Specify an allocation order with a register class. This is used by register
allocators with a greedy heuristic. This is usefull as it is sometimes
beneficial to color more constrained classes first.
Differential Revision: http://reviews.llvm.org/D8626
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@233743
91177308-0d34-0410-b5e6-
96231b3b80d8
// The function should return 0 to select the default order defined by
// MemberList, 1 to select the first AltOrders entry and so on.
code AltOrderSelect = [{}];
+
+ // Specify allocation priority for register allocators using a greedy
+ // heuristic. Classes with high priority are assigned first. It is sometimes
+ // beneficial to assign registers to highly constrained classes first.
+ // The priority has to be in the range [0,63].
+ int AllocationPriority = 0;
}
// The memberList in a RegisterClass is a dag of set operations. TableGen
const uint32_t *SubClassMask;
const uint16_t *SuperRegIndices;
const unsigned LaneMask;
+ /// Classes with high priority should be assigned first by register allocators
+ /// with a greedy heuristic. The priority is a value in the range [0,63].
+ const uint8_t AllocationPriority;
/// Whether the class supports two (or more) disjunct subregister indices.
const bool HasDisjunctSubRegs;
const sc_iterator SuperClasses;
// Giant live ranges fall back to the global assignment heuristic, which
// prevents excessive spilling in pathological cases.
bool ReverseLocal = TRI->reverseLocalAssignment();
+ const TargetRegisterClass &RC = *MRI->getRegClass(Reg);
bool ForceGlobal = !ReverseLocal &&
- (Size / SlotIndex::InstrDist) > (2 * MRI->getRegClass(Reg)->getNumRegs());
+ (Size / SlotIndex::InstrDist) > (2 * RC.getNumRegs());
if (ExtraRegInfo[Reg].Stage == RS_Assign && !ForceGlobal && !LI->empty() &&
LIS->intervalIsInOneMBB(*LI)) {
// large blocks on targets with many physical registers.
Prio = Indexes->getZeroIndex().getInstrDistance(LI->endIndex());
}
- }
- else {
+ Prio |= RC.AllocationPriority << 24;
+ } else {
// Allocate global and split ranges in long->short order. Long ranges that
// don't fit should be spilled (or split) ASAP so they don't create
// interference. Mark a bit to prioritize global above local ranges.
CopyCost = R->getValueAsInt("CopyCost");
Allocatable = R->getValueAsBit("isAllocatable");
AltOrderSelect = R->getValueAsString("AltOrderSelect");
+ int AllocationPriority = R->getValueAsInt("AllocationPriority");
+ if (AllocationPriority < 0 || AllocationPriority > 63)
+ PrintFatalError(R->getLoc(), "AllocationPriority out of range [0,63]");
+ this->AllocationPriority = AllocationPriority;
}
// Create an inferred register class that was missing from the .td files.
int CopyCost;
bool Allocatable;
std::string AltOrderSelect;
+ uint8_t AllocationPriority;
/// Contains the combination of the lane masks of all subregisters.
unsigned LaneMask;
/// True if there are at least 2 subregisters which do not interfere.
<< "SubClassMask,\n SuperRegIdxSeqs + "
<< SuperRegIdxSeqs.get(SuperRegIdxLists[RC.EnumValue]) << ",\n "
<< format("0x%08x,\n ", RC.LaneMask)
+ << (unsigned)RC.AllocationPriority << ",\n "
<< (RC.HasDisjunctSubRegs?"true":"false")
<< ", /* HasDisjunctSubRegs */\n ";
if (RC.getSuperClasses().empty())