bool Success =
AddressingModeMatcher(AddrModeInsts, TLI, AccessTy,
MemoryInst, Result).MatchAddr(V, 0);
- Success = Success; assert(Success && "Couldn't select *anything*?");
+ (void)Success; assert(Success && "Couldn't select *anything*?");
return Result;
}
private:
Val.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, &lost);
// Conversion is always precise.
- status = status;
+ (void)status;
assert(status == APFloat::opOK && !lost &&
"Precision lost during fp16 constfolding");
}
return 0;
}
-
InstIt = ReverseMap.find(Inst);
assert(InstIt != ReverseMap.end() && "Reverse map out of sync?");
bool Found = InstIt->second.erase(Val);
- assert(Found && "Invalid reverse map!"); Found=Found;
+ assert(Found && "Invalid reverse map!"); (void)Found;
if (InstIt->second.empty())
ReverseMap.erase(InstIt);
}
void RALinScan::DowngradeRegister(LiveInterval *li, unsigned Reg) {
bool isNew = DowngradedRegs.insert(Reg);
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Multiple reloads holding the same register?");
DowngradeMap.insert(std::make_pair(li->reg, Reg));
for (const unsigned *AS = tri_->getAliasSet(Reg); *AS; ++AS) {
assert(I->getReg() && "Unknown physical register!");
unsigned VRBase = MRI.createVirtualRegister(SU->CopyDstRC);
bool isNew = VRBaseMap.insert(std::make_pair(SU, VRBase)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
BuildMI(*BB, InsertPos, DebugLoc(), TII->get(TargetOpcode::COPY), VRBase)
.addReg(I->getReg());
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, SrcReg)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
return;
}
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
if (IsClone)
VRBaseMap.erase(Op);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
}
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, VRBase)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
MBB->insert(InsertPos, MI);
SDValue Op(Node, 0);
bool isNew = VRBaseMap.insert(std::make_pair(Op, NewVReg)).second;
- isNew = isNew; // Silence compiler warning.
+ (void)isNew; // Silence compiler warning.
assert(isNew && "Node emitted out of order - early");
}
} else {
SmallVector<MachineInstr*, 4> NewMIs;
bool Success = TII->unfoldMemoryOperand(MF, MI, Reg, false, false, NewMIs);
- Success = Success; // Silence compiler warning.
+ (void)Success; // Silence compiler warning.
assert(Success && "Failed to unfold!");
MachineInstr *NewMI = NewMIs[0];
MBB->insert(MI, NewMI);
PrettyStackTraceEntry::PrettyStackTraceEntry() {
// The first time this is called, we register the crash printer.
static bool HandlerRegistered = RegisterCrashPrinter();
- HandlerRegistered = HandlerRegistered;
+ (void)HandlerRegistered;
// Link ourselves.
NextEntry = PrettyStackTraceHead.get();
OS << ArgV[i] << ' ';
OS << '\n';
}
-
void StringMapImpl::RemoveKey(StringMapEntryBase *V) {
const char *VStr = (char*)V + ItemSize;
StringMapEntryBase *V2 = RemoveKey(StringRef(VStr, V->getKeyLength()));
- V2 = V2;
+ (void)V2;
assert(V == V2 && "Didn't find key?");
}
case ISD::SUBE:
case ISD::ADDE: {
SDValue InFlag = Node->getOperand(2), CmpLHS;
- unsigned Opc = InFlag.getOpcode(); Opc=Opc;
+ unsigned Opc = InFlag.getOpcode(); (void)Opc;
assert(((Opc == ISD::ADDC || Opc == ISD::ADDE) ||
(Opc == ISD::SUBC || Opc == ISD::SUBE)) &&
"(ADD|SUB)E flag operand must come from (ADD|SUB)C/E insn");
VT = LD->getMemoryVT();
} else if (StoreSDNode *ST = dyn_cast<StoreSDNode>(N)) {
- ST = ST;
Ptr = ST->getBasePtr();
VT = ST->getMemoryVT();
} else
DEBUG(dbgs() << "Replace stores:\n";
for (unsigned i = 0, e = Range.TheStores.size(); i != e; ++i)
dbgs() << *Range.TheStores[i] << '\n';
- dbgs() << "With: " << *C << '\n'); C=C;
+ dbgs() << "With: " << *C << '\n'); (void)C;
// Don't invalidate the iterator
BBI = BI;
MD = 0;
return MadeChange;
}
-
-
-
MemoryInst, Result);
Matcher.IgnoreProfitability = true;
bool Success = Matcher.MatchAddr(Address, 0);
- Success = Success; assert(Success && "Couldn't select *anything*?");
+ (void)Success; assert(Success && "Couldn't select *anything*?");
// If the match didn't cover I, then it won't be shared by it.
if (std::find(MatchedAddrModeInsts.begin(), MatchedAddrModeInsts.end(),
for (unsigned i = 0, e = P->getNumIncomingValues(); i < e; ++i) {
if (InvokeInst *II = dyn_cast<InvokeInst>(P->getIncomingValue(i))) {
assert(II->getParent() != P->getIncomingBlock(i) &&
- "Invoke edge not supported yet"); II=II;
+ "Invoke edge not supported yet"); (void)II;
}
new StoreInst(P->getIncomingValue(i), Slot,
P->getIncomingBlock(i)->getTerminator());
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
- FTy = FTy; // silence warning.
