fix indentation
authoryeom <yeom>
Fri, 1 Jul 2011 16:42:18 +0000 (16:42 +0000)
committeryeom <yeom>
Fri, 1 Jul 2011 16:42:18 +0000 (16:42 +0000)
Robust/src/Analysis/SSJava/DefinitelyWrittenCheck.java

index dc2881d5786f1ff722b8c25c6ed99be2d4ea4ade..ec404bd9e818678ac1bd68d1cd9edb5a31ed73bf 100644 (file)
@@ -26,811 +26,777 @@ import IR.Flat.TempDescriptor;
 
 public class DefinitelyWrittenCheck {
 
-       SSJavaAnalysis ssjava;
-       State state;
-       CallGraph callGraph;
-
-       // maps a descriptor to its known dependents: namely
-       // methods or tasks that call the descriptor's method
-       // AND are part of this analysis (reachable from main)
-       private Hashtable<Descriptor, Set<MethodDescriptor>> mapDescriptorToSetDependents;
-
-       // maps a flat node to its WrittenSet: this keeps all heap path overwritten
-       // previously.
-       private Hashtable<FlatNode, Set<NTuple<Descriptor>>> mapFlatNodeToWrittenSet;
-
-       // maps a temp descriptor to its heap path
-       // each temp descriptor has a unique heap path since we do not allow any
-       // alias.
-       private Hashtable<Descriptor, NTuple<Descriptor>> mapHeapPath;
-
-       // maps a flat method to the READ that is the set of heap path that is
-       // expected to be written before method invocation
-       private Hashtable<FlatMethod, Set<NTuple<Descriptor>>> mapFlatMethodToRead;
-
-       // maps a flat method to the OVERWRITE that is the set of heap path that is
-       // overwritten on every possible path during method invocation
-       private Hashtable<FlatMethod, Set<NTuple<Descriptor>>> mapFlatMethodToOverWrite;
-
-       // points to method containing SSJAVA Loop
-       private MethodDescriptor methodContainingSSJavaLoop;
-
-       // maps a flatnode to definitely written analysis mapping M
-       private Hashtable<FlatNode, Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>>> definitelyWrittenResults;
-
-       private Set<NTuple<Descriptor>> calleeUnionBoundReadSet;
-       private Set<NTuple<Descriptor>> calleeIntersectBoundOverWriteSet;
-
-       public DefinitelyWrittenCheck(SSJavaAnalysis ssjava, State state) {
-               this.state = state;
-               this.ssjava = ssjava;
-               this.callGraph = ssjava.getCallGraph();
-               this.mapFlatNodeToWrittenSet = new Hashtable<FlatNode, Set<NTuple<Descriptor>>>();
-               this.mapDescriptorToSetDependents = new Hashtable<Descriptor, Set<MethodDescriptor>>();
-               this.mapHeapPath = new Hashtable<Descriptor, NTuple<Descriptor>>();
-               this.mapFlatMethodToRead = new Hashtable<FlatMethod, Set<NTuple<Descriptor>>>();
-               this.mapFlatMethodToOverWrite = new Hashtable<FlatMethod, Set<NTuple<Descriptor>>>();
-               this.definitelyWrittenResults = new Hashtable<FlatNode, Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>>>();
-               this.calleeUnionBoundReadSet = new HashSet<NTuple<Descriptor>>();
-               this.calleeIntersectBoundOverWriteSet = new HashSet<NTuple<Descriptor>>();
-       }
-
-       public void definitelyWrittenCheck() {
-               methodReadOverWriteAnalysis();
-               writtenAnalyis();
-       }
-
-       private void writtenAnalyis() {
-               // perform second stage analysis: intraprocedural analysis ensure that
-               // all
-               // variables are definitely written in-between the same read
-
-               // First, identify ssjava loop entrace
-               FlatMethod fm = state.getMethodFlat(methodContainingSSJavaLoop);
-               Set<FlatNode> flatNodesToVisit = new HashSet<FlatNode>();
-               flatNodesToVisit.add(fm);
-
-               FlatNode entrance = null;
-
-               while (!flatNodesToVisit.isEmpty()) {
-                       FlatNode fn = flatNodesToVisit.iterator().next();
-                       flatNodesToVisit.remove(fn);
-
-                       String label = (String) state.fn2labelMap.get(fn);
-                       if (label != null) {
-
-                               if (label.equals(ssjava.SSJAVA)) {
-                                       entrance = fn;
-                                       break;
-                               }
-                       }
-
-                       for (int i = 0; i < fn.numNext(); i++) {
-                               FlatNode nn = fn.getNext(i);
-                               flatNodesToVisit.add(nn);
-                       }
-               }
-
-               assert entrance != null;
-
-               writtenAnalysis_analyzeLoop(entrance);
-
-       }
-
-       private void writtenAnalysis_analyzeLoop(FlatNode entrance) {
-
-               Set<FlatNode> flatNodesToVisit = new HashSet<FlatNode>();
-               flatNodesToVisit.add(entrance);
-
-               while (!flatNodesToVisit.isEmpty()) {
-                       FlatNode fn = (FlatNode) flatNodesToVisit.iterator().next();
-                       flatNodesToVisit.remove(fn);
-
-                       Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> prev = definitelyWrittenResults
-                                       .get(fn);
-
-                       Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr = new Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>>();
-                       for (int i = 0; i < fn.numPrev(); i++) {
-                               FlatNode nn = fn.getPrev(i);
-                               Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> dwIn = definitelyWrittenResults
-                                               .get(nn);
-                               if (dwIn != null) {
-                                       merge(curr, dwIn);
-                               }
-                       }
-
-                       writtenAnalysis_nodeAction(fn, curr, entrance);
-
-                       // if a new result, schedule forward nodes for analysis
-                       if (!curr.equals(prev)) {
-                               definitelyWrittenResults.put(fn, curr);
-
-                               for (int i = 0; i < fn.numNext(); i++) {
-                                       FlatNode nn = fn.getNext(i);
-                                       flatNodesToVisit.add(nn);
-                               }
-                       }
-               }
-       }
-
-       private void writtenAnalysis_nodeAction(FlatNode fn,
-                       Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr,
-                       FlatNode loopEntrance) {
-               if (fn.equals(loopEntrance)) {
-                       // it reaches loop entrance: changes all flag to true
-                       Set<NTuple<Descriptor>> keySet = curr.keySet();
-                       for (Iterator iterator = keySet.iterator(); iterator.hasNext();) {
-                               NTuple<Descriptor> key = (NTuple<Descriptor>) iterator.next();
-                               Hashtable<FlatNode, Boolean> pair = curr.get(key);
-                               if (pair != null) {
-                                       Set<FlatNode> pairKeySet = pair.keySet();
-                                       for (Iterator iterator2 = pairKeySet.iterator(); iterator2
-                                                       .hasNext();) {
-                                               FlatNode pairKey = (FlatNode) iterator2.next();
-                                               pair.put(pairKey, Boolean.TRUE);
-                                       }
-                               }
-                       }
-               } else {
-                       TempDescriptor lhs;
-                       TempDescriptor rhs;
-                       FieldDescriptor fld;
-
-                       switch (fn.kind()) {
-                       case FKind.FlatOpNode: {
-                               FlatOpNode fon = (FlatOpNode) fn;
-                               lhs = fon.getDest();
-                               rhs = fon.getLeft();
-
-                               NTuple<Descriptor> rhsHeapPath = computePath(rhs);
-                               if (!rhs.getType().isImmutable()) {
-                                       mapHeapPath.put(lhs, rhsHeapPath);
-                               }
-
-                               if (fon.getOp().getOp() == Operation.ASSIGN) {
-                                       // read(rhs)
-                                       Hashtable<FlatNode, Boolean> gen = curr.get(rhsHeapPath);
-
-                                       if (gen == null) {
-                                               gen = new Hashtable<FlatNode, Boolean>();
-                                               curr.put(rhsHeapPath, gen);
-                                       }
-                                       Boolean currentStatus = gen.get(fn);
-                                       if (currentStatus == null) {
-                                               gen.put(fn, Boolean.FALSE);
-                                       } else {
-                                               if (!rhs.getType().isClass()) {
-                                                       checkFlag(currentStatus.booleanValue(), fn);
-                                               }
-                                       }
