-            return false;
-
-          // Remember the variable index.
-          VariableOperand = i;
-          VariableScale = TypeSize;
-        }
-      }
-    }
-
-    // A common case is for the GEP to only do a constant offset.  In this case,
-    // just add it to the disp field and check validity.
-    if (VariableOperand == -1) {
-      AddrMode.BaseOffs += ConstantOffset;
-      if (ConstantOffset == 0 || TLI.isLegalAddressingMode(AddrMode, AccessTy)){
-        // Check to see if we can fold the base pointer in too.
-        if (MatchAddr(AddrInst->getOperand(0), Depth+1))
-          return true;
-      }
-      AddrMode.BaseOffs -= ConstantOffset;
-      return false;
-    }
-
-    // Save the valid addressing mode in case we can't match.
-    ExtAddrMode BackupAddrMode = AddrMode;
-    unsigned OldSize = AddrModeInsts.size();
-
-    // See if the scale and offset amount is valid for this target.
-    AddrMode.BaseOffs += ConstantOffset;
-
-    // Match the base operand of the GEP.
-    if (!MatchAddr(AddrInst->getOperand(0), Depth+1)) {
-      // If it couldn't be matched, just stuff the value in a register.
-      if (AddrMode.HasBaseReg) {
-        AddrMode = BackupAddrMode;
-        AddrModeInsts.resize(OldSize);
-        return false;
-      }
-      AddrMode.HasBaseReg = true;
-      AddrMode.BaseReg = AddrInst->getOperand(0);
-    }
-
-    // Match the remaining variable portion of the GEP.
-    if (!MatchScaledValue(AddrInst->getOperand(VariableOperand), VariableScale,
-                          Depth)) {
-      // If it couldn't be matched, try stuffing the base into a register
-      // instead of matching it, and retrying the match of the scale.
-      AddrMode = BackupAddrMode;
-      AddrModeInsts.resize(OldSize);
-      if (AddrMode.HasBaseReg)
-        return false;
-      AddrMode.HasBaseReg = true;
-      AddrMode.BaseReg = AddrInst->getOperand(0);
-      AddrMode.BaseOffs += ConstantOffset;
-      if (!MatchScaledValue(AddrInst->getOperand(VariableOperand),
-                            VariableScale, Depth)) {
-        // If even that didn't work, bail.
-        AddrMode = BackupAddrMode;
-        AddrModeInsts.resize(OldSize);
-        return false;
-      }
-    }
-
-    return true;
-  }
-  case Instruction::SExt: {
-    // Try to move this sext out of the way of the addressing mode.
-    Instruction *SExt = cast<Instruction>(AddrInst);
-    // Ask for a method for doing so.
-    TypePromotionHelper::Action TPH = TypePromotionHelper::getAction(
-        SExt, InsertedTruncs, TLI, PromotedInsts);
-    if (!TPH)
-      return false;
-
-    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
-        TPT.getRestorationPoint();
-    unsigned CreatedInsts = 0;
-    Value *PromotedOperand = TPH(SExt, TPT, PromotedInsts, CreatedInsts);
-    // SExt has been moved away.
-    // Thus either it will be rematched later in the recursive calls or it is
-    // gone. Anyway, we must not fold it into the addressing mode at this point.
-    // E.g.,
-    // op = add opnd, 1
-    // idx = sext op
-    // addr = gep base, idx
-    // is now:
-    // promotedOpnd = sext opnd           <- no match here
-    // op = promoted_add promotedOpnd, 1  <- match (later in recursive calls)
-    // addr = gep base, op                <- match
-    if (MovedAway)
-      *MovedAway = true;
-
-    assert(PromotedOperand &&
-           "TypePromotionHelper should have filtered out those cases");
-
-    ExtAddrMode BackupAddrMode = AddrMode;
-    unsigned OldSize = AddrModeInsts.size();
-
-    if (!MatchAddr(PromotedOperand, Depth) ||
-        !IsPromotionProfitable(AddrModeInsts.size(), OldSize + CreatedInsts,
-                               PromotedOperand)) {
-      AddrMode = BackupAddrMode;
-      AddrModeInsts.resize(OldSize);
-      DEBUG(dbgs() << "Sign extension does not pay off: rollback\n");
-      TPT.rollback(LastKnownGood);
-      return false;
-    }
-    return true;
-  }
-  }
-  return false;
-}
-
-/// MatchAddr - If we can, try to add the value of 'Addr' into the current
-/// addressing mode.  If Addr can't be added to AddrMode this returns false and
-/// leaves AddrMode unmodified.  This assumes that Addr is either a pointer type
-/// or intptr_t for the target.
-///
-bool AddressingModeMatcher::MatchAddr(Value *Addr, unsigned Depth) {
-  // Start a transaction at this point that we will rollback if the matching
-  // fails.
-  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
-      TPT.getRestorationPoint();
-  if (ConstantInt *CI = dyn_cast<ConstantInt>(Addr)) {
-    // Fold in immediates if legal for the target.
-    AddrMode.BaseOffs += CI->getSExtValue();
-    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
-      return true;
-    AddrMode.BaseOffs -= CI->getSExtValue();
-  } else if (GlobalValue *GV = dyn_cast<GlobalValue>(Addr)) {
-    // If this is a global variable, try to fold it into the addressing mode.
-    if (AddrMode.BaseGV == 0) {
-      AddrMode.BaseGV = GV;
-      if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
-        return true;
-      AddrMode.BaseGV = 0;
-    }
-  } else if (Instruction *I = dyn_cast<Instruction>(Addr)) {
-    ExtAddrMode BackupAddrMode = AddrMode;
-    unsigned OldSize = AddrModeInsts.size();
-
-    // Check to see if it is possible to fold this operation.
-    bool MovedAway = false;
-    if (MatchOperationAddr(I, I->getOpcode(), Depth, &MovedAway)) {
-      // This instruction may have been move away. If so, there is nothing
-      // to check here.
