.handler = at91rm9200_timer_interrupt
};
-static cycle_t read_clk32k(void)
+static cycle_t read_clk32k(struct clocksource *cs)
{
return read_CRTR();
}
* Clocksource: just a monotonic counter of MCK/16 cycles.
* We don't care whether or not PIT irqs are enabled.
*/
-static cycle_t read_pit_clk(void)
+static cycle_t read_pit_clk(struct clocksource *cs)
{
unsigned long flags;
u32 elapsed;
/*
* clocksource
*/
-static cycle_t read_cycles(void)
+static cycle_t read_cycles(struct clocksource *cs)
{
struct timer_s *t = &timers[TID_CLOCKSOURCE];
IMX_TCTL(TIMER_BASE) = TCTL_FRR | TCTL_CLK_PCLK1 | TCTL_TEN;
}
-cycle_t imx_get_cycles(void)
+cycle_t imx_get_cycles(struct clocksource *cs)
{
return IMX_TCN(TIMER_BASE);
}
/*
* clocksource
*/
-cycle_t ixp4xx_get_cycles(void)
+cycle_t ixp4xx_get_cycles(struct clocksource *cs)
{
return *IXP4XX_OSTS;
}
return IRQ_HANDLED;
}
-static cycle_t msm_gpt_read(void)
+static cycle_t msm_gpt_read(struct clocksource *cs)
{
return readl(MSM_GPT_BASE + TIMER_COUNT_VAL);
}
-static cycle_t msm_dgt_read(void)
+static cycle_t msm_dgt_read(struct clocksource *cs)
{
return readl(MSM_DGT_BASE + TIMER_COUNT_VAL) >> MSM_DGT_SHIFT;
}
.handler = netx_timer_interrupt,
};
-cycle_t netx_get_cycles(void)
+cycle_t netx_get_cycles(struct clocksource *cs)
{
return readl(NETX_GPIO_COUNTER_CURRENT(TIMER_CLOCKSOURCE));
}
#define TIMER_CLOCKEVENT 1
static u32 latch;
-static cycle_t ns9360_clocksource_read(void)
+static cycle_t ns9360_clocksource_read(struct clocksource *cs)
{
return __raw_readl(SYS_TR(TIMER_CLOCKSOURCE));
}
.handler = omap_mpu_timer2_interrupt,
};
-static cycle_t mpu_read(void)
+static cycle_t mpu_read(struct clocksource *cs)
{
return ~omap_mpu_timer_read(1);
}
* clocksource
*/
static struct omap_dm_timer *gpt_clocksource;
-static cycle_t clocksource_read_cycles(void)
+static cycle_t clocksource_read_cycles(struct clocksource *cs)
{
return (cycle_t)omap_dm_timer_read_counter(gpt_clocksource);
}
.set_mode = pxa_osmr0_set_mode,
};
-static cycle_t pxa_read_oscr(void)
+static cycle_t pxa_read_oscr(struct clocksource *cs)
{
return OSCR;
}
.handler = realview_timer_interrupt,
};
-static cycle_t realview_get_cycles(void)
+static cycle_t realview_get_cycles(struct clocksource *cs)
{
return ~readl(timer3_va_base + TIMER_VALUE);
}
.handler = versatile_timer_interrupt,
};
-static cycle_t versatile_get_cycles(void)
+static cycle_t versatile_get_cycles(struct clocksource *cs)
{
return ~readl(TIMER3_VA_BASE + TIMER_VALUE);
}
/* clock source */
-static cycle_t mxc_get_cycles(void)
+static cycle_t mxc_get_cycles(struct clocksource *cs)
{
return __raw_readl(TIMER_BASE + MXC_TCN);
}
#include <linux/clocksource.h>
-static cycle_t omap_32k_read(void)
+static cycle_t omap_32k_read(struct clocksource *cs)
{
return omap_readl(TIMER_32K_SYNCHRONIZED);
}
{
unsigned long long ret;
- ret = (unsigned long long)omap_32k_read();
+ ret = (unsigned long long)omap_32k_read(&clocksource_32k);
ret = (ret * clocksource_32k.mult_orig) >> clocksource_32k.shift;
return ret;
}
/*
* Clocksource handling.