-
-                               }
-                               // write(lhs)
-                               NTuple<Descriptor> lhsHeapPath = computePath(lhs);
-                               removeHeapPath(curr, lhsHeapPath);
-                               // curr.put(lhsHeapPath, new Hashtable<FlatNode, Boolean>());
-                       }
-                               break;
-
-                       case FKind.FlatLiteralNode: {
-                               FlatLiteralNode fln = (FlatLiteralNode) fn;
-                               lhs = fln.getDst();
-
-                               // write(lhs)
-                               NTuple<Descriptor> lhsHeapPath = computePath(lhs);
-                               removeHeapPath(curr, lhsHeapPath);
-
-                       }
-                               break;
-
-                       case FKind.FlatFieldNode:
-                       case FKind.FlatElementNode: {
-
-                               FlatFieldNode ffn = (FlatFieldNode) fn;
-                               lhs = ffn.getSrc();
-                               fld = ffn.getField();
-
-                               // read field
-                               NTuple<Descriptor> srcHeapPath = mapHeapPath.get(lhs);
-                               NTuple<Descriptor> fldHeapPath = new NTuple<Descriptor>(
-                                               srcHeapPath.getList());
-                               fldHeapPath.add(fld);
-                               Hashtable<FlatNode, Boolean> gen = curr.get(fldHeapPath);
-
-                               if (gen == null) {
-                                       gen = new Hashtable<FlatNode, Boolean>();
-                                       curr.put(fldHeapPath, gen);
-                               }
-
-                               Boolean currentStatus = gen.get(fn);
-                               if (currentStatus == null) {
-                                       gen.put(fn, Boolean.FALSE);
-                               } else {
-                                       checkFlag(currentStatus.booleanValue(), fn);
-                               }
-
-                       }
-                               break;
-
-                       case FKind.FlatSetFieldNode:
-                       case FKind.FlatSetElementNode: {
-
-                               FlatSetFieldNode fsfn = (FlatSetFieldNode) fn;
-                               lhs = fsfn.getDst();
-                               fld = fsfn.getField();
-
-                               // write(field)
-                               NTuple<Descriptor> lhsHeapPath = mapHeapPath.get(lhs);
-                               NTuple<Descriptor> fldHeapPath = new NTuple<Descriptor>(
-                                               lhsHeapPath.getList());
-                               fldHeapPath.add(fld);
-                               removeHeapPath(curr, fldHeapPath);
-                               // curr.put(fldHeapPath, new Hashtable<FlatNode, Boolean>());
-
-                       }
-                               break;
-
-                       case FKind.FlatCall: {
-
-                               FlatCall fc = (FlatCall) fn;
-
-                               bindHeapPathCallerArgWithCaleeParam(fc);
-
-                               // add <hp,statement,false> in which hp is an element of
-                               // READ_bound set
-                               // of callee: callee has 'read' requirement!
-                               for (Iterator iterator = calleeUnionBoundReadSet.iterator(); iterator
-                                               .hasNext();) {
-                                       NTuple<Descriptor> read = (NTuple<Descriptor>) iterator
-                                                       .next();
-
-                                       Hashtable<FlatNode, Boolean> gen = curr.get(read);
-                                       if (gen == null) {
-                                               gen = new Hashtable<FlatNode, Boolean>();
-                                               curr.put(read, gen);
-                                       }
-                                       Boolean currentStatus = gen.get(fn);
-                                       if (currentStatus == null) {
-                                               gen.put(fn, Boolean.FALSE);
-                                       } else {
-                                               checkFlag(currentStatus.booleanValue(), fn);
-                                       }
-                               }
-
-                               // removes <hp,statement,flag> if hp is an element of
-                               // OVERWRITE_bound
-                               // set of callee. it means that callee will overwrite it
-                               for (Iterator iterator = calleeIntersectBoundOverWriteSet
-                                               .iterator(); iterator.hasNext();) {
-                                       NTuple<Descriptor> write = (NTuple<Descriptor>) iterator
-                                                       .next();
-                                       removeHeapPath(curr, write);
-                                       // curr.put(write, new Hashtable<FlatNode, Boolean>());
-                               }
-                       }
-                               break;
-
-                       }
-
-               }
-
-       }
-
-       private void removeHeapPath(
-                       Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr,
-                       NTuple<Descriptor> hp) {
-
-               // removes all of heap path that starts with prefix 'hp'
-               // since any reference overwrite along heap path gives overwriting side
-               // effects on the value
-
-               Set<NTuple<Descriptor>> keySet = curr.keySet();
-               for (Iterator<NTuple<Descriptor>> iter = keySet.iterator(); iter
-                               .hasNext();) {
-                       NTuple<Descriptor> key = iter.next();
-                       if (key.startsWith(hp)) {
-                               curr.put(key, new Hashtable<FlatNode, Boolean>());
-                       }
-               }
-
-       }
-
-       private void bindHeapPathCallerArgWithCaleeParam(FlatCall fc) {
-               // compute all possible callee set
-               // transform all READ/OVERWRITE set from the any possible
-               // callees to the
-               // caller
-               MethodDescriptor mdCallee = fc.getMethod();
-               FlatMethod fmCallee = state.getMethodFlat(mdCallee);
-               Set<MethodDescriptor> setPossibleCallees = new HashSet<MethodDescriptor>();
-               TypeDescriptor typeDesc = fc.getThis().getType();
-               setPossibleCallees.addAll(callGraph.getMethods(mdCallee, typeDesc));
-
-               // create mapping from arg idx to its heap paths
-               Hashtable<Integer, NTuple<Descriptor>> mapArgIdx2CallerArgHeapPath = new Hashtable<Integer, NTuple<Descriptor>>();
-
-               // arg idx is starting from 'this' arg
-               NTuple<Descriptor> thisHeapPath = new NTuple<Descriptor>();
-               thisHeapPath.add(fc.getThis());
-               mapArgIdx2CallerArgHeapPath.put(Integer.valueOf(0), thisHeapPath);
-
-               for (int i = 0; i < fc.numArgs(); i++) {
-                       TempDescriptor arg = fc.getArg(i);
-                       NTuple<Descriptor> argHeapPath = computePath(arg);
-                       mapArgIdx2CallerArgHeapPath
-                                       .put(Integer.valueOf(i + 1), argHeapPath);
-               }
-
-               for (Iterator iterator = setPossibleCallees.iterator(); iterator
-                               .hasNext();) {
-                       MethodDescriptor callee = (MethodDescriptor) iterator.next();
-                       FlatMethod calleeFlatMethod = state.getMethodFlat(callee);
-
-                       // binding caller's args and callee's params
-                       Set<NTuple<Descriptor>> calleeReadSet = mapFlatMethodToRead
-                                       .get(calleeFlatMethod);
-                       if (calleeReadSet == null) {
-                               calleeReadSet = new HashSet<NTuple<Descriptor>>();
-                               mapFlatMethodToRead.put(calleeFlatMethod, calleeReadSet);
-                       }
-                       Set<NTuple<Descriptor>> calleeOverWriteSet = mapFlatMethodToOverWrite
-                                       .get(calleeFlatMethod);
-                       if (calleeOverWriteSet == null) {
-                               calleeOverWriteSet = new HashSet<NTuple<Descriptor>>();
-                               mapFlatMethodToOverWrite.put(calleeFlatMethod,
-                                               calleeOverWriteSet);
-                       }
-
-                       Hashtable<Integer, TempDescriptor> mapParamIdx2ParamTempDesc = new Hashtable<Integer, TempDescriptor>();
-                       for (int i = 0; i < calleeFlatMethod.numParameters(); i++) {
-                               TempDescriptor param = calleeFlatMethod.getParameter(i);
