unsigned long switcher_addr;
static struct vm_struct *switcher_vma;
-static struct page **switcher_page;
+static struct page **switcher_pages;
/* This One Big lock protects all inter-guest data structures. */
DEFINE_MUTEX(lguest_lock);
* We allocate an array of struct page pointers. map_vm_area() wants
* this, rather than just an array of pages.
*/
- switcher_page = kmalloc(sizeof(switcher_page[0])*TOTAL_SWITCHER_PAGES,
- GFP_KERNEL);
- if (!switcher_page) {
+ switcher_pages = kmalloc(sizeof(switcher_pages[0])*TOTAL_SWITCHER_PAGES,
+ GFP_KERNEL);
+ if (!switcher_pages) {
err = -ENOMEM;
goto out;
}
* so we make sure they're zeroed.
*/
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++) {
- switcher_page[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
- if (!switcher_page[i]) {
+ switcher_pages[i] = alloc_page(GFP_KERNEL|__GFP_ZERO);
+ if (!switcher_pages[i]) {
err = -ENOMEM;
goto free_some_pages;
}
* array of struct pages. It increments that pointer, but we don't
* care.
*/
- pagep = switcher_page;
+ pagep = switcher_pages;
err = map_vm_area(switcher_vma, PAGE_KERNEL_EXEC, &pagep);
if (err) {
printk("lguest: map_vm_area failed: %i\n", err);
i = TOTAL_SWITCHER_PAGES;
free_some_pages:
for (--i; i >= 0; i--)
- __free_pages(switcher_page[i], 0);
- kfree(switcher_page);
+ __free_pages(switcher_pages[i], 0);
+ kfree(switcher_pages);
out:
return err;
}
vunmap(switcher_vma->addr);
/* Now we just need to free the pages we copied the switcher into */
for (i = 0; i < TOTAL_SWITCHER_PAGES; i++)
- __free_pages(switcher_page[i], 0);
- kfree(switcher_page);
+ __free_pages(switcher_pages[i], 0);
+ kfree(switcher_pages);
}
/*H:032
goto out;
/* Now we set up the pagetable implementation for the Guests. */
- err = init_pagetables(switcher_page, SHARED_SWITCHER_PAGES);
+ err = init_pagetables(switcher_pages, SHARED_SWITCHER_PAGES);
if (err)
goto unmap;
#include <asm/lguest.h>
void free_pagetables(void);
-int init_pagetables(struct page **switcher_page, unsigned int pages);
+int init_pagetables(struct page **switcher_pages, unsigned int pages);
struct pgdir {
unsigned long gpgdir;
* Currently the Switcher is less than a page long, so "pages" is always 1.
*/
static __init void populate_switcher_pte_page(unsigned int cpu,
- struct page *switcher_page[],
+ struct page *switcher_pages[],
unsigned int pages)
{
unsigned int i;
/* The first entries are easy: they map the Switcher code. */
for (i = 0; i < pages; i++) {
- set_pte(&pte[i], mk_pte(switcher_page[i],
+ set_pte(&pte[i], mk_pte(switcher_pages[i],
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
}
i = pages + cpu*2;
/* First page (Guest registers) is writable from the Guest */
- set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_page[i]),
+ set_pte(&pte[i], pfn_pte(page_to_pfn(switcher_pages[i]),
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED|_PAGE_RW)));
/*
* The second page contains the "struct lguest_ro_state", and is
* read-only.
*/
- set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_page[i+1]),
+ set_pte(&pte[i+1], pfn_pte(page_to_pfn(switcher_pages[i+1]),
__pgprot(_PAGE_PRESENT|_PAGE_ACCESSED)));
}
* At boot or module load time, init_pagetables() allocates and populates
* the Switcher PTE page for each CPU.
*/
-__init int init_pagetables(struct page **switcher_page, unsigned int pages)
+__init int init_pagetables(struct page **switcher_pages, unsigned int pages)
{
unsigned int i;
free_switcher_pte_pages();
return -ENOMEM;
}
- populate_switcher_pte_page(i, switcher_page, pages);
+ populate_switcher_pte_page(i, switcher_pages, pages);
}
return 0;
}