DK_OptimizationRemark,
DK_OptimizationRemarkMissed,
DK_OptimizationRemarkAnalysis,
+ DK_OptimizationRemarkAnalysisFPCommute,
DK_OptimizationFailure,
DK_MIRParser,
DK_FirstPluginKind
/// \see DiagnosticInfoOptimizationBase::isEnabled.
bool isEnabled() const override;
+
+protected:
+ DiagnosticInfoOptimizationRemarkAnalysis(enum DiagnosticKind Kind,
+ const char *PassName,
+ const Function &Fn,
+ const DebugLoc &DLoc,
+ const Twine &Msg)
+ : DiagnosticInfoOptimizationBase(Kind, DS_Remark, PassName, Fn, DLoc,
+ Msg) {}
+};
+
+/// Diagnostic information for optimization analysis remarks related to
+/// floating-point non-commutativity.
+class DiagnosticInfoOptimizationRemarkAnalysisFPCommute
+ : public DiagnosticInfoOptimizationRemarkAnalysis {
+public:
+ /// \p PassName is the name of the pass emitting this diagnostic. If
+ /// this name matches the regular expression given in -Rpass-analysis=, then
+ /// the diagnostic will be emitted. \p Fn is the function where the diagnostic
+ /// is being emitted. \p DLoc is the location information to use in the
+ /// diagnostic. If line table information is available, the diagnostic will
+ /// include the source code location. \p Msg is the message to show. The
+ /// front-end will append its own message related to options that address
+ /// floating-point non-commutativity. Note that this class does not copy this
+ /// message, so this reference must be valid for the whole life time of the
+ /// diagnostic.
+ DiagnosticInfoOptimizationRemarkAnalysisFPCommute(const char *PassName,
+ const Function &Fn,
+ const DebugLoc &DLoc,
+ const Twine &Msg)
+ : DiagnosticInfoOptimizationRemarkAnalysis(
+ DK_OptimizationRemarkAnalysisFPCommute, PassName, Fn, DLoc, Msg) {}
+
+ static bool classof(const DiagnosticInfo *DI) {
+ return DI->getKind() == DK_OptimizationRemarkAnalysisFPCommute;
+ }
};
/// Diagnostic information for machine IR parser.
const Function &Fn, const DebugLoc &DLoc,
const Twine &Msg);
+/// Emit an optimization analysis remark related to messages about
+/// floating-point non-commutativity. \p PassName is the name of the pass
+/// emitting the message. If -Rpass-analysis= is given and \p PassName matches
+/// the regular expression in -Rpass, then the remark will be emitted. \p Fn is
+/// the function triggering the remark, \p DLoc is the debug location where the
+/// diagnostic is generated. \p Msg is the message string to use.
+void emitOptimizationRemarkAnalysisFPCommute(LLVMContext &Ctx,
+ const char *PassName,
+ const Function &Fn,
+ const DebugLoc &DLoc,
+ const Twine &Msg);
+
/// Diagnostic information for optimization failures.
class DiagnosticInfoOptimizationFailure
: public DiagnosticInfoOptimizationBase {
RecurrenceDescriptor()
: StartValue(nullptr), LoopExitInstr(nullptr), Kind(RK_NoRecurrence),
- MinMaxKind(MRK_Invalid) {}
+ MinMaxKind(MRK_Invalid), UnsafeAlgebraInst(nullptr) {}
RecurrenceDescriptor(Value *Start, Instruction *Exit, RecurrenceKind K,
- MinMaxRecurrenceKind MK)
- : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK) {}
+ MinMaxRecurrenceKind MK,
+ Instruction *UAI /*Unsafe Algebra Inst*/)
+ : StartValue(Start), LoopExitInstr(Exit), Kind(K), MinMaxKind(MK),
+ UnsafeAlgebraInst(UAI) {}
/// This POD struct holds information about a potential recurrence operation.
class InstDesc {
public:
- InstDesc(bool IsRecur, Instruction *I)
- : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid) {}
+ InstDesc(bool IsRecur, Instruction *I, Instruction *UAI = nullptr)
+ : IsRecurrence(IsRecur), PatternLastInst(I), MinMaxKind(MRK_Invalid),
+ UnsafeAlgebraInst(UAI) {}
- InstDesc(Instruction *I, MinMaxRecurrenceKind K)
- : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K) {}
+ InstDesc(Instruction *I, MinMaxRecurrenceKind K, Instruction *UAI = nullptr)
+ : IsRecurrence(true), PatternLastInst(I), MinMaxKind(K),
+ UnsafeAlgebraInst(UAI) {}
bool isRecurrence() { return IsRecurrence; }
+ bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
+
+ Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
+
MinMaxRecurrenceKind getMinMaxKind() { return MinMaxKind; }
Instruction *getPatternInst() { return PatternLastInst; }
Instruction *PatternLastInst;
// If this is a min/max pattern the comparison predicate.