-                               mapParamIdx2ParamTempDesc.put(Integer.valueOf(i), param);
-                       }
-
-                       Set<NTuple<Descriptor>> calleeBoundReadSet = bindSet(calleeReadSet,
-                                       mapParamIdx2ParamTempDesc, mapArgIdx2CallerArgHeapPath);
-                       // union of the current read set and the current callee's
-                       // read set
-                       calleeUnionBoundReadSet.addAll(calleeBoundReadSet);
-                       Set<NTuple<Descriptor>> calleeBoundWriteSet = bindSet(
-                                       calleeOverWriteSet, mapParamIdx2ParamTempDesc,
-                                       mapArgIdx2CallerArgHeapPath);
-                       // intersection of the current overwrite set and the current
-                       // callee's
-                       // overwrite set
-                       merge(calleeIntersectBoundOverWriteSet, calleeBoundWriteSet);
-               }
-
-       }
-
-       private void checkFlag(boolean booleanValue, FlatNode fn) {
-               if (booleanValue) {
-                       throw new Error(
-                                       "There is a variable who comes back to the same read statement at the out-most iteration at "
-                                                       + methodContainingSSJavaLoop.getClassDesc()
-                                                                       .getSourceFileName()
-                                                       + "::"
-                                                       + fn.getNumLine());
-               }
-       }
-
-       private void merge(
-                       Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr,
-                       Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> in) {
-
-               Set<NTuple<Descriptor>> inKeySet = in.keySet();
-               for (Iterator iterator = inKeySet.iterator(); iterator.hasNext();) {
-                       NTuple<Descriptor> inKey = (NTuple<Descriptor>) iterator.next();
-                       Hashtable<FlatNode, Boolean> inPair = in.get(inKey);
-
-                       Set<FlatNode> pairKeySet = inPair.keySet();
-                       for (Iterator iterator2 = pairKeySet.iterator(); iterator2
-                                       .hasNext();) {
-                               FlatNode pairKey = (FlatNode) iterator2.next();
-                               Boolean inFlag = inPair.get(pairKey);
-
-                               Hashtable<FlatNode, Boolean> currPair = curr.get(inKey);
-                               if (currPair == null) {
-                                       currPair = new Hashtable<FlatNode, Boolean>();
-                                       curr.put(inKey, currPair);
-                               }
-
-                               Boolean currFlag = currPair.get(pairKey);
-                               // by default, flag is set by false
-                               if (currFlag == null) {
-                                       currFlag = Boolean.FALSE;
-                               }
-                               currFlag = Boolean.valueOf(inFlag.booleanValue()
-                                               | currFlag.booleanValue());
-                               currPair.put(pairKey, currFlag);
-                       }
-
-               }
-
-       }
-
-       private void methodReadOverWriteAnalysis() {
-               // perform method READ/OVERWRITE analysis
-               Set<MethodDescriptor> methodDescriptorsToAnalyze = new HashSet<MethodDescriptor>();
-               methodDescriptorsToAnalyze.addAll(ssjava.getAnnotationRequireSet());
-
-               LinkedList<MethodDescriptor> sortedDescriptors = topologicalSort(methodDescriptorsToAnalyze);
-
-               // no need to analyze method having ssjava loop
-               methodContainingSSJavaLoop = sortedDescriptors.removeFirst();
-
-               // current descriptors to visit in fixed-point interprocedural analysis,
-               // prioritized by
-               // dependency in the call graph
-               Stack<MethodDescriptor> methodDescriptorsToVisitStack = new Stack<MethodDescriptor>();
-
-               Set<MethodDescriptor> methodDescriptorToVistSet = new HashSet<MethodDescriptor>();
-               methodDescriptorToVistSet.addAll(sortedDescriptors);
-
-               while (!sortedDescriptors.isEmpty()) {
-                       MethodDescriptor md = sortedDescriptors.removeFirst();
-                       methodDescriptorsToVisitStack.add(md);
-               }
-
-               // analyze scheduled methods until there are no more to visit
-               while (!methodDescriptorsToVisitStack.isEmpty()) {
-                       // start to analyze leaf node
-                       MethodDescriptor md = methodDescriptorsToVisitStack.pop();
-                       FlatMethod fm = state.getMethodFlat(md);
-
-                       Set<NTuple<Descriptor>> readSet = new HashSet<NTuple<Descriptor>>();
-                       Set<NTuple<Descriptor>> overWriteSet = new HashSet<NTuple<Descriptor>>();
-
-                       methodReadOverWrite_analyzeMethod(fm, readSet, overWriteSet);
-
-                       Set<NTuple<Descriptor>> prevRead = mapFlatMethodToRead.get(fm);
-                       Set<NTuple<Descriptor>> prevOverWrite = mapFlatMethodToOverWrite
-                                       .get(fm);
-
-                       if (!(readSet.equals(prevRead) && overWriteSet
-                                       .equals(prevOverWrite))) {
-                               mapFlatMethodToRead.put(fm, readSet);
-                               mapFlatMethodToOverWrite.put(fm, overWriteSet);
-
-                               // results for callee changed, so enqueue dependents caller for
-                               // further
-                               // analysis
-                               Iterator<MethodDescriptor> depsItr = getDependents(md)
-                                               .iterator();
-                               while (depsItr.hasNext()) {
-                                       MethodDescriptor methodNext = depsItr.next();
-                                       if (!methodDescriptorsToVisitStack.contains(methodNext)
-                                                       && methodDescriptorToVistSet.contains(methodNext)) {
-                                               methodDescriptorsToVisitStack.add(methodNext);
-                                       }
-
-                               }
-
-                       }
-
-               }
-
-       }
-
-       private void methodReadOverWrite_analyzeMethod(FlatMethod fm,
-                       Set<NTuple<Descriptor>> readSet,
-                       Set<NTuple<Descriptor>> overWriteSet) {
-               if (state.SSJAVADEBUG) {
-                       System.out.println("Definitely written Analyzing: " + fm);
-               }
-
-               // intraprocedural analysis
-               Set<FlatNode> flatNodesToVisit = new HashSet<FlatNode>();
-               flatNodesToVisit.add(fm);
-
-               while (!flatNodesToVisit.isEmpty()) {
-                       FlatNode fn = flatNodesToVisit.iterator().next();
-                       flatNodesToVisit.remove(fn);
-
-                       Set<NTuple<Descriptor>> curr = new HashSet<NTuple<Descriptor>>();
-
-                       for (int i = 0; i < fn.numPrev(); i++) {
-                               FlatNode prevFn = fn.getPrev(i);
-                               Set<NTuple<Descriptor>> in = mapFlatNodeToWrittenSet
-                                               .get(prevFn);
-                               if (in != null) {
-                                       merge(curr, in);
-                               }
-                       }
-
-                       methodReadOverWrite_nodeActions(fn, curr, readSet, overWriteSet);
-
-                       mapFlatNodeToWrittenSet.put(fn, curr);
-
-                       for (int i = 0; i < fn.numNext(); i++) {
-                               FlatNode nn = fn.getNext(i);
-                               flatNodesToVisit.add(nn);
-                       }
-
-               }
-
-       }
-
-       private void methodReadOverWrite_nodeActions(FlatNode fn,
-                       Set<NTuple<Descriptor>> writtenSet,
-                       Set<NTuple<Descriptor>> readSet,
-                       Set<NTuple<Descriptor>> overWriteSet) {
-               TempDescriptor lhs;
-               TempDescriptor rhs;
-               FieldDescriptor fld;
-
-               switch (fn.kind()) {
-               case FKind.FlatMethod: {
-
-                       // set up initial heap paths for method parameters
-                       FlatMethod fm = (FlatMethod) fn;
-                       for (int i = 0; i < fm.numParameters(); i++) {
-                               TempDescriptor param = fm.getParameter(i);
-                               NTuple<Descriptor> heapPath = new NTuple<Descriptor>();
-                               heapPath.add(param);
-                               mapHeapPath.put(param, heapPath);
-                       }
-               }
-                       break;
-
-               case FKind.FlatOpNode: {