-      if (MovedAway)
-        return true;
-      // Okay, it's possible to fold this.  Check to see if it is actually
-      // *profitable* to do so.  We use a simple cost model to avoid increasing
-      // register pressure too much.
-      if (I->hasOneUse() ||
-          IsProfitableToFoldIntoAddressingMode(I, BackupAddrMode, AddrMode)) {
-        AddrModeInsts.push_back(I);
-        return true;
-      }
-
-      // It isn't profitable to do this, roll back.
-      //cerr << "NOT FOLDING: " << *I;
-      AddrMode = BackupAddrMode;
-      AddrModeInsts.resize(OldSize);
-      TPT.rollback(LastKnownGood);
-    }
-  } else if (ConstantExpr *CE = dyn_cast<ConstantExpr>(Addr)) {
-    if (MatchOperationAddr(CE, CE->getOpcode(), Depth))
-      return true;
-    TPT.rollback(LastKnownGood);
-  } else if (isa<ConstantPointerNull>(Addr)) {
-    // Null pointer gets folded without affecting the addressing mode.
-    return true;
-  }
-
-  // Worse case, the target should support [reg] addressing modes. :)
-  if (!AddrMode.HasBaseReg) {
-    AddrMode.HasBaseReg = true;
-    AddrMode.BaseReg = Addr;
-    // Still check for legality in case the target supports [imm] but not [i+r].
-    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
-      return true;
-    AddrMode.HasBaseReg = false;
-    AddrMode.BaseReg = 0;
-  }
-
-  // If the base register is already taken, see if we can do [r+r].
-  if (AddrMode.Scale == 0) {
-    AddrMode.Scale = 1;
-    AddrMode.ScaledReg = Addr;
-    if (TLI.isLegalAddressingMode(AddrMode, AccessTy))
-      return true;
-    AddrMode.Scale = 0;
-    AddrMode.ScaledReg = 0;
-  }
-  // Couldn't match.
-  TPT.rollback(LastKnownGood);
-  return false;
-}
-
-/// IsOperandAMemoryOperand - Check to see if all uses of OpVal by the specified
-/// inline asm call are due to memory operands.  If so, return true, otherwise
-/// return false.
-static bool IsOperandAMemoryOperand(CallInst *CI, InlineAsm *IA, Value *OpVal,
-                                    const TargetLowering &TLI) {
-  TargetLowering::AsmOperandInfoVector TargetConstraints = TLI.ParseConstraints(ImmutableCallSite(CI));
-  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
-    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
-
-    // Compute the constraint code and ConstraintType to use.
-    TLI.ComputeConstraintToUse(OpInfo, SDValue());
-
-    // If this asm operand is our Value*, and if it isn't an indirect memory
-    // operand, we can't fold it!
-    if (OpInfo.CallOperandVal == OpVal &&
-        (OpInfo.ConstraintType != TargetLowering::C_Memory ||
-         !OpInfo.isIndirect))
-      return false;
-  }
-
-  return true;
-}
-
-/// FindAllMemoryUses - Recursively walk all the uses of I until we find a
-/// memory use.  If we find an obviously non-foldable instruction, return true.
-/// Add the ultimately found memory instructions to MemoryUses.
-static bool FindAllMemoryUses(Instruction *I,
-                SmallVectorImpl<std::pair<Instruction*,unsigned> > &MemoryUses,
-                              SmallPtrSet<Instruction*, 16> &ConsideredInsts,
-                              const TargetLowering &TLI) {
-  // If we already considered this instruction, we're done.
-  if (!ConsideredInsts.insert(I))
-    return false;
-
-  // If this is an obviously unfoldable instruction, bail out.
-  if (!MightBeFoldableInst(I))
-    return true;
-
-  // Loop over all the uses, recursively processing them.
-  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
-       UI != E; ++UI) {
-    User *U = *UI;
-
-    if (LoadInst *LI = dyn_cast<LoadInst>(U)) {
-      MemoryUses.push_back(std::make_pair(LI, UI.getOperandNo()));
-      continue;
-    }
-
-    if (StoreInst *SI = dyn_cast<StoreInst>(U)) {
-      unsigned opNo = UI.getOperandNo();
-      if (opNo == 0) return true; // Storing addr, not into addr.
-      MemoryUses.push_back(std::make_pair(SI, opNo));
-      continue;
-    }
-
-    if (CallInst *CI = dyn_cast<CallInst>(U)) {
-      InlineAsm *IA = dyn_cast<InlineAsm>(CI->getCalledValue());
-      if (!IA) return true;
-
-      // If this is a memory operand, we're cool, otherwise bail out.
-      if (!IsOperandAMemoryOperand(CI, IA, I, TLI))
-        return true;
-      continue;
-    }
-
-    if (FindAllMemoryUses(cast<Instruction>(U), MemoryUses, ConsideredInsts,
-                          TLI))
-      return true;
-  }
-
-  return false;
-}
-
-/// ValueAlreadyLiveAtInst - Retrn true if Val is already known to be live at
-/// the use site that we're folding it into.  If so, there is no cost to
-/// include it in the addressing mode.  KnownLive1 and KnownLive2 are two values
-/// that we know are live at the instruction already.
-bool AddressingModeMatcher::ValueAlreadyLiveAtInst(Value *Val,Value *KnownLive1,
-                                                   Value *KnownLive2) {
-  // If Val is either of the known-live values, we know it is live!
-  if (Val == 0 || Val == KnownLive1 || Val == KnownLive2)
-    return true;
-
-  // All values other than instructions and arguments (e.g. constants) are live.
-  if (!isa<Instruction>(Val) && !isa<Argument>(Val)) return true;
-
-  // If Val is a constant sized alloca in the entry block, it is live, this is
-  // true because it is just a reference to the stack/frame pointer, which is
-  // live for the whole function.
-  if (AllocaInst *AI = dyn_cast<AllocaInst>(Val))
-    if (AI->isStaticAlloca())
-      return true;
-
-  // Check to see if this value is already used in the memory instruction's
-  // block.  If so, it's already live into the block at the very least, so we
-  // can reasonably fold it.