*/
-static cycle_t orion_clksrc_read(void)
+static cycle_t orion_clksrc_read(struct clocksource *cs)
{
return 0xffffffff - readl(TIMER0_VAL);
}
#include <mach/pm.h>
-static cycle_t read_cycle_count(void)
+static cycle_t read_cycle_count(struct clocksource *cs)
{
return (cycle_t)sysreg_read(COUNT);
}
return (cyc * cyc2ns_scale) >> CYC2NS_SCALE_FACTOR;
}
-static cycle_t read_cycles(void)
+static cycle_t read_cycles(struct clocksource *cs)
{
return __bfin_cycles_off + (get_cycles() << __bfin_cycles_mod);
}
-unsigned long long sched_clock(void)
-{
- return cycles_2_ns(read_cycles());
-}
-
static struct clocksource clocksource_bfin = {
.name = "bfin_cycles",
.rating = 350,
.flags = CLOCK_SOURCE_IS_CONTINUOUS,
};
+unsigned long long sched_clock(void)
+{
+ return cycles_2_ns(read_cycles(&clocksource_bfin));
+}
+
static int __init bfin_clocksource_init(void)
{
set_cyc2ns_scale(get_cclk() / 1000);
static void __iomem *cyclone_mc;
-static cycle_t read_cyclone(void)
+static cycle_t read_cyclone(struct clocksource *cs)
{
return (cycle_t)readq((void __iomem *)cyclone_mc);
}
#include "fsyscall_gtod_data.h"
-static cycle_t itc_get_cycles(void);
+static cycle_t itc_get_cycles(struct clocksource *cs);
struct fsyscall_gtod_data_t fsyscall_gtod_data = {
.lock = SEQLOCK_UNLOCKED,
}
}
-static cycle_t itc_get_cycles(void)
+static cycle_t itc_get_cycles(struct clocksource *cs)
{
u64 lcycle, now, ret;
extern unsigned long sn_rtc_cycles_per_second;
-static cycle_t read_sn2(void)
+static cycle_t read_sn2(struct clocksource *cs)
{
return (cycle_t)readq(RTC_COUNTER_ADDR);
}
/***************************************************************************/
-static cycle_t m68328_read_clk(void)
+static cycle_t m68328_read_clk(struct clocksource *cs)
{
unsigned long flags;
u32 cycles;
#define DMA_DTMR_CLK_DIV_16 (2 << 1)
#define DMA_DTMR_ENABLE (1 << 0)
-static cycle_t cf_dt_get_cycles(void)
+static cycle_t cf_dt_get_cycles(struct clocksource *cs)
{
return __raw_readl(DTCN0);
}
/***************************************************************************/
-static cycle_t pit_read_clk(void)
+static cycle_t pit_read_clk(struct clocksource *cs)
{
unsigned long flags;
u32 cycles;
/***************************************************************************/
-static cycle_t mcftmr_read_clk(void)
+static cycle_t mcftmr_read_clk(struct clocksource *cs)
{
unsigned long flags;
u32 cycles;
static struct txx9_tmr_reg __iomem *txx9_cs_tmrptr;
-static cycle_t txx9_cs_read(void)
+static cycle_t txx9_cs_read(struct clocksource *cs)
{
return __raw_readl(&txx9_cs_tmrptr->trr);
}
#include <asm/sibyte/sb1250.h>
-static cycle_t bcm1480_hpt_read(void)
+static cycle_t bcm1480_hpt_read(struct clocksource *cs)
{
return (cycle_t) __raw_readq(IOADDR(A_SCD_ZBBUS_CYCLE_COUNT));
}
#include <asm/dec/ioasic.h>
#include <asm/dec/ioasic_addrs.h>
-static cycle_t dec_ioasic_hpt_read(void)
+static cycle_t dec_ioasic_hpt_read(struct clocksource *cs)
{
return ioasic_read(IO_REG_FCTR);
}
while (!ds1287_timer_state())
;
- start = dec_ioasic_hpt_read();
+ start = dec_ioasic_hpt_read(&clocksource_dec);
while (i--)
while (!ds1287_timer_state())
;
- end = dec_ioasic_hpt_read();
+ end = dec_ioasic_hpt_read(&clocksource_dec);
freq = (end - start) * 10;
printk(KERN_INFO "I/O ASIC clock frequency %dHz\n", freq);
#include <asm/time.h>
-static cycle_t c0_hpt_read(void)
+static cycle_t c0_hpt_read(struct clocksource *cs)
{
return read_c0_count();
}
* The HPT is free running from SB1250_HPT_VALUE down to 0 then starts over
* again.