-                       FlatOpNode fon = (FlatOpNode) fn;
-                       // for a normal assign node, need to propagate lhs's heap path to
-                       // rhs
-                       if (fon.getOp().getOp() == Operation.ASSIGN) {
-                               rhs = fon.getLeft();
-                               lhs = fon.getDest();
-
-                               NTuple<Descriptor> rhsHeapPath = mapHeapPath.get(rhs);
-                               if (rhsHeapPath != null) {
-                                       mapHeapPath.put(lhs, mapHeapPath.get(rhs));
-                               }
-
-                       }
-               }
-                       break;
-
-               case FKind.FlatFieldNode:
-               case FKind.FlatElementNode: {
-
-                       // y=x.f;
-
-                       FlatFieldNode ffn = (FlatFieldNode) fn;
-                       lhs = ffn.getDst();
-                       rhs = ffn.getSrc();
-                       fld = ffn.getField();
-
-                       // set up heap path
-                       NTuple<Descriptor> srcHeapPath = mapHeapPath.get(rhs);
-                       NTuple<Descriptor> readingHeapPath = new NTuple<Descriptor>(
-                                       srcHeapPath.getList());
-                       readingHeapPath.add(fld);
-                       mapHeapPath.put(lhs, readingHeapPath);
-
-                       // read (x.f)
-                       // if WT doesnot have hp(x.f), add hp(x.f) to READ
-                       if (!writtenSet.contains(readingHeapPath)) {
-                               readSet.add(readingHeapPath);
-                       }
-
-                       // need to kill hp(x.f) from WT
-                       writtenSet.remove(readingHeapPath);
-
-               }
-                       break;
-
-               case FKind.FlatSetFieldNode:
-               case FKind.FlatSetElementNode: {
-
-                       // x.f=y;
-                       FlatSetFieldNode fsfn = (FlatSetFieldNode) fn;
-                       lhs = fsfn.getDst();
-                       fld = fsfn.getField();
-                       rhs = fsfn.getSrc();
-
-                       // set up heap path
-                       NTuple<Descriptor> lhsHeapPath = mapHeapPath.get(lhs);
-                       NTuple<Descriptor> newHeapPath = new NTuple<Descriptor>(
-                                       lhsHeapPath.getList());
-                       newHeapPath.add(fld);
-                       mapHeapPath.put(fld, newHeapPath);
-
-                       // write(x.f)
-                       // need to add hp(y) to WT
-                       writtenSet.add(newHeapPath);
-
-               }
-                       break;
-
-               case FKind.FlatCall: {
-
-                       FlatCall fc = (FlatCall) fn;
-
-                       bindHeapPathCallerArgWithCaleeParam(fc);
-
-                       // add heap path, which is an element of READ_bound set and is not
-                       // an
-                       // element of WT set, to the caller's READ set
-                       for (Iterator iterator = calleeUnionBoundReadSet.iterator(); iterator
-                                       .hasNext();) {
-                               NTuple<Descriptor> read = (NTuple<Descriptor>) iterator.next();
-                               if (!writtenSet.contains(read)) {
-                                       readSet.add(read);
-                               }
-                       }
-                       writtenSet.removeAll(calleeUnionBoundReadSet);
-
-                       // add heap path, which is an element of OVERWRITE_bound set, to the
-                       // caller's WT set
-                       for (Iterator iterator = calleeIntersectBoundOverWriteSet
-                                       .iterator(); iterator.hasNext();) {
-                               NTuple<Descriptor> write = (NTuple<Descriptor>) iterator.next();
-                               writtenSet.add(write);
-                       }
-
-               }
-                       break;
-
-               case FKind.FlatExit: {
-                       // merge the current written set with OVERWRITE set
-                       merge(overWriteSet, writtenSet);
-               }
-                       break;
-
-               }
-
-       }
-
-       private void merge(Set<NTuple<Descriptor>> curr, Set<NTuple<Descriptor>> in) {
-
-               if (curr.isEmpty()) {
-                       // WrittenSet has a special initial value which covers all possible
-                       // elements
-                       // For the first time of intersection, we can take all previous set
-                       curr.addAll(in);
-               } else {
-                       // otherwise, current set is the intersection of the two sets
-                       curr.retainAll(in);
-               }
-
-       }
-
-       // combine two heap path
-       private NTuple<Descriptor> combine(NTuple<Descriptor> callerIn,
-                       NTuple<Descriptor> calleeIn) {
-               NTuple<Descriptor> combined = new NTuple<Descriptor>();
-
-               for (int i = 0; i < callerIn.size(); i++) {
-                       combined.add(callerIn.get(i));
-               }
-
-               // the first element of callee's heap path represents parameter
-               // so we skip the first one since it is already added from caller's heap
-               // path
-               for (int i = 1; i < calleeIn.size(); i++) {
-                       combined.add(calleeIn.get(i));
-               }
-
-               return combined;
-       }
-
-       private Set<NTuple<Descriptor>> bindSet(Set<NTuple<Descriptor>> calleeSet,
-                       Hashtable<Integer, TempDescriptor> mapParamIdx2ParamTempDesc,
-                       Hashtable<Integer, NTuple<Descriptor>> mapCallerArgIdx2HeapPath) {
-
-               Set<NTuple<Descriptor>> boundedCalleeSet = new HashSet<NTuple<Descriptor>>();
-
-               Set<Integer> keySet = mapCallerArgIdx2HeapPath.keySet();
-               for (Iterator iterator = keySet.iterator(); iterator.hasNext();) {
-                       Integer idx = (Integer) iterator.next();
-
-                       NTuple<Descriptor> callerArgHeapPath = mapCallerArgIdx2HeapPath
-                                       .get(idx);
-                       TempDescriptor calleeParam = mapParamIdx2ParamTempDesc.get(idx);
-
-                       for (Iterator iterator2 = calleeSet.iterator(); iterator2.hasNext();) {
-                               NTuple<Descriptor> element = (NTuple<Descriptor>) iterator2
-                                               .next();
-                               if (element.startsWith(calleeParam)) {
-                                       NTuple<Descriptor> boundElement = combine(
-                                                       callerArgHeapPath, element);
-                                       boundedCalleeSet.add(boundElement);
-                               }
-
-                       }
-
-               }
-               return boundedCalleeSet;
-
-       }
-
-       // Borrowed it from disjoint analysis
-       private LinkedList<MethodDescriptor> topologicalSort(
-                       Set<MethodDescriptor> toSort) {
-
-               Set<MethodDescriptor> discovered = new HashSet<MethodDescriptor>();
-
-               LinkedList<MethodDescriptor> sorted = new LinkedList<MethodDescriptor>();
-
-               Iterator<MethodDescriptor> itr = toSort.iterator();
-               while (itr.hasNext()) {
-                       MethodDescriptor d = itr.next();
-
-                       if (!discovered.contains(d)) {
-                               dfsVisit(d, toSort, sorted, discovered);
-                       }
-               }
-
-               return sorted;
-       }
-
-       // While we're doing DFS on call graph, remember
-       // dependencies for efficient queuing of methods
-       // during interprocedural analysis:
-       //
-       // a dependent of a method decriptor d for this analysis is:
-       // 1) a method or task that invokes d
-       // 2) in the descriptorsToAnalyze set
-       private void dfsVisit(MethodDescriptor md, Set<MethodDescriptor> toSort,
-                       LinkedList<MethodDescriptor> sorted,
-                       Set<MethodDescriptor> discovered) {
-
-               discovered.add(md);
-
-               // otherwise call graph guides DFS
-               Iterator itr = callGraph.getCallerSet(md).iterator();
-               while (itr.hasNext()) {
-                       MethodDescriptor dCaller = (MethodDescriptor) itr.next();
-
-                       // only consider callers in the original set to analyze
-                       if (!toSort.contains(dCaller)) {
-                               continue;
-                       }
-
-                       if (!discovered.contains(dCaller)) {
-                               addDependent(md, // callee
-                                               dCaller // caller
-                               );
-
-                               dfsVisit(dCaller, toSort, sorted, discovered);
-                       }
-               }
-
-               // for leaf-nodes last now!