-  return Val->isUsedInBasicBlock(MemoryInst->getParent());
-}
-
-/// IsProfitableToFoldIntoAddressingMode - It is possible for the addressing
-/// mode of the machine to fold the specified instruction into a load or store
-/// that ultimately uses it.  However, the specified instruction has multiple
-/// uses.  Given this, it may actually increase register pressure to fold it
-/// into the load.  For example, consider this code:
-///
-///     X = ...
-///     Y = X+1
-///     use(Y)   -> nonload/store
-///     Z = Y+1
-///     load Z
-///
-/// In this case, Y has multiple uses, and can be folded into the load of Z
-/// (yielding load [X+2]).  However, doing this will cause both "X" and "X+1" to
-/// be live at the use(Y) line.  If we don't fold Y into load Z, we use one
-/// fewer register.  Since Y can't be folded into "use(Y)" we don't increase the
-/// number of computations either.
-///
-/// Note that this (like most of CodeGenPrepare) is just a rough heuristic.  If
-/// X was live across 'load Z' for other reasons, we actually *would* want to
-/// fold the addressing mode in the Z case.  This would make Y die earlier.
-bool AddressingModeMatcher::
-IsProfitableToFoldIntoAddressingMode(Instruction *I, ExtAddrMode &AMBefore,
-                                     ExtAddrMode &AMAfter) {
-  if (IgnoreProfitability) return true;
-
-  // AMBefore is the addressing mode before this instruction was folded into it,
-  // and AMAfter is the addressing mode after the instruction was folded.  Get
-  // the set of registers referenced by AMAfter and subtract out those
-  // referenced by AMBefore: this is the set of values which folding in this
-  // address extends the lifetime of.
-  //
-  // Note that there are only two potential values being referenced here,
-  // BaseReg and ScaleReg (global addresses are always available, as are any
-  // folded immediates).
-  Value *BaseReg = AMAfter.BaseReg, *ScaledReg = AMAfter.ScaledReg;
-
-  // If the BaseReg or ScaledReg was referenced by the previous addrmode, their
-  // lifetime wasn't extended by adding this instruction.
-  if (ValueAlreadyLiveAtInst(BaseReg, AMBefore.BaseReg, AMBefore.ScaledReg))
-    BaseReg = 0;
-  if (ValueAlreadyLiveAtInst(ScaledReg, AMBefore.BaseReg, AMBefore.ScaledReg))
-    ScaledReg = 0;
-
-  // If folding this instruction (and it's subexprs) didn't extend any live
-  // ranges, we're ok with it.
-  if (BaseReg == 0 && ScaledReg == 0)
-    return true;
-
-  // If all uses of this instruction are ultimately load/store/inlineasm's,
-  // check to see if their addressing modes will include this instruction.  If
-  // so, we can fold it into all uses, so it doesn't matter if it has multiple
-  // uses.
-  SmallVector<std::pair<Instruction*,unsigned>, 16> MemoryUses;
-  SmallPtrSet<Instruction*, 16> ConsideredInsts;
-  if (FindAllMemoryUses(I, MemoryUses, ConsideredInsts, TLI))
-    return false;  // Has a non-memory, non-foldable use!
-
-  // Now that we know that all uses of this instruction are part of a chain of
-  // computation involving only operations that could theoretically be folded
-  // into a memory use, loop over each of these uses and see if they could
-  // *actually* fold the instruction.
-  SmallVector<Instruction*, 32> MatchedAddrModeInsts;
-  for (unsigned i = 0, e = MemoryUses.size(); i != e; ++i) {
-    Instruction *User = MemoryUses[i].first;
-    unsigned OpNo = MemoryUses[i].second;
-
-    // Get the access type of this use.  If the use isn't a pointer, we don't
-    // know what it accesses.
-    Value *Address = User->getOperand(OpNo);
-    if (!Address->getType()->isPointerTy())
-      return false;
-    Type *AddressAccessTy = Address->getType()->getPointerElementType();
-
-    // Do a match against the root of this address, ignoring profitability. This
-    // will tell us if the addressing mode for the memory operation will
-    // *actually* cover the shared instruction.
-    ExtAddrMode Result;
-    TypePromotionTransaction::ConstRestorationPt LastKnownGood =
-        TPT.getRestorationPoint();
-    AddressingModeMatcher Matcher(MatchedAddrModeInsts, TLI, AddressAccessTy,
-                                  MemoryInst, Result, InsertedTruncs,
-                                  PromotedInsts, TPT);
-    Matcher.IgnoreProfitability = true;
-    bool Success = Matcher.MatchAddr(Address, 0);
-    (void)Success; assert(Success && "Couldn't select *anything*?");
-
-    // The match was to check the profitability, the changes made are not
-    // part of the original matcher. Therefore, they should be dropped
-    // otherwise the original matcher will not present the right state.
-    TPT.rollback(LastKnownGood);
-
-    // If the match didn't cover I, then it won't be shared by it.
-    if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
-                  I) == MatchedAddrModeInsts.end())
-      return false;
-
-    MatchedAddrModeInsts.clear();
-  }
-
-  return true;
-}
-
-} // end anonymous namespace
-
-/// IsNonLocalValue - Return true if the specified values are defined in a
-/// different basic block than BB.
-static bool IsNonLocalValue(Value *V, BasicBlock *BB) {
-  if (Instruction *I = dyn_cast<Instruction>(V))
-    return I->getParent() != BB;
-  return false;
-}
-
-/// OptimizeMemoryInst - Load and Store Instructions often have
-/// addressing modes that can do significant amounts of computation.  As such,
-/// instruction selection will try to get the load or store to do as much
-/// computation as possible for the program.  The problem is that isel can only
-/// see within a single block.  As such, we sink as much legal addressing mode
-/// stuff into the block as possible.
-///
-/// This method is used to optimize both load/store and inline asms with memory
-/// operands.