*/
-static cycle_t sb1250_hpt_read(void)
+static cycle_t sb1250_hpt_read(struct clocksource *cs)
{
unsigned int count;
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
-static cycle_t pit_read(void)
+static cycle_t pit_read(struct clocksource *cs)
{
unsigned long flags;
int count;
static unsigned long cpj;
-static cycle_t hpt_read(void)
+static cycle_t hpt_read(struct clocksource *cs)
{
return read_c0_count2();
}
setup_irq(irq, &hub_rt_irqaction);
}
-static cycle_t hub_rt_read(void)
+static cycle_t hub_rt_read(struct clocksource *cs)
{
return REMOTE_HUB_L(cputonasid(0), PI_RT_COUNT);
}
#include <linux/clockchips.h>
#include <linux/clocksource.h>
-static cycle_t rtc_read(void);
+static cycle_t rtc_read(struct clocksource *);
static struct clocksource clocksource_rtc = {
.name = "rtc",
.rating = 400,
.read = rtc_read,
};
-static cycle_t timebase_read(void);
+static cycle_t timebase_read(struct clocksource *);
static struct clocksource clocksource_timebase = {
.name = "timebase",
.rating = 400,
}
/* clocksource code */
-static cycle_t rtc_read(void)
+static cycle_t rtc_read(struct clocksource *cs)
{
return (cycle_t)get_rtc();
}
-static cycle_t timebase_read(void)
+static cycle_t timebase_read(struct clocksource *cs)
{
return (cycle_t)get_tb();
}
return ts.tv_sec;
}
-static cycle_t read_tod_clock(void)
+static cycle_t read_tod_clock(struct clocksource *cs)
{
return get_clock();
}
if (!clocksource_sh.rating)
return (unsigned long long)jiffies * (NSEC_PER_SEC / HZ);
- cycles = clocksource_sh.read();
+ cycles = clocksource_sh.read(&clocksource_sh);
return cyc2ns(&clocksource_sh, cycles);
}
#endif
*/
static int tmus_are_scaled;
-static cycle_t tmu_timer_read(void)
+static cycle_t tmu_timer_read(struct clocksource *cs)
{
return ((cycle_t)(~_tmu_read(TMU1)))<<tmus_are_scaled;
}
}
EXPORT_SYMBOL(udelay);
+static cycle_t clocksource_tick_read(struct clocksource *cs)
+{
+ return tick_ops->get_tick();
+}
+
void __init time_init(void)
{
unsigned long freq = sparc64_init_timers();
clocksource_tick.mult =
clocksource_hz2mult(freq,
clocksource_tick.shift);
- clocksource_tick.read = tick_ops->get_tick;
+ clocksource_tick.read = clocksource_tick_read;
printk("clocksource: mult[%x] shift[%d]\n",
clocksource_tick.mult, clocksource_tick.shift);
return IRQ_HANDLED;
}
-static cycle_t itimer_read(void)
+static cycle_t itimer_read(struct clocksource *cs)
{
return os_nsecs() / 1000;
}
/*
* Clock source related code
*/
-static cycle_t read_hpet(void)
+static cycle_t read_hpet(struct clocksource *cs)
{
return (cycle_t)hpet_readl(HPET_COUNTER);
}
hpet_restart_counter();
/* Verify whether hpet counter works */
- t1 = read_hpet();
+ t1 = hpet_readl(HPET_COUNTER);
rdtscll(start);
/*
rdtscll(now);
} while ((now - start) < 200000UL);