-               sorted.addLast(md);
-       }
-
-       // a dependent of a method decriptor d for this analysis is:
-       // 1) a method or task that invokes d
-       // 2) in the descriptorsToAnalyze set
-       private void addDependent(MethodDescriptor callee, MethodDescriptor caller) {
-               Set<MethodDescriptor> deps = mapDescriptorToSetDependents.get(callee);
-               if (deps == null) {
-                       deps = new HashSet<MethodDescriptor>();
-               }
-               deps.add(caller);
-               mapDescriptorToSetDependents.put(callee, deps);
-       }
-
-       private Set<MethodDescriptor> getDependents(MethodDescriptor callee) {
-               Set<MethodDescriptor> deps = mapDescriptorToSetDependents.get(callee);
-               if (deps == null) {
-                       deps = new HashSet<MethodDescriptor>();
-                       mapDescriptorToSetDependents.put(callee, deps);
-               }
-               return deps;
-       }
-
-       private NTuple<Descriptor> computePath(TempDescriptor td) {
-               // generate proper path fot input td
-               // if td is local variable, it just generate one element tuple path
-               if (mapHeapPath.containsKey(td)) {
-                       return mapHeapPath.get(td);
-               } else {
-                       NTuple<Descriptor> path = new NTuple<Descriptor>();
-                       path.add(td);
-                       return path;
-               }
-       }
+  SSJavaAnalysis ssjava;
+  State state;
+  CallGraph callGraph;
+
+  // maps a descriptor to its known dependents: namely
+  // methods or tasks that call the descriptor's method
+  // AND are part of this analysis (reachable from main)
+  private Hashtable<Descriptor, Set<MethodDescriptor>> mapDescriptorToSetDependents;
+
+  // maps a flat node to its WrittenSet: this keeps all heap path overwritten
+  // previously.
+  private Hashtable<FlatNode, Set<NTuple<Descriptor>>> mapFlatNodeToWrittenSet;
+
+  // maps a temp descriptor to its heap path
+  // each temp descriptor has a unique heap path since we do not allow any
+  // alias.
+  private Hashtable<Descriptor, NTuple<Descriptor>> mapHeapPath;
+
+  // maps a flat method to the READ that is the set of heap path that is
+  // expected to be written before method invocation
+  private Hashtable<FlatMethod, Set<NTuple<Descriptor>>> mapFlatMethodToRead;
+
+  // maps a flat method to the OVERWRITE that is the set of heap path that is
+  // overwritten on every possible path during method invocation
+  private Hashtable<FlatMethod, Set<NTuple<Descriptor>>> mapFlatMethodToOverWrite;
+
+  // points to method containing SSJAVA Loop
+  private MethodDescriptor methodContainingSSJavaLoop;
+
+  // maps a flatnode to definitely written analysis mapping M
+  private Hashtable<FlatNode, Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>>> definitelyWrittenResults;
+
+  private Set<NTuple<Descriptor>> calleeUnionBoundReadSet;
+  private Set<NTuple<Descriptor>> calleeIntersectBoundOverWriteSet;
+
+  public DefinitelyWrittenCheck(SSJavaAnalysis ssjava, State state) {
+    this.state = state;
+    this.ssjava = ssjava;
+    this.callGraph = ssjava.getCallGraph();
+    this.mapFlatNodeToWrittenSet = new Hashtable<FlatNode, Set<NTuple<Descriptor>>>();
+    this.mapDescriptorToSetDependents = new Hashtable<Descriptor, Set<MethodDescriptor>>();
+    this.mapHeapPath = new Hashtable<Descriptor, NTuple<Descriptor>>();
+    this.mapFlatMethodToRead = new Hashtable<FlatMethod, Set<NTuple<Descriptor>>>();
+    this.mapFlatMethodToOverWrite = new Hashtable<FlatMethod, Set<NTuple<Descriptor>>>();
+    this.definitelyWrittenResults =
+        new Hashtable<FlatNode, Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>>>();
+    this.calleeUnionBoundReadSet = new HashSet<NTuple<Descriptor>>();
+    this.calleeIntersectBoundOverWriteSet = new HashSet<NTuple<Descriptor>>();
+  }
+
+  public void definitelyWrittenCheck() {
+    methodReadOverWriteAnalysis();
+    writtenAnalyis();
+  }
+
+  private void writtenAnalyis() {
+    // perform second stage analysis: intraprocedural analysis ensure that
+    // all
+    // variables are definitely written in-between the same read
+
+    // First, identify ssjava loop entrace
+    FlatMethod fm = state.getMethodFlat(methodContainingSSJavaLoop);
+    Set<FlatNode> flatNodesToVisit = new HashSet<FlatNode>();
+    flatNodesToVisit.add(fm);
+
+    FlatNode entrance = null;
+
+    while (!flatNodesToVisit.isEmpty()) {
+      FlatNode fn = flatNodesToVisit.iterator().next();
+      flatNodesToVisit.remove(fn);
+
+      String label = (String) state.fn2labelMap.get(fn);
+      if (label != null) {
+
+        if (label.equals(ssjava.SSJAVA)) {
+          entrance = fn;
+          break;
+        }
+      }
+
+      for (int i = 0; i < fn.numNext(); i++) {
+        FlatNode nn = fn.getNext(i);
+        flatNodesToVisit.add(nn);
+      }
+    }
+
+    assert entrance != null;
+
+    writtenAnalysis_analyzeLoop(entrance);
+
+  }
+
+  private void writtenAnalysis_analyzeLoop(FlatNode entrance) {
+
+    Set<FlatNode> flatNodesToVisit = new HashSet<FlatNode>();
+    flatNodesToVisit.add(entrance);
+
+    while (!flatNodesToVisit.isEmpty()) {
+      FlatNode fn = (FlatNode) flatNodesToVisit.iterator().next();
+      flatNodesToVisit.remove(fn);
+
+      Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> prev =
+          definitelyWrittenResults.get(fn);
+
+      Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr =
+          new Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>>();
+      for (int i = 0; i < fn.numPrev(); i++) {
+        FlatNode nn = fn.getPrev(i);
+        Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> dwIn =
+            definitelyWrittenResults.get(nn);
+        if (dwIn != null) {
+          merge(curr, dwIn);
+        }
+      }
+
+      writtenAnalysis_nodeAction(fn, curr, entrance);
+
+      // if a new result, schedule forward nodes for analysis
+      if (!curr.equals(prev)) {
+        definitelyWrittenResults.put(fn, curr);
+
+        for (int i = 0; i < fn.numNext(); i++) {
+          FlatNode nn = fn.getNext(i);
+          flatNodesToVisit.add(nn);
+        }
+      }
+    }
+  }
+
+  private void writtenAnalysis_nodeAction(FlatNode fn,
+      Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr, FlatNode loopEntrance) {
+    if (fn.equals(loopEntrance)) {
+      // it reaches loop entrance: changes all flag to true
+      Set<NTuple<Descriptor>> keySet = curr.keySet();
+      for (Iterator iterator = keySet.iterator(); iterator.hasNext();) {
+        NTuple<Descriptor> key = (NTuple<Descriptor>) iterator.next();
+        Hashtable<FlatNode, Boolean> pair = curr.get(key);
+        if (pair != null) {
+          Set<FlatNode> pairKeySet = pair.keySet();
+          for (Iterator iterator2 = pairKeySet.iterator(); iterator2.hasNext();) {
+            FlatNode pairKey = (FlatNode) iterator2.next();
+            pair.put(pairKey, Boolean.TRUE);
+          }
+        }
+      }
+    } else {