-bool CodeGenPrepare::OptimizeMemoryInst(Instruction *MemoryInst, Value *Addr,
-                                        Type *AccessTy) {
-  Value *Repl = Addr;
-
-  // Try to collapse single-value PHI nodes.  This is necessary to undo
-  // unprofitable PRE transformations.
-  SmallVector<Value*, 8> worklist;
-  SmallPtrSet<Value*, 16> Visited;
-  worklist.push_back(Addr);
-
-  // Use a worklist to iteratively look through PHI nodes, and ensure that
-  // the addressing mode obtained from the non-PHI roots of the graph
-  // are equivalent.
-  Value *Consensus = 0;
-  unsigned NumUsesConsensus = 0;
-  bool IsNumUsesConsensusValid = false;
-  SmallVector<Instruction*, 16> AddrModeInsts;
-  ExtAddrMode AddrMode;
-  TypePromotionTransaction TPT;
-  TypePromotionTransaction::ConstRestorationPt LastKnownGood =
-      TPT.getRestorationPoint();
-  while (!worklist.empty()) {
-    Value *V = worklist.back();
-    worklist.pop_back();
-
-    // Break use-def graph loops.
-    if (!Visited.insert(V)) {
-      Consensus = 0;
-      break;
-    }
-
-    // For a PHI node, push all of its incoming values.
-    if (PHINode *P = dyn_cast<PHINode>(V)) {
-      for (unsigned i = 0, e = P->getNumIncomingValues(); i != e; ++i)
-        worklist.push_back(P->getIncomingValue(i));
-      continue;
-    }
-
-    // For non-PHIs, determine the addressing mode being computed.
-    SmallVector<Instruction*, 16> NewAddrModeInsts;
-    ExtAddrMode NewAddrMode = AddressingModeMatcher::Match(
-        V, AccessTy, MemoryInst, NewAddrModeInsts, *TLI, InsertedTruncsSet,
-        PromotedInsts, TPT);
-
-    // This check is broken into two cases with very similar code to avoid using
-    // getNumUses() as much as possible. Some values have a lot of uses, so
-    // calling getNumUses() unconditionally caused a significant compile-time
-    // regression.
-    if (!Consensus) {
-      Consensus = V;
-      AddrMode = NewAddrMode;
-      AddrModeInsts = NewAddrModeInsts;
-      continue;
-    } else if (NewAddrMode == AddrMode) {
-      if (!IsNumUsesConsensusValid) {
-        NumUsesConsensus = Consensus->getNumUses();
-        IsNumUsesConsensusValid = true;
-      }
-
-      // Ensure that the obtained addressing mode is equivalent to that obtained
-      // for all other roots of the PHI traversal.  Also, when choosing one
-      // such root as representative, select the one with the most uses in order
-      // to keep the cost modeling heuristics in AddressingModeMatcher
-      // applicable.
-      unsigned NumUses = V->getNumUses();
-      if (NumUses > NumUsesConsensus) {
-        Consensus = V;
-        NumUsesConsensus = NumUses;
-        AddrModeInsts = NewAddrModeInsts;
-      }
-      continue;
-    }
-
-    Consensus = 0;
-    break;
-  }
-
-  // If the addressing mode couldn't be determined, or if multiple different
-  // ones were determined, bail out now.
-  if (!Consensus) {
-    TPT.rollback(LastKnownGood);
-    return false;
-  }
-  TPT.commit();
-
-  // Check to see if any of the instructions supersumed by this addr mode are
-  // non-local to I's BB.
-  bool AnyNonLocal = false;
-  for (unsigned i = 0, e = AddrModeInsts.size(); i != e; ++i) {
-    if (IsNonLocalValue(AddrModeInsts[i], MemoryInst->getParent())) {
-      AnyNonLocal = true;
-      break;
-    }
-  }
-
-  // If all the instructions matched are already in this BB, don't do anything.
-  if (!AnyNonLocal) {
-    DEBUG(dbgs() << "CGP: Found      local addrmode: " << AddrMode << "\n");
-    return false;
-  }
-
-  // Insert this computation right after this user.  Since our caller is
-  // scanning from the top of the BB to the bottom, reuse of the expr are
-  // guaranteed to happen later.
-  IRBuilder<> Builder(MemoryInst);
-
-  // Now that we determined the addressing expression we want to use and know
-  // that we have to sink it into this block.  Check to see if we have already
-  // done this for some other load/store instr in this block.  If so, reuse the
-  // computation.
-  Value *&SunkAddr = SunkAddrs[Addr];
-  if (SunkAddr) {
-    DEBUG(dbgs() << "CGP: Reusing nonlocal addrmode: " << AddrMode << " for "
-                 << *MemoryInst);
-    if (SunkAddr->getType() != Addr->getType())
-      SunkAddr = Builder.CreateBitCast(SunkAddr, Addr->getType());
-  } else {
-    DEBUG(dbgs() << "CGP: SINKING nonlocal addrmode: " << AddrMode << " for "
-                 << *MemoryInst);
-    Type *IntPtrTy = TLI->getDataLayout()->getIntPtrType(Addr->getType());
-    Value *Result = 0;
-
-    // Start with the base register. Do this first so that subsequent address
-    // matching finds it last, which will prevent it from trying to match it
-    // as the scaled value in case it happens to be a mul. That would be
-    // problematic if we've sunk a different mul for the scale, because then
-    // we'd end up sinking both muls.
-    if (AddrMode.BaseReg) {
-      Value *V = AddrMode.BaseReg;
-      if (V->getType()->isPointerTy())
-        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
-      if (V->getType() != IntPtrTy)
-        V = Builder.CreateIntCast(V, IntPtrTy, /*isSigned=*/true, "sunkaddr");
-      Result = V;
-    }
-
-    // Add the scale value.
-    if (AddrMode.Scale) {
-      Value *V = AddrMode.ScaledReg;
-      if (V->getType() == IntPtrTy) {
-        // done.
