}
Instruction *InstCombiner::visitDiv(BinaryOperator &I) {
- if (isa<UndefValue>(I.getOperand(0))) // undef / X -> 0
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
+
+ if (isa<UndefValue>(Op0)) // undef / X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- if (isa<UndefValue>(I.getOperand(1)))
- return ReplaceInstUsesWith(I, I.getOperand(1)); // X / undef -> undef
+ if (isa<UndefValue>(Op1))
+ return ReplaceInstUsesWith(I, Op1); // X / undef -> undef
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
// div X, 1 == X
if (RHS->equalsInt(1))
- return ReplaceInstUsesWith(I, I.getOperand(0));
+ return ReplaceInstUsesWith(I, Op0);
// div X, -1 == -X
if (RHS->isAllOnesValue())
- return BinaryOperator::createNeg(I.getOperand(0));
+ return BinaryOperator::createNeg(Op0);
- if (Instruction *LHS = dyn_cast<Instruction>(I.getOperand(0)))
+ if (Instruction *LHS = dyn_cast<Instruction>(Op0))
if (LHS->getOpcode() == Instruction::Div)
if (ConstantInt *LHSRHS = dyn_cast<ConstantInt>(LHS->getOperand(1))) {
// (X / C1) / C2 -> X / (C1*C2)
if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
if (uint64_t Val = C->getValue()) // Don't break X / 0
if (uint64_t C = Log2(Val))
- return new ShiftInst(Instruction::Shr, I.getOperand(0),
+ return new ShiftInst(Instruction::Shr, Op0,
ConstantUInt::get(Type::UByteTy, C));
// -X/C -> X/-C
if (RHS->getType()->isSigned())
- if (Value *LHSNeg = dyn_castNegVal(I.getOperand(0)))
+ if (Value *LHSNeg = dyn_castNegVal(Op0))
return BinaryOperator::createDiv(LHSNeg, ConstantExpr::getNeg(RHS));
- if (isa<PHINode>(I.getOperand(0)) && !RHS->isNullValue())
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
+ if (!RHS->isNullValue()) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
}
+ // If this is 'udiv X, (Cond ? C1, C2)' where C1&C2 are powers of two,
+ // transform this into: '(Cond ? (udiv X, C1) : (udiv X, C2))'.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
+ if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
+ if (STO->getValue() == 0) { // Couldn't be this argument.
+ I.setOperand(1, SFO);
+ return &I;
+ } else if (SFO->getValue() == 0) {
+ I.setOperand(1, STO);
+ return &I;
+ }
+
+ if (uint64_t TSA = Log2(STO->getValue()))
+ if (uint64_t FSA = Log2(SFO->getValue())) {
+ Constant *TC = ConstantUInt::get(Type::UByteTy, TSA);
+ Instruction *TSI = new ShiftInst(Instruction::Shr, Op0,
+ TC, SI->getName()+".t");
+ TSI = InsertNewInstBefore(TSI, I);
+
+ Constant *FC = ConstantUInt::get(Type::UByteTy, FSA);
+ Instruction *FSI = new ShiftInst(Instruction::Shr, Op0,
+ FC, SI->getName()+".f");
+ FSI = InsertNewInstBefore(FSI, I);
+ return new SelectInst(SI->getOperand(0), TSI, FSI);
+ }
+ }
+
// 0 / X == 0, we don't need to preserve faults!
- if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
+ if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
if (LHS->equalsInt(0))
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
Instruction *InstCombiner::visitRem(BinaryOperator &I) {
+ Value *Op0 = I.getOperand(0), *Op1 = I.getOperand(1);
if (I.getType()->isSigned())
- if (Value *RHSNeg = dyn_castNegVal(I.getOperand(1)))
+ if (Value *RHSNeg = dyn_castNegVal(Op1))
if (!isa<ConstantSInt>(RHSNeg) ||
cast<ConstantSInt>(RHSNeg)->getValue() > 0) {
// X % -Y -> X % Y
return &I;
}
- if (isa<UndefValue>(I.getOperand(0))) // undef % X -> 0
+ if (isa<UndefValue>(Op0)) // undef % X -> 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
- if (isa<UndefValue>(I.getOperand(1)))
- return ReplaceInstUsesWith(I, I.getOperand(1)); // X % undef -> undef
+ if (isa<UndefValue>(Op1))
+ return ReplaceInstUsesWith(I, Op1); // X % undef -> undef
- if (ConstantInt *RHS = dyn_cast<ConstantInt>(I.getOperand(1))) {
+ if (ConstantInt *RHS = dyn_cast<ConstantInt>(Op1)) {
if (RHS->equalsInt(1)) // X % 1 == 0
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));
if (ConstantUInt *C = dyn_cast<ConstantUInt>(RHS))
if (uint64_t Val = C->getValue()) // Don't break X % 0 (divide by zero)
if (!(Val & (Val-1))) // Power of 2
- return BinaryOperator::createAnd(I.getOperand(0),
- ConstantUInt::get(I.getType(), Val-1));
- if (isa<PHINode>(I.getOperand(0)) && !RHS->isNullValue())
- if (Instruction *NV = FoldOpIntoPhi(I))
- return NV;
+ return BinaryOperator::createAnd(Op0,
+ ConstantUInt::get(I.getType(), Val-1));
+
+ if (!RHS->isNullValue()) {
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op0))
+ if (Instruction *R = FoldBinOpIntoSelect(I, SI, this))
+ return R;
+ if (isa<PHINode>(Op0))
+ if (Instruction *NV = FoldOpIntoPhi(I))
+ return NV;
+ }
}
+ // If this is 'urem X, (Cond ? C1, C2)' where C1&C2 are powers of two,
+ // transform this into: '(Cond ? (urem X, C1) : (urem X, C2))'.
+ if (SelectInst *SI = dyn_cast<SelectInst>(Op1))
+ if (ConstantUInt *STO = dyn_cast<ConstantUInt>(SI->getOperand(1)))
+ if (ConstantUInt *SFO = dyn_cast<ConstantUInt>(SI->getOperand(2))) {
+ if (STO->getValue() == 0) { // Couldn't be this argument.
+ I.setOperand(1, SFO);
+ return &I;
+ } else if (SFO->getValue() == 0) {
+ I.setOperand(1, STO);
+ return &I;
+ }
+
+ if (!(STO->getValue() & (STO->getValue()-1)) &&
+ !(SFO->getValue() & (SFO->getValue()-1))) {
+ Value *TrueAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
+ SubOne(STO), SI->getName()+".t"), I);
+ Value *FalseAnd = InsertNewInstBefore(BinaryOperator::createAnd(Op0,
+ SubOne(SFO), SI->getName()+".f"), I);
+ return new SelectInst(SI->getOperand(0), TrueAnd, FalseAnd);
+ }
+ }
+
// 0 % X == 0, we don't need to preserve faults!
- if (ConstantInt *LHS = dyn_cast<ConstantInt>(I.getOperand(0)))
+ if (ConstantInt *LHS = dyn_cast<ConstantInt>(Op0))
if (LHS->equalsInt(0))
return ReplaceInstUsesWith(I, Constant::getNullValue(I.getType()));