const DataLayout *DL;
private:
+ bool isDenselyPacked(Type *type);
+ bool canPaddingBeAccessed(Argument *Arg);
CallGraphNode *PromoteArguments(CallGraphNode *CGN);
bool isSafeToPromoteArgument(Argument *Arg, bool isByVal) const;
CallGraphNode *DoPromotion(Function *F,
return Changed;
}
+/// \brief Checks if a type could have padding bytes.
+bool ArgPromotion::isDenselyPacked(Type *type) {
+
+ // There is no size information, so be conservative.
+ if (!type->isSized())
+ return false;
+
+ // If the alloc size is not equal to the storage size, then there are padding
+ // bytes. For x86_fp80 on x86-64, size: 80 alloc size: 128.
+ if (!DL || DL->getTypeSizeInBits(type) != DL->getTypeAllocSizeInBits(type))
+ return false;
+
+ if (!isa<CompositeType>(type))
+ return true;
+
+ // For homogenous sequential types, check for padding within members.
+ if (SequentialType *seqTy = dyn_cast<SequentialType>(type))
+ return isa<PointerType>(seqTy) || isDenselyPacked(seqTy->getElementType());
+
+ // Check for padding within and between elements of a struct.
+ StructType *StructTy = cast<StructType>(type);
+ const StructLayout *Layout = DL->getStructLayout(StructTy);
+ uint64_t StartPos = 0;
+ for (unsigned i = 0, E = StructTy->getNumElements(); i < E; ++i) {
+ Type *ElTy = StructTy->getElementType(i);
+ if (!isDenselyPacked(ElTy))
+ return false;
+ if (StartPos != Layout->getElementOffsetInBits(i))
+ return false;
+ StartPos += DL->getTypeAllocSizeInBits(ElTy);
+ }
+
+ return true;
+}
+
+/// \brief Checks if the padding bytes of an argument could be accessed.
+bool ArgPromotion::canPaddingBeAccessed(Argument *arg) {
+
+ assert(arg->hasByValAttr());
+
+ // Track all the pointers to the argument to make sure they are not captured.
+ SmallPtrSet<Value *, 16> PtrValues;
+ PtrValues.insert(arg);
+
+ // Track all of the stores.
+ SmallVector<StoreInst *, 16> Stores;
+
+ // Scan through the uses recursively to make sure the pointer is always used
+ // sanely.
+ SmallVector<Value *, 16> WorkList;
+ WorkList.insert(WorkList.end(), arg->user_begin(), arg->user_end());
+ while (!WorkList.empty()) {
+ Value *V = WorkList.back();
+ WorkList.pop_back();
+ if (isa<GetElementPtrInst>(V) || isa<PHINode>(V)) {
+ if (PtrValues.insert(V))
+ WorkList.insert(WorkList.end(), V->user_begin(), V->user_end());
+ } else if (StoreInst *Store = dyn_cast<StoreInst>(V)) {
+ Stores.push_back(Store);
+ } else if (!isa<LoadInst>(V)) {
+ return true;
+ }
+ }
+
+// Check to make sure the pointers aren't captured
+ for (StoreInst *Store : Stores)
+ if (PtrValues.count(Store->getValueOperand()))
+ return true;
+
+ return false;
+}
+
/// PromoteArguments - This method checks the specified function to see if there
/// are any promotable arguments and if it is safe to promote the function (for
/// example, all callers are direct). If safe to promote some arguments, it
Type *AgTy = cast<PointerType>(PtrArg->getType())->getElementType();
// If this is a byval argument, and if the aggregate type is small, just
- // pass the elements, which is always safe. This does not apply to
- // inalloca.
- if (PtrArg->hasByValAttr()) {
+ // pass the elements, which is always safe, if the passed value is densely
+ // packed or if we can prove the padding bytes are never accessed. This does
+ // not apply to inalloca.
+ bool isSafeToPromote =
+ PtrArg->hasByValAttr() &&
+ (isDenselyPacked(AgTy) || !canPaddingBeAccessed(PtrArg));
+ if (isSafeToPromote) {
if (StructType *STy = dyn_cast<StructType>(AgTy)) {
if (maxElements > 0 && STy->getNumElements() > maxElements) {
DEBUG(dbgs() << "argpromotion disable promoting argument '"
--- /dev/null
+; RUN: opt < %s -argpromotion -S | FileCheck %s
+
+target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-unknown-linux-gnu"
+
+%union.u = type { x86_fp80 }
+%struct.s = type { double, i16, i8, [5 x i8] }
+
+@b = internal global %struct.s { double 3.14, i16 9439, i8 25, [5 x i8] undef }, align 16
+
+%struct.Foo = type { i32, i64 }
+@a = internal global %struct.Foo { i32 1, i64 2 }, align 8
+
+define void @run() {
+entry:
+ tail call i8 @UseLongDoubleUnsafely(%union.u* byval align 16 bitcast (%struct.s* @b to %union.u*))
+ tail call x86_fp80 @UseLongDoubleSafely(%union.u* byval align 16 bitcast (%struct.s* @b to %union.u*))
+ call i64 @AccessPaddingOfStruct(%struct.Foo* @a)
+ call i64 @CaptureAStruct(%struct.Foo* @a)
+ ret void
+}
+
+; CHECK: internal i8 @UseLongDoubleUnsafely(%union.u* byval align 16 %arg) {
+define internal i8 @UseLongDoubleUnsafely(%union.u* byval align 16 %arg) {
+entry:
+ %bitcast = bitcast %union.u* %arg to %struct.s*
+ %gep = getelementptr inbounds %struct.s* %bitcast, i64 0, i32 2
+ %result = load i8* %gep
+ ret i8 %result
+}
+
+; CHECK: internal x86_fp80 @UseLongDoubleSafely(x86_fp80 {{%.*}}) {
+define internal x86_fp80 @UseLongDoubleSafely(%union.u* byval align 16 %arg) {
+ %gep = getelementptr inbounds %union.u* %arg, i64 0, i32 0
+ %fp80 = load x86_fp80* %gep
+ ret x86_fp80 %fp80
+}
+
+; CHECK: define internal i64 @AccessPaddingOfStruct(%struct.Foo* byval %a) {
+define internal i64 @AccessPaddingOfStruct(%struct.Foo* byval %a) {
+ %p = bitcast %struct.Foo* %a to i64*
+ %v = load i64* %p
+ ret i64 %v
+}
+
+; CHECK: define internal i64 @CaptureAStruct(%struct.Foo* byval %a) {
+define internal i64 @CaptureAStruct(%struct.Foo* byval %a) {
+entry:
+ %a_ptr = alloca %struct.Foo*
+ br label %loop
+
+loop:
+ %phi = phi %struct.Foo* [ null, %entry ], [ %gep, %loop ]
+ %0 = phi %struct.Foo* [ %a, %entry ], [ %0, %loop ]
+ store %struct.Foo* %phi, %struct.Foo** %a_ptr
+ %gep = getelementptr %struct.Foo* %a, i64 0
+ br label %loop
+}