-      } else if (V->getType()->isPointerTy()) {
-        V = Builder.CreatePtrToInt(V, IntPtrTy, "sunkaddr");
-      } else if (cast<IntegerType>(IntPtrTy)->getBitWidth() <
-                 cast<IntegerType>(V->getType())->getBitWidth()) {
-        V = Builder.CreateTrunc(V, IntPtrTy, "sunkaddr");
-      } else {
-        V = Builder.CreateSExt(V, IntPtrTy, "sunkaddr");
-      }
-      if (AddrMode.Scale != 1)
-        V = Builder.CreateMul(V, ConstantInt::get(IntPtrTy, AddrMode.Scale),
-                              "sunkaddr");
-      if (Result)
-        Result = Builder.CreateAdd(Result, V, "sunkaddr");
-      else
-        Result = V;
-    }
-
-    // Add in the BaseGV if present.
-    if (AddrMode.BaseGV) {
-      Value *V = Builder.CreatePtrToInt(AddrMode.BaseGV, IntPtrTy, "sunkaddr");
-      if (Result)
-        Result = Builder.CreateAdd(Result, V, "sunkaddr");
-      else
-        Result = V;
-    }
-
-    // Add in the Base Offset if present.
-    if (AddrMode.BaseOffs) {
-      Value *V = ConstantInt::get(IntPtrTy, AddrMode.BaseOffs);
-      if (Result)
-        Result = Builder.CreateAdd(Result, V, "sunkaddr");
-      else
-        Result = V;
-    }
-
-    if (Result == 0)
-      SunkAddr = Constant::getNullValue(Addr->getType());
-    else
-      SunkAddr = Builder.CreateIntToPtr(Result, Addr->getType(), "sunkaddr");
-  }
-
-  MemoryInst->replaceUsesOfWith(Repl, SunkAddr);
-
-  // If we have no uses, recursively delete the value and all dead instructions
-  // using it.
-  if (Repl->use_empty()) {
-    // This can cause recursive deletion, which can invalidate our iterator.
-    // Use a WeakVH to hold onto it in case this happens.
-    WeakVH IterHandle(CurInstIterator);
-    BasicBlock *BB = CurInstIterator->getParent();
-
-    RecursivelyDeleteTriviallyDeadInstructions(Repl, TLInfo);
-
-    if (IterHandle != CurInstIterator) {
-      // If the iterator instruction was recursively deleted, start over at the
-      // start of the block.
-      CurInstIterator = BB->begin();
-      SunkAddrs.clear();
-    }
-  }
-  ++NumMemoryInsts;
-  return true;
-}
-
-/// OptimizeInlineAsmInst - If there are any memory operands, use
-/// OptimizeMemoryInst to sink their address computing into the block when
-/// possible / profitable.
-bool CodeGenPrepare::OptimizeInlineAsmInst(CallInst *CS) {
-  bool MadeChange = false;
-
-  TargetLowering::AsmOperandInfoVector
-    TargetConstraints = TLI->ParseConstraints(CS);
-  unsigned ArgNo = 0;
-  for (unsigned i = 0, e = TargetConstraints.size(); i != e; ++i) {
-    TargetLowering::AsmOperandInfo &OpInfo = TargetConstraints[i];
-
-    // Compute the constraint code and ConstraintType to use.
-    TLI->ComputeConstraintToUse(OpInfo, SDValue());
-
-    if (OpInfo.ConstraintType == TargetLowering::C_Memory &&
-        OpInfo.isIndirect) {
-      Value *OpVal = CS->getArgOperand(ArgNo++);
-      MadeChange |= OptimizeMemoryInst(CS, OpVal, OpVal->getType());
-    } else if (OpInfo.Type == InlineAsm::isInput)
-      ArgNo++;
-  }
-
-  return MadeChange;
-}
-
-/// MoveExtToFormExtLoad - Move a zext or sext fed by a load into the same
-/// basic block as the load, unless conditions are unfavorable. This allows
-/// SelectionDAG to fold the extend into the load.
-///
-bool CodeGenPrepare::MoveExtToFormExtLoad(Instruction *I) {
-  // Look for a load being extended.
-  LoadInst *LI = dyn_cast<LoadInst>(I->getOperand(0));
-  if (!LI) return false;
-
-  // If they're already in the same block, there's nothing to do.
-  if (LI->getParent() == I->getParent())
-    return false;
-
-  // If the load has other users and the truncate is not free, this probably
-  // isn't worthwhile.
-  if (!LI->hasOneUse() &&
-      TLI && (TLI->isTypeLegal(TLI->getValueType(LI->getType())) ||
-              !TLI->isTypeLegal(TLI->getValueType(I->getType()))) &&
-      !TLI->isTruncateFree(I->getType(), LI->getType()))
-    return false;
-
-  // Check whether the target supports casts folded into loads.
-  unsigned LType;
-  if (isa<ZExtInst>(I))
-    LType = ISD::ZEXTLOAD;
-  else {
-    assert(isa<SExtInst>(I) && "Unexpected ext type!");
-    LType = ISD::SEXTLOAD;
-  }
-  if (TLI && !TLI->isLoadExtLegal(LType, TLI->getValueType(LI->getType())))
-    return false;
-
-  // Move the extend into the same block as the load, so that SelectionDAG
-  // can fold it.
-  I->removeFromParent();
-  I->insertAfter(LI);
-  ++NumExtsMoved;
-  return true;
-}
-
-bool CodeGenPrepare::OptimizeExtUses(Instruction *I) {
-  BasicBlock *DefBB = I->getParent();
-
-  // If the result of a {s|z}ext and its source are both live out, rewrite all
-  // other uses of the source with result of extension.
-  Value *Src = I->getOperand(0);
-  if (Src->hasOneUse())
-    return false;
-
-  // Only do this xform if truncating is free.
-  if (TLI && !TLI->isTruncateFree(I->getType(), Src->getType()))
-    return false;
-
-  // Only safe to perform the optimization if the source is also defined in
-  // this block.