MinMaxRecurrenceKind MinMaxKind;
+ // Recurrence has unsafe algebra.
+ Instruction *UnsafeAlgebraInst;
};
/// Returns a struct describing if the instruction 'I' can be a recurrence
Instruction *getLoopExitInstr() { return LoopExitInstr; }
+ /// Returns true if the recurrence has unsafe algebra which requires a relaxed
+ /// floating-point model.
+ bool hasUnsafeAlgebra() { return UnsafeAlgebraInst != nullptr; }
+
+ /// Returns first unsafe algebra instruction in the PHI node's use-chain.
+ Instruction *getUnsafeAlgebraInst() { return UnsafeAlgebraInst; }
+
private:
// The starting value of the recurrence.
// It does not have to be zero!
RecurrenceKind Kind;
// If this a min/max recurrence the kind of recurrence.
MinMaxRecurrenceKind MinMaxKind;
+ // First occurance of unasfe algebra in the PHI's use-chain.
+ Instruction *UnsafeAlgebraInst;
};
BasicBlock *InsertPreheaderForLoop(Loop *L, Pass *P);
DiagnosticInfoOptimizationRemarkAnalysis(PassName, Fn, DLoc, Msg));
}
+void llvm::emitOptimizationRemarkAnalysisFPCommute(LLVMContext &Ctx,
+ const char *PassName,
+ const Function &Fn,
+ const DebugLoc &DLoc,
+ const Twine &Msg) {
+ Ctx.diagnose(DiagnosticInfoOptimizationRemarkAnalysisFPCommute(PassName, Fn,
+ DLoc, Msg));
+}
+
bool DiagnosticInfoOptimizationFailure::isEnabled() const {
// Only print warnings.
return getSeverity() == DS_Warning;
if (!cast<DiagnosticInfoOptimizationRemarkAnalysis>(DI).isEnabled())
return false;
break;
+ case llvm::DK_OptimizationRemarkAnalysisFPCommute:
+ if (!cast<DiagnosticInfoOptimizationRemarkAnalysisFPCommute>(DI)
+ .isEnabled())
+ return false;
+ break;
default:
break;
}
// Save the description of this reduction variable.
RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind,
- ReduxDesc.getMinMaxKind());
+ ReduxDesc.getMinMaxKind(),
+ ReduxDesc.getUnsafeAlgebraInst());
RedDes = RD;
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
InstDesc &Prev, bool HasFunNoNaNAttr) {
bool FP = I->getType()->isFloatingPointTy();
- bool FastMath = FP && I->hasUnsafeAlgebra();
+ Instruction *UAI = Prev.getUnsafeAlgebraInst();
+ if (!UAI && FP && !I->hasUnsafeAlgebra())
+ UAI = I; // Found an unsafe (unvectorizable) algebra instruction.
+
switch (I->getOpcode()) {
default:
return InstDesc(false, I);
case Instruction::Xor:
return InstDesc(Kind == RK_IntegerXor, I);
case Instruction::FMul:
- return InstDesc(Kind == RK_FloatMult && FastMath, I);
+ return InstDesc(Kind == RK_FloatMult, I, UAI);
case Instruction::FSub:
case Instruction::FAdd:
- return InstDesc(Kind == RK_FloatAdd && FastMath, I);
+ return InstDesc(Kind == RK_FloatAdd, I, UAI);
case Instruction::FCmp:
case Instruction::ICmp:
case Instruction::Select:
class LoopVectorizationLegality;
class LoopVectorizationCostModel;
class LoopVectorizeHints;
+class LoopVectorizationRequirements;
/// \brief This modifies LoopAccessReport to initialize message with
/// loop-vectorizer-specific part.
LoopVectorizationLegality(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
TargetLibraryInfo *TLI, AliasAnalysis *AA,
Function *F, const TargetTransformInfo *TTI,
- LoopAccessAnalysis *LAA)
+ LoopAccessAnalysis *LAA,
+ LoopVectorizationRequirements *R)
: NumPredStores(0), TheLoop(L), SE(SE), TLI(TLI), TheFunction(F),
TTI(TTI), DT(DT), LAA(LAA), LAI(nullptr), InterleaveInfo(SE, L, DT),
- Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false) {}
+ Induction(nullptr), WidestIndTy(nullptr), HasFunNoNaNAttr(false),
+ Requirements(R) {}
/// This enum represents the kinds of inductions that we support.
enum InductionKind {
/// Can we assume the absence of NaNs.
bool HasFunNoNaNAttr;
+ /// Vectorization requirements that will go through late-evaluation.