+      TempDescriptor lhs;
+      TempDescriptor rhs;
+      FieldDescriptor fld;
+
+      switch (fn.kind()) {
+      case FKind.FlatOpNode: {
+        FlatOpNode fon = (FlatOpNode) fn;
+        lhs = fon.getDest();
+        rhs = fon.getLeft();
+
+        NTuple<Descriptor> rhsHeapPath = computePath(rhs);
+        if (!rhs.getType().isImmutable()) {
+          mapHeapPath.put(lhs, rhsHeapPath);
+        }
+
+        if (fon.getOp().getOp() == Operation.ASSIGN) {
+          // read(rhs)
+          Hashtable<FlatNode, Boolean> gen = curr.get(rhsHeapPath);
+
+          if (gen == null) {
+            gen = new Hashtable<FlatNode, Boolean>();
+            curr.put(rhsHeapPath, gen);
+          }
+          Boolean currentStatus = gen.get(fn);
+          if (currentStatus == null) {
+            gen.put(fn, Boolean.FALSE);
+          } else {
+            if (!rhs.getType().isClass()) {
+              checkFlag(currentStatus.booleanValue(), fn);
+            }
+          }
+
+        }
+        // write(lhs)
+        NTuple<Descriptor> lhsHeapPath = computePath(lhs);
+        removeHeapPath(curr, lhsHeapPath);
+        // curr.put(lhsHeapPath, new Hashtable<FlatNode, Boolean>());
+      }
+        break;
+
+      case FKind.FlatLiteralNode: {
+        FlatLiteralNode fln = (FlatLiteralNode) fn;
+        lhs = fln.getDst();
+
+        // write(lhs)
+        NTuple<Descriptor> lhsHeapPath = computePath(lhs);
+        removeHeapPath(curr, lhsHeapPath);
+
+      }
+        break;
+
+      case FKind.FlatFieldNode:
+      case FKind.FlatElementNode: {
+
+        FlatFieldNode ffn = (FlatFieldNode) fn;
+        lhs = ffn.getSrc();
+        fld = ffn.getField();
+
+        // read field
+        NTuple<Descriptor> srcHeapPath = mapHeapPath.get(lhs);
+        NTuple<Descriptor> fldHeapPath = new NTuple<Descriptor>(srcHeapPath.getList());
+        fldHeapPath.add(fld);
+        Hashtable<FlatNode, Boolean> gen = curr.get(fldHeapPath);
+
+        if (gen == null) {
+          gen = new Hashtable<FlatNode, Boolean>();
+          curr.put(fldHeapPath, gen);
+        }
+
+        Boolean currentStatus = gen.get(fn);
+        if (currentStatus == null) {
+          gen.put(fn, Boolean.FALSE);
+        } else {
+          checkFlag(currentStatus.booleanValue(), fn);
+        }
+
+      }
+        break;
+
+      case FKind.FlatSetFieldNode:
+      case FKind.FlatSetElementNode: {
+
+        FlatSetFieldNode fsfn = (FlatSetFieldNode) fn;
+        lhs = fsfn.getDst();
+        fld = fsfn.getField();
+
+        // write(field)
+        NTuple<Descriptor> lhsHeapPath = mapHeapPath.get(lhs);
+        NTuple<Descriptor> fldHeapPath = new NTuple<Descriptor>(lhsHeapPath.getList());
+        fldHeapPath.add(fld);
+        removeHeapPath(curr, fldHeapPath);
+        // curr.put(fldHeapPath, new Hashtable<FlatNode, Boolean>());
+
+      }
+        break;
+
+      case FKind.FlatCall: {
+
+        FlatCall fc = (FlatCall) fn;
+
+        bindHeapPathCallerArgWithCaleeParam(fc);
+
+        // add <hp,statement,false> in which hp is an element of
+        // READ_bound set
+        // of callee: callee has 'read' requirement!
+        for (Iterator iterator = calleeUnionBoundReadSet.iterator(); iterator.hasNext();) {
+          NTuple<Descriptor> read = (NTuple<Descriptor>) iterator.next();
+
+          Hashtable<FlatNode, Boolean> gen = curr.get(read);
+          if (gen == null) {
+            gen = new Hashtable<FlatNode, Boolean>();
+            curr.put(read, gen);
+          }
+          Boolean currentStatus = gen.get(fn);
+          if (currentStatus == null) {
+            gen.put(fn, Boolean.FALSE);
+          } else {
+            checkFlag(currentStatus.booleanValue(), fn);
+          }
+        }
+
+        // removes <hp,statement,flag> if hp is an element of
+        // OVERWRITE_bound
+        // set of callee. it means that callee will overwrite it
+        for (Iterator iterator = calleeIntersectBoundOverWriteSet.iterator(); iterator.hasNext();) {
+          NTuple<Descriptor> write = (NTuple<Descriptor>) iterator.next();
+          removeHeapPath(curr, write);
+          // curr.put(write, new Hashtable<FlatNode, Boolean>());
+        }
+      }
+        break;
+
+      }
+
+    }
+
+  }
+
+  private void removeHeapPath(Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr,
+      NTuple<Descriptor> hp) {
+
+    // removes all of heap path that starts with prefix 'hp'
+    // since any reference overwrite along heap path gives overwriting side
+    // effects on the value
+
+    Set<NTuple<Descriptor>> keySet = curr.keySet();
+    for (Iterator<NTuple<Descriptor>> iter = keySet.iterator(); iter.hasNext();) {
+      NTuple<Descriptor> key = iter.next();
+      if (key.startsWith(hp)) {
+        curr.put(key, new Hashtable<FlatNode, Boolean>());
+      }
+    }
+
+  }
+
+  private void bindHeapPathCallerArgWithCaleeParam(FlatCall fc) {
+    // compute all possible callee set
+    // transform all READ/OVERWRITE set from the any possible
+    // callees to the
+    // caller
+    MethodDescriptor mdCallee = fc.getMethod();
+    FlatMethod fmCallee = state.getMethodFlat(mdCallee);
+    Set<MethodDescriptor> setPossibleCallees = new HashSet<MethodDescriptor>();
+    TypeDescriptor typeDesc = fc.getThis().getType();
+    setPossibleCallees.addAll(callGraph.getMethods(mdCallee, typeDesc));
+
+    // create mapping from arg idx to its heap paths
+    Hashtable<Integer, NTuple<Descriptor>> mapArgIdx2CallerArgHeapPath =
+        new Hashtable<Integer, NTuple<Descriptor>>();
+
+    // arg idx is starting from 'this' arg
+    NTuple<Descriptor> thisHeapPath = new NTuple<Descriptor>();
+    thisHeapPath.add(fc.getThis());
+    mapArgIdx2CallerArgHeapPath.put(Integer.valueOf(0), thisHeapPath);
+
+    for (int i = 0; i < fc.numArgs(); i++) {
+      TempDescriptor arg = fc.getArg(i);
+      NTuple<Descriptor> argHeapPath = computePath(arg);
+      mapArgIdx2CallerArgHeapPath.put(Integer.valueOf(i + 1), argHeapPath);
+    }
+
+    for (Iterator iterator = setPossibleCallees.iterator(); iterator.hasNext();) {
+      MethodDescriptor callee = (MethodDescriptor) iterator.next();
+      FlatMethod calleeFlatMethod = state.getMethodFlat(callee);
+
+      // binding caller's args and callee's params
+      Set<NTuple<Descriptor>> calleeReadSet = mapFlatMethodToRead.get(calleeFlatMethod);
+      if (calleeReadSet == null) {
+        calleeReadSet = new HashSet<NTuple<Descriptor>>();
+        mapFlatMethodToRead.put(calleeFlatMethod, calleeReadSet);
+      }
+      Set<NTuple<Descriptor>> calleeOverWriteSet = mapFlatMethodToOverWrite.get(calleeFlatMethod);
+      if (calleeOverWriteSet == null) {
+        calleeOverWriteSet = new HashSet<NTuple<Descriptor>>();
+        mapFlatMethodToOverWrite.put(calleeFlatMethod, calleeOverWriteSet);
+      }
+
+      Hashtable<Integer, TempDescriptor> mapParamIdx2ParamTempDesc =
+          new Hashtable<Integer, TempDescriptor>();
+      for (int i = 0; i < calleeFlatMethod.numParameters(); i++) {
+        TempDescriptor param = calleeFlatMethod.getParameter(i);