+ (void)FTy; // silence warning.
assert((NumParams == FTy->getNumParams() ||
(FTy->isVarArg() && NumParams > FTy->getNumParams())) &&
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
- FTy = FTy; // silence warning.
+ (void)FTy; // silence warning.
assert((FTy->getNumParams() == 2 ||
(FTy->isVarArg() && FTy->getNumParams() < 2)) &&
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
- FTy = FTy; // silence warning.
+ (void)FTy; // silence warning.
assert((FTy->getNumParams() == 1 ||
(FTy->isVarArg() && FTy->getNumParams() == 0)) &&
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Func->getType())->getElementType());
- FTy = FTy; // silence warning.
+ (void)FTy; // silence warning.
assert(FTy->getNumParams() == 0 && "Calling a function with bad signature");
}
Op<-1>() = IfException;
const FunctionType *FTy =
cast<FunctionType>(cast<PointerType>(Fn->getType())->getElementType());
- FTy = FTy; // silence warning.
+ (void)FTy; // silence warning.
assert(((NumArgs == FTy->getNumParams()) ||
(FTy->isVarArg() && NumArgs > FTy->getNumParams())) &&
void BinaryOperator::init(BinaryOps iType) {
Value *LHS = getOperand(0), *RHS = getOperand(1);
- LHS = LHS; RHS = RHS; // Silence warnings.
+ (void)LHS; (void)RHS; // Silence warnings.
assert(LHS->getType() == RHS->getType() &&
"Binary operator operand types must match!");
#ifndef NDEBUG
while (!AbstractTypeUsers.empty() && NewTy != this) {
AbstractTypeUser *User = AbstractTypeUsers.back();
- unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
+ unsigned OldSize = AbstractTypeUsers.size(); (void)OldSize;
#ifdef DEBUG_MERGE_TYPES
DEBUG(dbgs() << " REFINING user " << OldSize-1 << "[" << (void*)User
<< "] of abstract type [" << (void*)this << " "
DEBUG(dbgs() << "typeIsREFINED type: " << (void*)this << " " << *this <<"\n");
#endif
- unsigned OldSize = AbstractTypeUsers.size(); OldSize=OldSize;
+ unsigned OldSize = AbstractTypeUsers.size(); (void)OldSize;
while (!AbstractTypeUsers.empty()) {
AbstractTypeUser *ATU = AbstractTypeUsers.back();
ATU->typeBecameConcrete(this);
// The old record is now out-of-date, because one of the children has been
// updated. Remove the obsolete entry from the map.
unsigned NumErased = Map.erase(ValType::get(Ty));
- assert(NumErased && "Element not found!"); NumErased = NumErased;
+ assert(NumErased && "Element not found!"); (void)NumErased;
// Remember the structural hash for the type before we start hacking on it,
// in case we need it later.
// Get V's ST, this should always succed, because V has a name.
ValueSymbolTable *VST;
bool Failure = getSymTab(V, VST);
- assert(!Failure && "V has a name, so it should have a ST!"); Failure=Failure;
+ assert(!Failure && "V has a name, so it should have a ST!"); (void)Failure;
// If these values are both in the same symtab, we can do this very fast.
// This works even if both values have no symtab yet.
TEST_F(ValueHandle, AssertingVH_BasicOperation) {
AssertingVH<CastInst> AVH(BitcastV.get());
CastInst *implicit_to_exact_type = AVH;
- implicit_to_exact_type = implicit_to_exact_type; // Avoid warning.
+ (void)implicit_to_exact_type; // Avoid warning.
AssertingVH<Value> GenericAVH(BitcastV.get());
EXPECT_EQ(BitcastV.get(), GenericAVH);
const CastInst *ConstBitcast = BitcastV.get();
AssertingVH<const CastInst> AVH(ConstBitcast);
const CastInst *implicit_to_exact_type = AVH;
- implicit_to_exact_type = implicit_to_exact_type; // Avoid warning.
+ (void)implicit_to_exact_type; // Avoid warning.
}
TEST_F(ValueHandle, AssertingVH_Comparisons) {
o << " const unsigned opcode = MI.getOpcode();\n"
<< " unsigned Value = InstBits[opcode];\n"
<< " unsigned op = 0;\n"
- << " op = op; // suppress warning\n"
+ << " (void)op; // suppress warning\n"
<< " switch (opcode) {\n";
// Emit each case statement