if (Subtarget->hasSSE1())
setOperationAction(ISD::PREFETCH , MVT::Other, Legal);
- if (!Subtarget->hasSSE2())
- setOperationAction(ISD::MEMBARRIER , MVT::Other, Expand);
+ // We may not have a libcall for MEMBARRIER so we should lower this.
+ setOperationAction(ISD::MEMBARRIER , MVT::Other, Custom);
+
// On X86 and X86-64, atomic operations are lowered to locked instructions.
// Locked instructions, in turn, have implicit fence semantics (all memory
// operations are flushed before issuing the locked instruction, and they
return Sum;
}
+SDValue X86TargetLowering::LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const{
+ DebugLoc dl = Op.getDebugLoc();
+
+ if (!Subtarget->hasSSE2())
+ return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0),
+ DAG.getConstant(0, MVT::i32));
+
+ return DAG.getNode(X86ISD::MEMBARRIER, dl, MVT::Other, Op.getOperand(0));
+}
+
SDValue X86TargetLowering::LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const {
EVT T = Op.getValueType();
DebugLoc dl = Op.getDebugLoc();
SDValue X86TargetLowering::LowerOperation(SDValue Op, SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default: llvm_unreachable("Should not custom lower this!");
+ case ISD::MEMBARRIER: return LowerMEMBARRIER(Op,DAG);
case ISD::ATOMIC_CMP_SWAP: return LowerCMP_SWAP(Op,DAG);
case ISD::ATOMIC_LOAD_SUB: return LowerLOAD_SUB(Op,DAG);
case ISD::BUILD_VECTOR: return LowerBUILD_VECTOR(Op, DAG);
ATOMXOR64_DAG,
ATOMAND64_DAG,
ATOMNAND64_DAG,
- ATOMSWAP64_DAG
+ ATOMSWAP64_DAG,
+
+ // Memory barrier
+ MEMBARRIER
// WARNING: Do not add anything in the end unless you want the node to
// have memop! In fact, starting from ATOMADD64_DAG all opcodes will be
SDValue LowerCMP_SWAP(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerLOAD_SUB(SDValue Op, SelectionDAG &DAG) const;
SDValue LowerREADCYCLECOUNTER(SDValue Op, SelectionDAG &DAG) const;
+ SDValue LowerMEMBARRIER(SDValue Op, SelectionDAG &DAG) const;
virtual SDValue
LowerFormalArguments(SDValue Chain,
def SDT_X86TCRET : SDTypeProfile<0, 2, [SDTCisPtrTy<0>, SDTCisVT<1, i32>]>;
+def SDT_X86MEMBARRIER : SDTypeProfile<0, 0, []>;
+def SDT_X86MEMBARRIERNoSSE : SDTypeProfile<0, 1, [SDTCisInt<0>]>;
+
+def X86MemBarrier : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIER,
+ [SDNPHasChain]>;
+def X86MemBarrierNoSSE : SDNode<"X86ISD::MEMBARRIER", SDT_X86MEMBARRIERNoSSE,
+ [SDNPHasChain]>;
+
def X86bsf : SDNode<"X86ISD::BSF", SDTUnaryArithWithFlags>;
def X86bsr : SDNode<"X86ISD::BSR", SDTUnaryArithWithFlags>;
def X86shld : SDNode<"X86ISD::SHLD", SDTIntShiftDOp>;
// Atomic support
//
+// Memory barriers
+let hasSideEffects = 1 in {
+def Int_MemBarrier : I<0, Pseudo, (outs), (ins),
+ "#MEMBARRIER",
+ [(X86MemBarrier)]>, Requires<[HasSSE2]>;
+
+let Uses = [ESP], isCodeGenOnly = 1 in
+def Int_MemBarrierNoSSE : I<0x0B, Pseudo, (outs), (ins GR32:$zero),
+ "lock\n\t"
+ "or{l}\t{$zero, (%esp)|(%esp), $zero}",
+ [(X86MemBarrierNoSSE GR32:$zero)]>, LOCK;
+}
+
// Atomic swap. These are just normal xchg instructions. But since a memory
// operand is referenced, the atomicity is ensured.
let Constraints = "$val = $dst" in {