+        mapParamIdx2ParamTempDesc.put(Integer.valueOf(i), param);
+      }
+
+      Set<NTuple<Descriptor>> calleeBoundReadSet =
+          bindSet(calleeReadSet, mapParamIdx2ParamTempDesc, mapArgIdx2CallerArgHeapPath);
+      // union of the current read set and the current callee's
+      // read set
+      calleeUnionBoundReadSet.addAll(calleeBoundReadSet);
+      Set<NTuple<Descriptor>> calleeBoundWriteSet =
+          bindSet(calleeOverWriteSet, mapParamIdx2ParamTempDesc, mapArgIdx2CallerArgHeapPath);
+      // intersection of the current overwrite set and the current
+      // callee's
+      // overwrite set
+      merge(calleeIntersectBoundOverWriteSet, calleeBoundWriteSet);
+    }
+
+  }
+
+  private void checkFlag(boolean booleanValue, FlatNode fn) {
+    if (booleanValue) {
+      throw new Error(
+          "There is a variable who comes back to the same read statement at the out-most iteration at "
+              + methodContainingSSJavaLoop.getClassDesc().getSourceFileName() + "::"
+              + fn.getNumLine());
+    }
+  }
+
+  private void merge(Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> curr,
+      Hashtable<NTuple<Descriptor>, Hashtable<FlatNode, Boolean>> in) {
+
+    Set<NTuple<Descriptor>> inKeySet = in.keySet();
+    for (Iterator iterator = inKeySet.iterator(); iterator.hasNext();) {
+      NTuple<Descriptor> inKey = (NTuple<Descriptor>) iterator.next();
+      Hashtable<FlatNode, Boolean> inPair = in.get(inKey);
+
+      Set<FlatNode> pairKeySet = inPair.keySet();
+      for (Iterator iterator2 = pairKeySet.iterator(); iterator2.hasNext();) {
+        FlatNode pairKey = (FlatNode) iterator2.next();
+        Boolean inFlag = inPair.get(pairKey);
+
+        Hashtable<FlatNode, Boolean> currPair = curr.get(inKey);
+        if (currPair == null) {
+          currPair = new Hashtable<FlatNode, Boolean>();
+          curr.put(inKey, currPair);
+        }
+
+        Boolean currFlag = currPair.get(pairKey);
+        // by default, flag is set by false
+        if (currFlag == null) {
+          currFlag = Boolean.FALSE;
+        }
+        currFlag = Boolean.valueOf(inFlag.booleanValue() | currFlag.booleanValue());
+        currPair.put(pairKey, currFlag);
+      }
+
+    }
+
+  }
+
+  private void methodReadOverWriteAnalysis() {
+    // perform method READ/OVERWRITE analysis
+    Set<MethodDescriptor> methodDescriptorsToAnalyze = new HashSet<MethodDescriptor>();
+    methodDescriptorsToAnalyze.addAll(ssjava.getAnnotationRequireSet());
+
+    LinkedList<MethodDescriptor> sortedDescriptors = topologicalSort(methodDescriptorsToAnalyze);
+
+    // no need to analyze method having ssjava loop
+    methodContainingSSJavaLoop = sortedDescriptors.removeFirst();
+
+    // current descriptors to visit in fixed-point interprocedural analysis,
+    // prioritized by
+    // dependency in the call graph
+    Stack<MethodDescriptor> methodDescriptorsToVisitStack = new Stack<MethodDescriptor>();
+
+    Set<MethodDescriptor> methodDescriptorToVistSet = new HashSet<MethodDescriptor>();
+    methodDescriptorToVistSet.addAll(sortedDescriptors);
+
+    while (!sortedDescriptors.isEmpty()) {
+      MethodDescriptor md = sortedDescriptors.removeFirst();
+      methodDescriptorsToVisitStack.add(md);
+    }
+
+    // analyze scheduled methods until there are no more to visit
+    while (!methodDescriptorsToVisitStack.isEmpty()) {
+      // start to analyze leaf node
+      MethodDescriptor md = methodDescriptorsToVisitStack.pop();
+      FlatMethod fm = state.getMethodFlat(md);
+
+      Set<NTuple<Descriptor>> readSet = new HashSet<NTuple<Descriptor>>();
+      Set<NTuple<Descriptor>> overWriteSet = new HashSet<NTuple<Descriptor>>();
+
+      methodReadOverWrite_analyzeMethod(fm, readSet, overWriteSet);
+
+      Set<NTuple<Descriptor>> prevRead = mapFlatMethodToRead.get(fm);
+      Set<NTuple<Descriptor>> prevOverWrite = mapFlatMethodToOverWrite.get(fm);
+
+      if (!(readSet.equals(prevRead) && overWriteSet.equals(prevOverWrite))) {
+        mapFlatMethodToRead.put(fm, readSet);
+        mapFlatMethodToOverWrite.put(fm, overWriteSet);
+
+        // results for callee changed, so enqueue dependents caller for
+        // further
+        // analysis
+        Iterator<MethodDescriptor> depsItr = getDependents(md).iterator();
+        while (depsItr.hasNext()) {
+          MethodDescriptor methodNext = depsItr.next();
+          if (!methodDescriptorsToVisitStack.contains(methodNext)
+              && methodDescriptorToVistSet.contains(methodNext)) {
+            methodDescriptorsToVisitStack.add(methodNext);
+          }
+
+        }
+
+      }
+
+    }
+
+  }
+
+  private void methodReadOverWrite_analyzeMethod(FlatMethod fm, Set<NTuple<Descriptor>> readSet,
+      Set<NTuple<Descriptor>> overWriteSet) {
+    if (state.SSJAVADEBUG) {
+      System.out.println("Definitely written Analyzing: " + fm);
+    }
+
+    // intraprocedural analysis
+    Set<FlatNode> flatNodesToVisit = new HashSet<FlatNode>();
+    flatNodesToVisit.add(fm);
+
+    while (!flatNodesToVisit.isEmpty()) {
+      FlatNode fn = flatNodesToVisit.iterator().next();
+      flatNodesToVisit.remove(fn);
+
+      Set<NTuple<Descriptor>> curr = new HashSet<NTuple<Descriptor>>();
+
+      for (int i = 0; i < fn.numPrev(); i++) {
+        FlatNode prevFn = fn.getPrev(i);
+        Set<NTuple<Descriptor>> in = mapFlatNodeToWrittenSet.get(prevFn);
+        if (in != null) {
+          merge(curr, in);
+        }
+      }
+
+      methodReadOverWrite_nodeActions(fn, curr, readSet, overWriteSet);
+
+      mapFlatNodeToWrittenSet.put(fn, curr);
+
+      for (int i = 0; i < fn.numNext(); i++) {
+        FlatNode nn = fn.getNext(i);
+        flatNodesToVisit.add(nn);
+      }
+
+    }
+
+  }
+
+  private void methodReadOverWrite_nodeActions(FlatNode fn, Set<NTuple<Descriptor>> writtenSet,
+      Set<NTuple<Descriptor>> readSet, Set<NTuple<Descriptor>> overWriteSet) {
+    TempDescriptor lhs;
+    TempDescriptor rhs;
+    FieldDescriptor fld;
+
+    switch (fn.kind()) {
+    case FKind.FlatMethod: {
+
+      // set up initial heap paths for method parameters
+      FlatMethod fm = (FlatMethod) fn;
+      for (int i = 0; i < fm.numParameters(); i++) {
+        TempDescriptor param = fm.getParameter(i);
+        NTuple<Descriptor> heapPath = new NTuple<Descriptor>();
+        heapPath.add(param);
+        mapHeapPath.put(param, heapPath);
+      }
+    }
+      break;
+
+    case FKind.FlatOpNode: {
+      FlatOpNode fon = (FlatOpNode) fn;
+      // for a normal assign node, need to propagate lhs's heap path to
+      // rhs
+      if (fon.getOp().getOp() == Operation.ASSIGN) {
+        rhs = fon.getLeft();
+        lhs = fon.getDest();
+
+        NTuple<Descriptor> rhsHeapPath = mapHeapPath.get(rhs);
+        if (rhsHeapPath != null) {
+          mapHeapPath.put(lhs, mapHeapPath.get(rhs));
+        }
+
+      }
+    }
+      break;
+
+    case FKind.FlatFieldNode:
+    case FKind.FlatElementNode: {
+
+      // y=x.f;
+
+      FlatFieldNode ffn = (FlatFieldNode) fn;
+      lhs = ffn.getDst();
+      rhs = ffn.getSrc();