-  if (!isa<Instruction>(Src) || DefBB != cast<Instruction>(Src)->getParent())
-    return false;
-
-  bool DefIsLiveOut = false;
-  for (Value::use_iterator UI = I->use_begin(), E = I->use_end();
-       UI != E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
-
-    // Figure out which BB this ext is used in.
-    BasicBlock *UserBB = User->getParent();
-    if (UserBB == DefBB) continue;
-    DefIsLiveOut = true;
-    break;
-  }
-  if (!DefIsLiveOut)
-    return false;
-
-  // Make sure none of the uses are PHI nodes.
-  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
-       UI != E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
-    BasicBlock *UserBB = User->getParent();
-    if (UserBB == DefBB) continue;
-    // Be conservative. We don't want this xform to end up introducing
-    // reloads just before load / store instructions.
-    if (isa<PHINode>(User) || isa<LoadInst>(User) || isa<StoreInst>(User))
-      return false;
-  }
-
-  // InsertedTruncs - Only insert one trunc in each block once.
-  DenseMap<BasicBlock*, Instruction*> InsertedTruncs;
-
-  bool MadeChange = false;
-  for (Value::use_iterator UI = Src->use_begin(), E = Src->use_end();
-       UI != E; ++UI) {
-    Use &TheUse = UI.getUse();
-    Instruction *User = cast<Instruction>(*UI);
-
-    // Figure out which BB this ext is used in.
-    BasicBlock *UserBB = User->getParent();
-    if (UserBB == DefBB) continue;
-
-    // Both src and def are live in this block. Rewrite the use.
-    Instruction *&InsertedTrunc = InsertedTruncs[UserBB];
-
-    if (!InsertedTrunc) {
-      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
-      InsertedTrunc = new TruncInst(I, Src->getType(), "", InsertPt);
-      InsertedTruncsSet.insert(InsertedTrunc);
-    }
-
-    // Replace a use of the {s|z}ext source with a use of the result.
-    TheUse = InsertedTrunc;
-    ++NumExtUses;
-    MadeChange = true;
-  }
-
-  return MadeChange;
-}
-
-/// isFormingBranchFromSelectProfitable - Returns true if a SelectInst should be
-/// turned into an explicit branch.
-static bool isFormingBranchFromSelectProfitable(SelectInst *SI) {
-  // FIXME: This should use the same heuristics as IfConversion to determine
-  // whether a select is better represented as a branch.  This requires that
-  // branch probability metadata is preserved for the select, which is not the
-  // case currently.
-
-  CmpInst *Cmp = dyn_cast<CmpInst>(SI->getCondition());
-
-  // If the branch is predicted right, an out of order CPU can avoid blocking on
-  // the compare.  Emit cmovs on compares with a memory operand as branches to
-  // avoid stalls on the load from memory.  If the compare has more than one use
-  // there's probably another cmov or setcc around so it's not worth emitting a
-  // branch.
-  if (!Cmp)
-    return false;
-
-  Value *CmpOp0 = Cmp->getOperand(0);
-  Value *CmpOp1 = Cmp->getOperand(1);
-
-  // We check that the memory operand has one use to avoid uses of the loaded
-  // value directly after the compare, making branches unprofitable.
-  return Cmp->hasOneUse() &&
-         ((isa<LoadInst>(CmpOp0) && CmpOp0->hasOneUse()) ||
-          (isa<LoadInst>(CmpOp1) && CmpOp1->hasOneUse()));
-}
-
-
-/// If we have a SelectInst that will likely profit from branch prediction,
-/// turn it into a branch.
-bool CodeGenPrepare::OptimizeSelectInst(SelectInst *SI) {
-  bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
-
-  // Can we convert the 'select' to CF ?
-  if (DisableSelectToBranch || OptSize || !TLI || VectorCond)
-    return false;
-
-  TargetLowering::SelectSupportKind SelectKind;
-  if (VectorCond)
-    SelectKind = TargetLowering::VectorMaskSelect;
-  else if (SI->getType()->isVectorTy())
-    SelectKind = TargetLowering::ScalarCondVectorVal;
-  else
-    SelectKind = TargetLowering::ScalarValSelect;
-
-  // Do we have efficient codegen support for this kind of 'selects' ?
-  if (TLI->isSelectSupported(SelectKind)) {
-    // We have efficient codegen support for the select instruction.
-    // Check if it is profitable to keep this 'select'.
-    if (!TLI->isPredictableSelectExpensive() ||
-        !isFormingBranchFromSelectProfitable(SI))
-      return false;
-  }
-
-  ModifiedDT = true;
-
-  // First, we split the block containing the select into 2 blocks.
-  BasicBlock *StartBlock = SI->getParent();
-  BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(SI));
-  BasicBlock *NextBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
-
-  // Create a new block serving as the landing pad for the branch.
-  BasicBlock *SmallBlock = BasicBlock::Create(SI->getContext(), "select.mid",
-                                             NextBlock->getParent(), NextBlock);
-
-  // Move the unconditional branch from the block with the select in it into our
-  // landing pad block.
-  StartBlock->getTerminator()->eraseFromParent();
-  BranchInst::Create(NextBlock, SmallBlock);
-
-  // Insert the real conditional branch based on the original condition.
-  BranchInst::Create(NextBlock, SmallBlock, SI->getCondition(), SI);
-
-  // The select itself is replaced with a PHI Node.
-  PHINode *PN = PHINode::Create(SI->getType(), 2, "", NextBlock->begin());
-  PN->takeName(SI);
-  PN->addIncoming(SI->getTrueValue(), StartBlock);
-  PN->addIncoming(SI->getFalseValue(), SmallBlock);
-  SI->replaceAllUsesWith(PN);
-  SI->eraseFromParent();
-
-  // Instruct OptimizeBlock to skip to the next block.