- if (t1 == read_hpet()) {
+ if (t1 == hpet_readl(HPET_COUNTER)) {
printk(KERN_WARNING
"HPET counter not counting. HPET disabled\n");
return -ENODEV;
* to just read by itself. So use jiffies to emulate a free
* running counter:
*/
-static cycle_t pit_read(void)
+static cycle_t pit_read(struct clocksource *cs)
{
static int old_count;
static u32 old_jifs;
return ret;
}
+static cycle_t kvm_clock_get_cycles(struct clocksource *cs)
+{
+ return kvm_clock_read();
+}
+
/*
* If we don't do that, there is the possibility that the guest
* will calibrate under heavy load - thus, getting a lower lpj -
static struct clocksource kvm_clock = {
.name = "kvm-clock",
- .read = kvm_clock_read,
+ .read = kvm_clock_get_cycles,
.rating = 400,
.mask = CLOCKSOURCE_MASK(64),
.mult = 1 << KVM_SCALE,
* code, which is necessary to support wrapping clocksources like pm
* timer.
*/
-static cycle_t read_tsc(void)
+static cycle_t read_tsc(struct clocksource *cs)
{
cycle_t ret = (cycle_t)get_cycles();
/** vmi clocksource */
static struct clocksource clocksource_vmi;
-static cycle_t read_real_cycles(void)
+static cycle_t read_real_cycles(struct clocksource *cs)
{
cycle_t ret = (cycle_t)vmi_timer_ops.get_cycle_counter(VMI_CYCLES_REAL);
return max(ret, clocksource_vmi.cycle_last);
/* If we can't use the TSC, the kernel falls back to our lower-priority
* "lguest_clock", where we read the time value given to us by the Host. */
-static cycle_t lguest_clock_read(void)
+static cycle_t lguest_clock_read(struct clocksource *cs)
{
unsigned long sec, nsec;
return ret;
}
+static cycle_t xen_clocksource_get_cycles(struct clocksource *cs)
+{
+ return xen_clocksource_read();
+}
+
static void xen_read_wallclock(struct timespec *ts)
{
struct shared_info *s = HYPERVISOR_shared_info;
static struct clocksource xen_clocksource __read_mostly = {
.name = "xen",
.rating = 400,
- .read = xen_clocksource_read,
+ .read = xen_clocksource_get_cycles,
.mask = ~0,
.mult = 1<<XEN_SHIFT, /* time directly in nanoseconds */
.shift = XEN_SHIFT,
#ifdef CONFIG_IA64
static void __iomem *hpet_mctr;
-static cycle_t read_hpet(void)
+static cycle_t read_hpet(struct clocksource *cs)
{
return (cycle_t)read_counter((void __iomem *)hpet_mctr);
}
return v2;
}
-static cycle_t acpi_pm_read(void)
+static cycle_t acpi_pm_read(struct clocksource *cs)
{
return (cycle_t)read_pmtmr();
}
}
__setup("acpi_pm_good", acpi_pm_good_setup);
-static cycle_t acpi_pm_read_slow(void)
+static cycle_t acpi_pm_read_slow(struct clocksource *cs)
{
return (cycle_t)acpi_pm_read_verified();
}
unsigned long count, delta;
mach_prepare_counter();
- value1 = clocksource_acpi_pm.read();
+ value1 = clocksource_acpi_pm.read(&clocksource_acpi_pm);
mach_countup(&count);
- value2 = clocksource_acpi_pm.read();