+      fld = ffn.getField();
+
+      // set up heap path
+      NTuple<Descriptor> srcHeapPath = mapHeapPath.get(rhs);
+      NTuple<Descriptor> readingHeapPath = new NTuple<Descriptor>(srcHeapPath.getList());
+      readingHeapPath.add(fld);
+      mapHeapPath.put(lhs, readingHeapPath);
+
+      // read (x.f)
+      // if WT doesnot have hp(x.f), add hp(x.f) to READ
+      if (!writtenSet.contains(readingHeapPath)) {
+        readSet.add(readingHeapPath);
+      }
+
+      // need to kill hp(x.f) from WT
+      writtenSet.remove(readingHeapPath);
+
+    }
+      break;
+
+    case FKind.FlatSetFieldNode:
+    case FKind.FlatSetElementNode: {
+
+      // x.f=y;
+      FlatSetFieldNode fsfn = (FlatSetFieldNode) fn;
+      lhs = fsfn.getDst();
+      fld = fsfn.getField();
+      rhs = fsfn.getSrc();
+
+      // set up heap path
+      NTuple<Descriptor> lhsHeapPath = mapHeapPath.get(lhs);
+      NTuple<Descriptor> newHeapPath = new NTuple<Descriptor>(lhsHeapPath.getList());
+      newHeapPath.add(fld);
+      mapHeapPath.put(fld, newHeapPath);
+
+      // write(x.f)
+      // need to add hp(y) to WT
+      writtenSet.add(newHeapPath);
+
+    }
+      break;
+
+    case FKind.FlatCall: {
+
+      FlatCall fc = (FlatCall) fn;
+
+      bindHeapPathCallerArgWithCaleeParam(fc);
+
+      // add heap path, which is an element of READ_bound set and is not
+      // an
+      // element of WT set, to the caller's READ set
+      for (Iterator iterator = calleeUnionBoundReadSet.iterator(); iterator.hasNext();) {
+        NTuple<Descriptor> read = (NTuple<Descriptor>) iterator.next();
+        if (!writtenSet.contains(read)) {
+          readSet.add(read);
+        }
+      }
+      writtenSet.removeAll(calleeUnionBoundReadSet);
+
+      // add heap path, which is an element of OVERWRITE_bound set, to the
+      // caller's WT set
+      for (Iterator iterator = calleeIntersectBoundOverWriteSet.iterator(); iterator.hasNext();) {
+        NTuple<Descriptor> write = (NTuple<Descriptor>) iterator.next();
+        writtenSet.add(write);
+      }
+
+    }
+      break;
+
+    case FKind.FlatExit: {
+      // merge the current written set with OVERWRITE set
+      merge(overWriteSet, writtenSet);
+    }
+      break;
+
+    }
+
+  }
+
+  private void merge(Set<NTuple<Descriptor>> curr, Set<NTuple<Descriptor>> in) {
+
+    if (curr.isEmpty()) {
+      // WrittenSet has a special initial value which covers all possible
+      // elements
+      // For the first time of intersection, we can take all previous set
+      curr.addAll(in);
+    } else {
+      // otherwise, current set is the intersection of the two sets
+      curr.retainAll(in);
+    }
+
+  }
+
+  // combine two heap path
+  private NTuple<Descriptor> combine(NTuple<Descriptor> callerIn, NTuple<Descriptor> calleeIn) {
+    NTuple<Descriptor> combined = new NTuple<Descriptor>();
+
+    for (int i = 0; i < callerIn.size(); i++) {
+      combined.add(callerIn.get(i));
+    }
+
+    // the first element of callee's heap path represents parameter
+    // so we skip the first one since it is already added from caller's heap
+    // path
+    for (int i = 1; i < calleeIn.size(); i++) {
+      combined.add(calleeIn.get(i));
+    }
+
+    return combined;
+  }
+
+  private Set<NTuple<Descriptor>> bindSet(Set<NTuple<Descriptor>> calleeSet,
+      Hashtable<Integer, TempDescriptor> mapParamIdx2ParamTempDesc,
+      Hashtable<Integer, NTuple<Descriptor>> mapCallerArgIdx2HeapPath) {
+
+    Set<NTuple<Descriptor>> boundedCalleeSet = new HashSet<NTuple<Descriptor>>();
+
+    Set<Integer> keySet = mapCallerArgIdx2HeapPath.keySet();
+    for (Iterator iterator = keySet.iterator(); iterator.hasNext();) {
+      Integer idx = (Integer) iterator.next();
+
+      NTuple<Descriptor> callerArgHeapPath = mapCallerArgIdx2HeapPath.get(idx);
+      TempDescriptor calleeParam = mapParamIdx2ParamTempDesc.get(idx);
+
+      for (Iterator iterator2 = calleeSet.iterator(); iterator2.hasNext();) {
+        NTuple<Descriptor> element = (NTuple<Descriptor>) iterator2.next();
+        if (element.startsWith(calleeParam)) {
+          NTuple<Descriptor> boundElement = combine(callerArgHeapPath, element);
+          boundedCalleeSet.add(boundElement);
+        }
+
+      }
+
+    }
+    return boundedCalleeSet;
+
+  }
+
+  // Borrowed it from disjoint analysis
+  private LinkedList<MethodDescriptor> topologicalSort(Set<MethodDescriptor> toSort) {
+
+    Set<MethodDescriptor> discovered = new HashSet<MethodDescriptor>();
+
+    LinkedList<MethodDescriptor> sorted = new LinkedList<MethodDescriptor>();
+
+    Iterator<MethodDescriptor> itr = toSort.iterator();
+    while (itr.hasNext()) {
+      MethodDescriptor d = itr.next();
+
+      if (!discovered.contains(d)) {
+        dfsVisit(d, toSort, sorted, discovered);
+      }
+    }
+
+    return sorted;
+  }
+
+  // While we're doing DFS on call graph, remember
+  // dependencies for efficient queuing of methods
+  // during interprocedural analysis:
+  //
+  // a dependent of a method decriptor d for this analysis is:
+  // 1) a method or task that invokes d
+  // 2) in the descriptorsToAnalyze set
+  private void dfsVisit(MethodDescriptor md, Set<MethodDescriptor> toSort,
+      LinkedList<MethodDescriptor> sorted, Set<MethodDescriptor> discovered) {
+
+    discovered.add(md);
+
+    // otherwise call graph guides DFS
+    Iterator itr = callGraph.getCallerSet(md).iterator();
+    while (itr.hasNext()) {
+      MethodDescriptor dCaller = (MethodDescriptor) itr.next();
+
+      // only consider callers in the original set to analyze
+      if (!toSort.contains(dCaller)) {
+        continue;
+      }
+
+      if (!discovered.contains(dCaller)) {
+        addDependent(md, // callee
+            dCaller // caller
+        );
+
+        dfsVisit(dCaller, toSort, sorted, discovered);
+      }
+    }
+
+    // for leaf-nodes last now!
+    sorted.addLast(md);
+  }
+
+  // a dependent of a method decriptor d for this analysis is:
+  // 1) a method or task that invokes d
+  // 2) in the descriptorsToAnalyze set
+  private void addDependent(MethodDescriptor callee, MethodDescriptor caller) {
+    Set<MethodDescriptor> deps = mapDescriptorToSetDependents.get(callee);
+    if (deps == null) {
+      deps = new HashSet<MethodDescriptor>();
+    }
+    deps.add(caller);
+    mapDescriptorToSetDependents.put(callee, deps);
+  }
+
+  private Set<MethodDescriptor> getDependents(MethodDescriptor callee) {
+    Set<MethodDescriptor> deps = mapDescriptorToSetDependents.get(callee);
+    if (deps == null) {
+      deps = new HashSet<MethodDescriptor>();
+      mapDescriptorToSetDependents.put(callee, deps);
+    }
+    return deps;
+  }
+
+  private NTuple<Descriptor> computePath(TempDescriptor td) {
+    // generate proper path fot input td
+    // if td is local variable, it just generate one element tuple path
+    if (mapHeapPath.containsKey(td)) {
+      return mapHeapPath.get(td);
+    } else {
+      NTuple<Descriptor> path = new NTuple<Descriptor>();
+      path.add(td);
+      return path;
+    }
+  }
 
 }
\ No newline at end of file