-  CurInstIterator = StartBlock->end();
-  ++NumSelectsExpanded;
-  return true;
-}
-
-
-bool isBroadcastShuffle(ShuffleVectorInst *SVI) {
-  SmallVector<int, 16> Mask(SVI->getShuffleMask());
-  int SplatElem = -1;
-  for (unsigned i = 0; i < Mask.size(); ++i) {
-    if (SplatElem != -1 && Mask[i] != -1 && Mask[i] != SplatElem)
-      return false;
-    SplatElem = Mask[i];
-  }
-
-  return true;
-}
-
-/// Some targets have expensive vector shifts if the lanes aren't all the same
-/// (e.g. x86 only introduced "vpsllvd" and friends with AVX2). In these cases
-/// it's often worth sinking a shufflevector splat down to its use so that
-/// codegen can spot all lanes are identical.
-bool CodeGenPrepare::OptimizeShuffleVectorInst(ShuffleVectorInst *SVI) {
-  BasicBlock *DefBB = SVI->getParent();
-
-  // Only do this xform if variable vector shifts are particularly expensive.
-  if (!TLI || !TLI->isVectorShiftByScalarCheap(SVI->getType()))
-    return false;
-
-  // We only expect better codegen by sinking a shuffle if we can recognise a
-  // constant splat.
-  if (!isBroadcastShuffle(SVI))
-    return false;
-
-  // InsertedShuffles - Only insert a shuffle in each block once.
-  DenseMap<BasicBlock*, Instruction*> InsertedShuffles;
-
-  bool MadeChange = false;
-  for (Value::use_iterator UI = SVI->use_begin(), E = SVI->use_end();
-       UI != E; ++UI) {
-    Instruction *User = cast<Instruction>(*UI);
-
-    // Figure out which BB this ext is used in.
-    BasicBlock *UserBB = User->getParent();
-    if (UserBB == DefBB) continue;
-
-    // For now only apply this when the splat is used by a shift instruction.
-    if (!User->isShift()) continue;
-
-    // Everything checks out, sink the shuffle if the user's block doesn't
-    // already have a copy.
-    Instruction *&InsertedShuffle = InsertedShuffles[UserBB];
-
-    if (!InsertedShuffle) {
-      BasicBlock::iterator InsertPt = UserBB->getFirstInsertionPt();
-      InsertedShuffle = new ShuffleVectorInst(SVI->getOperand(0),
-                                              SVI->getOperand(1),
-                                              SVI->getOperand(2), "", InsertPt);
-    }
-
-    User->replaceUsesOfWith(SVI, InsertedShuffle);
-    MadeChange = true;
-  }
-
-  // If we removed all uses, nuke the shuffle.
-  if (SVI->use_empty()) {
-    SVI->eraseFromParent();
-    MadeChange = true;
-  }
-
-  return MadeChange;
-}
-
-bool CodeGenPrepare::OptimizeInst(Instruction *I) {
-  if (PHINode *P = dyn_cast<PHINode>(I)) {
-    // It is possible for very late stage optimizations (such as SimplifyCFG)
-    // to introduce PHI nodes too late to be cleaned up.  If we detect such a
-    // trivial PHI, go ahead and zap it here.
-    if (Value *V = SimplifyInstruction(P, TLI ? TLI->getDataLayout() : 0,
-                                       TLInfo, DT)) {
-      P->replaceAllUsesWith(V);
-      P->eraseFromParent();
-      ++NumPHIsElim;
-      return true;
-    }
-    return false;
-  }
-
-  if (CastInst *CI = dyn_cast<CastInst>(I)) {
-    // If the source of the cast is a constant, then this should have
-    // already been constant folded.  The only reason NOT to constant fold
-    // it is if something (e.g. LSR) was careful to place the constant
-    // evaluation in a block other than then one that uses it (e.g. to hoist
-    // the address of globals out of a loop).  If this is the case, we don't
-    // want to forward-subst the cast.
-    if (isa<Constant>(CI->getOperand(0)))
-      return false;
-
-    if (TLI && OptimizeNoopCopyExpression(CI, *TLI))
-      return true;
-
-    if (isa<ZExtInst>(I) || isa<SExtInst>(I)) {
-      bool MadeChange = MoveExtToFormExtLoad(I);
-      return MadeChange | OptimizeExtUses(I);
-    }
-    return false;
-  }
-
-  if (CmpInst *CI = dyn_cast<CmpInst>(I))
-    if (!TLI || !TLI->hasMultipleConditionRegisters())
-      return OptimizeCmpExpression(CI);
-
-  if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
-    if (TLI)
-      return OptimizeMemoryInst(I, I->getOperand(0), LI->getType());
-    return false;
-  }
-
-  if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
-    if (TLI)
-      return OptimizeMemoryInst(I, SI->getOperand(1),
-                                SI->getOperand(0)->getType());
-    return false;
-  }
-
-  if (GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(I)) {
-    if (GEPI->hasAllZeroIndices()) {
-      /// The GEP operand must be a pointer, so must its result -> BitCast
-      Instruction *NC = new BitCastInst(GEPI->getOperand(0), GEPI->getType(),
-                                        GEPI->getName(), GEPI);
-      GEPI->replaceAllUsesWith(NC);
-      GEPI->eraseFromParent();
-      ++NumGEPsElim;
-      OptimizeInst(NC);
-      return true;
-    }
-    return false;
-  }
-
-  if (CallInst *CI = dyn_cast<CallInst>(I))
-    return OptimizeCallInst(CI);
-
-  if (SelectInst *SI = dyn_cast<SelectInst>(I))
-    return OptimizeSelectInst(SI);
-
-  if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(I))
-    return OptimizeShuffleVectorInst(SVI);
-
-  return false;
-}
-
-// In this pass we look for GEP and cast instructions that are used
-// across basic blocks and rewrite them to improve basic-block-at-a-time
-// selection.
-bool CodeGenPrepare::OptimizeBlock(BasicBlock &BB) {
-  SunkAddrs.clear();
-  bool MadeChange = false;
-
-  CurInstIterator = BB.begin();
-  while (CurInstIterator != BB.end())
-    MadeChange |= OptimizeInst(CurInstIterator++);
-
-  MadeChange |= DupRetToEnableTailCallOpts(&BB);
-
-  return MadeChange;
-}
-
-// llvm.dbg.value is far away from the value then iSel may not be able
-// handle it properly. iSel will drop llvm.dbg.value if it can not
-// find a node corresponding to the value.
