Gather and Scatter are new introduced intrinsics, comming after recently implemented masked load and store.
This is the first patch for Gather and Scatter intrinsics. It includes only the syntax, parsing and verification.
Gather and Scatter intrinsics allow to perform multiple memory accesses (read/write) in one vector instruction.
The intrinsics are not target specific and will have the following syntax:
Gather:
declare <16 x i32> @llvm.masked.gather.v16i32(<16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1> <mask>, <16 x i32> <passthru>)
declare <8 x float> @llvm.masked.gather.v8f32(<8 x float*><vector of ptrs>, i32 <alignment>, <8 x i1> <mask>, <8 x float><passthru>)
Scatter:
declare void @llvm.masked.scatter.v8i32(<8 x i32><vector value to be stored> , <8 x i32*><vector of ptrs> , i32 <alignment>, <8 x i1> <mask>)
declare void @llvm.masked.scatter.v16i32(<16 x i32> <vector value to be stored> , <16 x i32*> <vector of ptrs>, i32 <alignment>, <16 x i1><mask> )
Vector of ptrs - a set of source/destination addresses, to load/store the value.
Mask - switches on/off vector lanes to prevent memory access for switched-off lanes
vector of ptrs, value and mask should have the same vector width.
These are code examples where gather / scatter should be used and will allow function vectorization
;void foo1(int * restrict A, int * restrict B, int * restrict C) {
; for (int i=0; i<SIZE; i++) {
; A[i] = B[C[i]];
; }
;}
;void foo3(int * restrict A, int * restrict B) {
; for (int i=0; i<SIZE; i++) {
; A[B[i]] = i+5;
; }
;}
Tests will come in the following patches, with CodeGen and Vectorizer.
http://reviews.llvm.org/D7433
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@228521
91177308-0d34-0410-b5e6-
96231b3b80d8
Void, VarArg, MMX, Metadata, Half, Float, Double,
Integer, Vector, Pointer, Struct,
Argument, ExtendArgument, TruncArgument, HalfVecArgument,
- SameVecWidthArgument, PtrToArgument
+ SameVecWidthArgument, PtrToArgument, VecOfPtrsToElt
} Kind;
union {
unsigned getArgumentNumber() const {
assert(Kind == Argument || Kind == ExtendArgument ||
Kind == TruncArgument || Kind == HalfVecArgument ||
- Kind == SameVecWidthArgument || Kind == PtrToArgument);
+ Kind == SameVecWidthArgument || Kind == PtrToArgument ||
+ Kind == VecOfPtrsToElt);
return Argument_Info >> 3;
}
ArgKind getArgumentKind() const {
assert(Kind == Argument || Kind == ExtendArgument ||
Kind == TruncArgument || Kind == HalfVecArgument ||
- Kind == SameVecWidthArgument || Kind == PtrToArgument);
+ Kind == SameVecWidthArgument || Kind == PtrToArgument ||
+ Kind == VecOfPtrsToElt);
return (ArgKind)(Argument_Info & 7);
}
ValueType ElTy = elty.VT;
}
class LLVMPointerTo<int num> : LLVMMatchType<num>;
+class LLVMVectorOfPointersToElt<int num> : LLVMMatchType<num>;
// Match the type of another intrinsic parameter that is expected to be a
// vector type, but change the element count to be half as many
[LLVMPointerTo<0>, llvm_i32_ty,
LLVMVectorSameWidth<0, llvm_i1_ty>, LLVMMatchType<0>],
[IntrReadArgMem]>;
+
+def int_masked_gather: Intrinsic<[llvm_anyvector_ty],
+ [LLVMVectorOfPointersToElt<0>, llvm_i32_ty,
+ LLVMVectorSameWidth<0, llvm_i1_ty>,
+ LLVMMatchType<0>],
+ [IntrReadArgMem]>;
+
+def int_masked_scatter: Intrinsic<[],
+ [llvm_anyvector_ty,
+ LLVMVectorOfPointersToElt<0>, llvm_i32_ty,
+ LLVMVectorSameWidth<0, llvm_i1_ty>],
+ [IntrReadWriteArgMem]>;
+
//===----------------------------------------------------------------------===//
// Target-specific intrinsics
//===----------------------------------------------------------------------===//
IIT_VARARG = 28,
IIT_HALF_VEC_ARG = 29,
IIT_SAME_VEC_WIDTH_ARG = 30,
- IIT_PTR_TO_ARG = 31
+ IIT_PTR_TO_ARG = 31,
+ IIT_VEC_OF_PTRS_TO_ELT = 32
};
ArgInfo));
return;
}
+ case IIT_VEC_OF_PTRS_TO_ELT: {
+ unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
+ OutputTable.push_back(IITDescriptor::get(IITDescriptor::VecOfPtrsToElt,
+ ArgInfo));
+ return;
+ }
case IIT_EMPTYSTRUCT:
OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
return;
Type *Ty = Tys[D.getArgumentNumber()];
return PointerType::getUnqual(Ty);
}
+ case IITDescriptor::VecOfPtrsToElt: {
+ Type *Ty = Tys[D.getArgumentNumber()];
+ VectorType *VTy = dyn_cast<VectorType>(Ty);
+ if (!VTy)
+ llvm_unreachable("Expected an argument of Vector Type");
+ Type *EltTy = VTy->getVectorElementType();
+ return VectorType::get(PointerType::getUnqual(EltTy),
+ VTy->getNumElements());
+ }
}
llvm_unreachable("unhandled");
}
PointerType *ThisArgType = dyn_cast<PointerType>(Ty);
return (!ThisArgType || ThisArgType->getElementType() != ReferenceType);
}
+ case IITDescriptor::VecOfPtrsToElt: {
+ if (D.getArgumentNumber() >= ArgTys.size())
+ return true;
+ VectorType * ReferenceType =
+ dyn_cast<VectorType> (ArgTys[D.getArgumentNumber()]);
+ VectorType *ThisArgVecTy = dyn_cast<VectorType>(Ty);
+ if (!ThisArgVecTy || !ReferenceType ||
+ (ReferenceType->getVectorNumElements() !=
+ ThisArgVecTy->getVectorNumElements()))
+ return true;
+ PointerType *ThisArgEltTy =
+ dyn_cast<PointerType>(ThisArgVecTy->getVectorElementType());
+ if (!ThisArgEltTy)
+ return true;
+ return (!(ThisArgEltTy->getElementType() ==
+ ReferenceType->getVectorElementType()));
+ }
}
llvm_unreachable("unhandled");
}
IIT_VARARG = 28,
IIT_HALF_VEC_ARG = 29,
IIT_SAME_VEC_WIDTH_ARG = 30,
- IIT_PTR_TO_ARG = 31
+ IIT_PTR_TO_ARG = 31,
+ IIT_VEC_OF_PTRS_TO_ELT = 32
};
EncodeFixedValueType(VT, Sig);
return;
}
- else if (R->isSubClassOf("LLVMPointerTo")) {
+ else if (R->isSubClassOf("LLVMPointerTo"))
Sig.push_back(IIT_PTR_TO_ARG);
- }
+ else if (R->isSubClassOf("LLVMVectorOfPointersToElt"))
+ Sig.push_back(IIT_VEC_OF_PTRS_TO_ELT);
else
Sig.push_back(IIT_ARG);
return Sig.push_back((Number << 3) | ArgCodes[Number]);