+ LoopVectorizationRequirements *Requirements;
+
ValueToValueMap Strides;
SmallPtrSet<Value *, 8> StrideSet;
}
}
+/// \brief This holds vectorization requirements that must be verified late in
+/// the process. The requirements are set by legalize and costmodel. Once
+/// vectorization has been determined to be possible and profitable the
+/// requirements can be verified by looking for metadata or compiler options.
+/// For example, some loops require FP commutativity which is only allowed if
+/// vectorization is explicitly specified or if the fast-math compiler option
+/// has been provided.
+/// Late evaluation of these requirements allows helpful diagnostics to be
+/// composed that tells the user what need to be done to vectorize the loop. For
+/// example, by specifying #pragma clang loop vectorize or -ffast-math. Late
+/// evaluation should be used only when diagnostics can generated that can be
+/// followed by a non-expert user.
+class LoopVectorizationRequirements {
+public:
+ LoopVectorizationRequirements() : UnsafeAlgebraInst(nullptr) {}
+
+ void addUnsafeAlgebraInst(Instruction *I) {
+ // First unsafe algebra instruction.
+ if (!UnsafeAlgebraInst)
+ UnsafeAlgebraInst = I;
+ }
+
+ bool doesNotMeet(Function *F, const LoopVectorizeHints &Hints) {
+ if (UnsafeAlgebraInst &&
+ Hints.getForce() == LoopVectorizeHints::FK_Undefined &&
+ Hints.getWidth() == 0) {
+ emitOptimizationRemarkAnalysisFPCommute(
+ F->getContext(), DEBUG_TYPE, *F, UnsafeAlgebraInst->getDebugLoc(),
+ VectorizationReport() << "vectorization requires changes in the "
+ "order of operations, however IEEE 754 "
+ "floating-point operations are not "
+ "commutative");
+ return true;
+ }
+ return false;
+ }
+
+private:
+ Instruction *UnsafeAlgebraInst;
+};
+
static void addInnerLoop(Loop &L, SmallVectorImpl<Loop *> &V) {
if (L.empty())
return V.push_back(&L);
}
// Check if it is legal to vectorize the loop.
- LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA);
+ LoopVectorizationRequirements Requirements;
+ LoopVectorizationLegality LVL(L, SE, DT, TLI, AA, F, TTI, LAA,
+ &Requirements);
if (!LVL.canVectorize()) {
DEBUG(dbgs() << "LV: Not vectorizing: Cannot prove legality.\n");
emitMissedWarning(F, L, Hints);
std::string VecDiagMsg, IntDiagMsg;
bool VectorizeLoop = true, InterleaveLoop = true;
+ if (Requirements.doesNotMeet(F, Hints)) {
+ DEBUG(dbgs() << "LV: Not vectorizing: loop did not meet vectorization "
+ "requirements.\n");
+ emitMissedWarning(F, L, Hints);
+ return false;
+ }
+
if (VF.Width == 1) {
DEBUG(dbgs() << "LV: Vectorization is possible but not beneficial.\n");
VecDiagMsg =
if (RecurrenceDescriptor::isReductionPHI(Phi, TheLoop,
Reductions[Phi])) {
+ if (Reductions[Phi].hasUnsafeAlgebra())
+ Requirements->addUnsafeAlgebraInst(
+ Reductions[Phi].getUnsafeAlgebraInst());
AllowedExit.insert(Reductions[Phi].getLoopExitInstr());
continue;
}
--- /dev/null
+; RUN: opt < %s -loop-vectorize -S -pass-remarks='loop-vectorize' -pass-remarks-missed='loop-vectorize' -pass-remarks-analysis='loop-vectorize' 2>&1 | FileCheck %s
+
+; CHECK: remark: no_fpmath.c:6:11: loop not vectorized: vectorization requires changes in the order of operations, however IEEE 754 floating-point operations are not commutative
+; CHECK: remark: no_fpmath.c:6:14: loop not vectorized:
+; CHECK: remark: no_fpmath.c:17:14: vectorized loop (vectorization width: 2, interleaved count: 2)
+
+target datalayout = "e-m:o-i64:64-f80:128-n8:16:32:64-S128"
+target triple = "x86_64-apple-macosx10.10.0"
+
+; Function Attrs: nounwind readonly ssp uwtable
+define double @cond_sum(i32* nocapture readonly %v, i32 %n) #0 {