-bool CodeGenPrepare::PlaceDbgValues(Function &F) {
-  bool MadeChange = false;
-  for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
-    Instruction *PrevNonDbgInst = NULL;
-    for (BasicBlock::iterator BI = I->begin(), BE = I->end(); BI != BE;) {
-      Instruction *Insn = BI; ++BI;
-      DbgValueInst *DVI = dyn_cast<DbgValueInst>(Insn);
-      if (!DVI) {
-        PrevNonDbgInst = Insn;
-        continue;
-      }
-
-      Instruction *VI = dyn_cast_or_null<Instruction>(DVI->getValue());
-      if (VI && VI != PrevNonDbgInst && !VI->isTerminator()) {
-        DEBUG(dbgs() << "Moving Debug Value before :\n" << *DVI << ' ' << *VI);
-        DVI->removeFromParent();
-        if (isa<PHINode>(VI))
-          DVI->insertBefore(VI->getParent()->getFirstInsertionPt());
-        else
-          DVI->insertAfter(VI);
-        MadeChange = true;
-        ++NumDbgValueMoved;
-      }
-    }
-  }
-  return MadeChange;
-}
index f774874cb47cad7d5d79306413044a19a7779ea1..e950ebacd84c7a04a9eb47729136e008fba935fd 100644 (file)
@@ -29,7 +29,6 @@ using namespace llvm;
 void llvm::initializeScalarOpts(PassRegistry &Registry) {
   initializeADCEPass(Registry);
   initializeSampleProfileLoaderPass(Registry);
-  initializeCodeGenPreparePass(Registry);
   initializeConstantHoistingPass(Registry);
   initializeConstantPropagationPass(Registry);
   initializeCorrelatedValuePropagationPass(Registry);
index 14f5a3b004b450a02dd4823668fc4304827bc29c..b537a5d237d8ba88326c18f434ebcaaa60cc62d9 100644 (file)
@@ -1,6 +1,7 @@
 set(LLVM_LINK_COMPONENTS
   Analysis
   BitWriter
+  CodeGen
   Core
   IPA
   IPO
index 01643553c5b512a53faa7b093794bac2ce29d598..dda8d624fc746f8b62888b10c99650f41aadf33f 100644 (file)
@@ -19,4 +19,4 @@
 type = Tool
 name = bugpoint
 parent = Tools
-required_libraries = AsmParser BitReader BitWriter IRReader IPO Instrumentation Linker Scalar ObjCARC
+required_libraries = AsmParser BitReader BitWriter CodeGen IRReader IPO Instrumentation Linker Scalar ObjCARC
index 96c0fcf519e651d6900072ef8d982935ffabb827..174f8d25161eef3c4e8f1c2262b27f593b68a52d 100644 (file)
@@ -10,7 +10,7 @@
 LEVEL := ../..
 TOOLNAME := bugpoint
 LINK_COMPONENTS := asmparser instrumentation scalaropts ipo linker bitreader \
-                   bitwriter irreader vectorize objcarcopts
+                   bitwriter irreader vectorize objcarcopts codegen
 
 # Support plugins.
 NO_DEAD_STRIP := 1
index 953815be36659258ce6dee2c3cd9cbef5799801a..1f76ab55511b43a32364d018f385c59c69b00dcf 100644 (file)
@@ -2,6 +2,7 @@ set(LLVM_LINK_COMPONENTS
   ${LLVM_TARGETS_TO_BUILD}
   Analysis
   BitWriter
+  CodeGen
   Core
   IPA
   IPO
index 77b94469edd55d5c74f14d9e26a01a88c105d0e1..b3589f854ff19bb4f3be77e2cb2812469d3b36b7 100644 (file)
@@ -19,4 +19,4 @@
 type = Tool
 name = opt
 parent = Tools
-required_libraries = AsmParser BitReader BitWriter IRReader IPO Instrumentation Scalar ObjCARC all-targets
+required_libraries = AsmParser BitReader BitWriter CodeGen IRReader IPO Instrumentation Scalar ObjCARC all-targets
index fa2d0145531953b9aae244fba226c2140bc51411..cfa9c31cb95855633c271c64895402553fde5be3 100644 (file)
@@ -9,7 +9,7 @@
 
 LEVEL := ../..
 TOOLNAME := opt
-LINK_COMPONENTS := bitreader bitwriter asmparser irreader instrumentation scalaropts objcarcopts ipo vectorize all-targets
+LINK_COMPONENTS := bitreader bitwriter asmparser irreader instrumentation scalaropts objcarcopts ipo vectorize all-targets codegen
 
 # Support plugins.
 NO_DEAD_STRIP := 1
index fa9bc678c3503c9c94b709dacef3ee9eecb2e648..b9d3f9d6d21b9c774164cff0daf57bbcf40fb196 100644 (file)
@@ -22,6 +22,7 @@
 #include "llvm/Analysis/RegionPass.h"
 #include "llvm/Bitcode/BitcodeWriterPass.h"
 #include "llvm/CodeGen/CommandFlags.h"
+#include "llvm/InitializePasses.h"
 #include "llvm/IR/DataLayout.h"
 #include "llvm/IR/IRPrintingPasses.h"
 #include "llvm/IR/LLVMContext.h"
@@ -340,6 +341,9 @@ int main(int argc, char **argv) {
   initializeInstCombine(Registry);
   initializeInstrumentation(Registry);
   initializeTarget(Registry);
+  // For codegen passes, only passes that do IR to IR transformation are
+  // supported. For now, just add CodeGenPrepare.
+  initializeCodeGenPreparePass(Registry);
 
   cl::ParseCommandLineOptions(argc, argv,
     "llvm .bc -> .bc modular optimizer and analysis printer\n");