+ value2 = clocksource_acpi_pm.read(&clocksource_acpi_pm);
delta = (value2 - value1) & ACPI_PM_MASK;
/* Check that the PMTMR delta is within 5% of what we expect */
/* "verify" this timing source: */
for (j = 0; j < ACPI_PM_MONOTONICITY_CHECKS; j++) {
udelay(100 * j);
- value1 = clocksource_acpi_pm.read();
+ value1 = clocksource_acpi_pm.read(&clocksource_acpi_pm);
for (i = 0; i < ACPI_PM_READ_CHECKS; i++) {
- value2 = clocksource_acpi_pm.read();
+ value2 = clocksource_acpi_pm.read(&clocksource_acpi_pm);
if (value2 == value1)
continue;
if (value2 > value1)
int use_cyclone = 0;
static void __iomem *cyclone_ptr;
-static cycle_t read_cyclone(void)
+static cycle_t read_cyclone(struct clocksource *cs)
{
return (cycle_t)readl(cyclone_ptr);
}
/* The base timer frequency, * 27 if selected */
#define HRT_FREQ 1000000
-static cycle_t read_hrt(void)
+static cycle_t read_hrt(struct clocksource *cs)
{
/* Read the timer value */
return (cycle_t) inl(scx200_cb_base + SCx200_TIMER_OFFSET);
static void __iomem *tcaddr;
-static cycle_t tc_get_cycles(void)
+static cycle_t tc_get_cycles(struct clocksource *cs)
{
unsigned long flags;
u32 lower, upper;
* 400-499: Perfect
* The ideal clocksource. A must-use where
* available.
- * @read: returns a cycle value
+ * @read: returns a cycle value, passes clocksource as argument
* @mask: bitmask for two's complement
* subtraction of non 64 bit counters
* @mult: cycle to nanosecond multiplier (adjusted by NTP)
char *name;
struct list_head list;
int rating;
- cycle_t (*read)(void);
+ cycle_t (*read)(struct clocksource *cs);
cycle_t mask;
u32 mult;
u32 mult_orig;
*/
static inline cycle_t clocksource_read(struct clocksource *cs)
{
- return cs->read();
+ return cs->read(cs);
}
/**
resumed = test_and_clear_bit(0, &watchdog_resumed);
- wdnow = watchdog->read();
+ wdnow = watchdog->read(watchdog);
wd_nsec = cyc2ns(watchdog, (wdnow - watchdog_last) & watchdog->mask);
watchdog_last = wdnow;
list_for_each_entry_safe(cs, tmp, &watchdog_list, wd_list) {
- csnow = cs->read();
+ csnow = cs->read(cs);
if (unlikely(resumed)) {
cs->wd_last = csnow;
list_add(&cs->wd_list, &watchdog_list);
if (!started && watchdog) {
- watchdog_last = watchdog->read();
+ watchdog_last = watchdog->read(watchdog);
watchdog_timer.expires = jiffies + WATCHDOG_INTERVAL;
add_timer_on(&watchdog_timer,
cpumask_first(cpu_online_mask));
cse->flags &= ~CLOCK_SOURCE_WATCHDOG;
/* Start if list is not empty */
if (!list_empty(&watchdog_list)) {
- watchdog_last = watchdog->read();
+ watchdog_last = watchdog->read(watchdog);
watchdog_timer.expires =
jiffies + WATCHDOG_INTERVAL;
add_timer_on(&watchdog_timer,
*/
#define JIFFIES_SHIFT 8
-static cycle_t jiffies_read(void)
+static cycle_t jiffies_read(struct clocksource *cs)
{
return (cycle_t) jiffies;
}