+entry:
+ %cmp.7 = icmp sgt i32 %n, 0, !dbg !3
+ br i1 %cmp.7, label %for.body.preheader, label %for.cond.cleanup, !dbg !8
+
+for.body.preheader: ; preds = %entry
+ br label %for.body, !dbg !9
+
+for.cond.cleanup.loopexit: ; preds = %for.body
+ %add.lcssa = phi double [ %add, %for.body ]
+ br label %for.cond.cleanup, !dbg !10
+
+for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
+ %a.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add.lcssa, %for.cond.cleanup.loopexit ]
+ ret double %a.0.lcssa, !dbg !10
+
+for.body: ; preds = %for.body.preheader, %for.body
+ %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
+ %a.08 = phi double [ %add, %for.body ], [ 0.000000e+00, %for.body.preheader ]
+ %arrayidx = getelementptr inbounds i32, i32* %v, i64 %indvars.iv, !dbg !9
+ %0 = load i32, i32* %arrayidx, align 4, !dbg !9, !tbaa !11
+ %cmp1 = icmp eq i32 %0, 0, !dbg !15
+ %cond = select i1 %cmp1, double 3.400000e+00, double 1.150000e+00, !dbg !9
+ %add = fadd double %a.08, %cond, !dbg !16
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1, !dbg !8
+ %lftr.wideiv = trunc i64 %indvars.iv.next to i32, !dbg !8
+ %exitcond = icmp eq i32 %lftr.wideiv, %n, !dbg !8
+ br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body, !dbg !8, !llvm.loop !17
+}
+
+; Function Attrs: nounwind readonly ssp uwtable
+define double @cond_sum_loop_hint(i32* nocapture readonly %v, i32 %n) #0 {
+entry:
+ %cmp.7 = icmp sgt i32 %n, 0, !dbg !19
+ br i1 %cmp.7, label %for.body.preheader, label %for.cond.cleanup, !dbg !21
+
+for.body.preheader: ; preds = %entry
+ br label %for.body, !dbg !22
+
+for.cond.cleanup.loopexit: ; preds = %for.body
+ %add.lcssa = phi double [ %add, %for.body ]
+ br label %for.cond.cleanup, !dbg !23
+
+for.cond.cleanup: ; preds = %for.cond.cleanup.loopexit, %entry
+ %a.0.lcssa = phi double [ 0.000000e+00, %entry ], [ %add.lcssa, %for.cond.cleanup.loopexit ]
+ ret double %a.0.lcssa, !dbg !23
+
+for.body: ; preds = %for.body.preheader, %for.body
+ %indvars.iv = phi i64 [ %indvars.iv.next, %for.body ], [ 0, %for.body.preheader ]
+ %a.08 = phi double [ %add, %for.body ], [ 0.000000e+00, %for.body.preheader ]
+ %arrayidx = getelementptr inbounds i32, i32* %v, i64 %indvars.iv, !dbg !22
+ %0 = load i32, i32* %arrayidx, align 4, !dbg !22, !tbaa !11
+ %cmp1 = icmp eq i32 %0, 0, !dbg !24
+ %cond = select i1 %cmp1, double 3.400000e+00, double 1.150000e+00, !dbg !22
+ %add = fadd double %a.08, %cond, !dbg !25
+ %indvars.iv.next = add nuw nsw i64 %indvars.iv, 1, !dbg !21
+ %lftr.wideiv = trunc i64 %indvars.iv.next to i32, !dbg !21
+ %exitcond = icmp eq i32 %lftr.wideiv, %n, !dbg !21
+ br i1 %exitcond, label %for.cond.cleanup.loopexit, label %for.body, !dbg !21, !llvm.loop !26
+}
+
+attributes #0 = { nounwind }
+
+!llvm.module.flags = !{!0, !1}
+!llvm.ident = !{!2}
+
+!0 = !{i32 2, !"Debug Info Version", i32 3}
+!1 = !{i32 1, !"PIC Level", i32 2}
+!2 = !{!"clang version 3.7.0"}
+!3 = !DILocation(line: 5, column: 20, scope: !4)
+!4 = !DISubprogram(name: "cond_sum", scope: !5, file: !5, line: 1, type: !6, isLocal: false, isDefinition: true, scopeLine: 1, flags: DIFlagPrototyped, isOptimized: true, function: double (i32*, i32)* @cond_sum, variables: !7)
+!5 = !DIFile(filename: "no_fpmath.c", directory: "")
+!6 = !DISubroutineType(types: !7)
+!7 = !{}
+!8 = !DILocation(line: 5, column: 3, scope: !4)
+!9 = !DILocation(line: 6, column: 14, scope: !4)
+!10 = !DILocation(line: 9, column: 3, scope: !4)
+!11 = !{!12, !12, i64 0}
+!12 = !{!"int", !13, i64 0}
+!13 = !{!"omnipotent char", !14, i64 0}
+!14 = !{!"Simple C/C++ TBAA"}
+!15 = !DILocation(line: 6, column: 19, scope: !4)
+!16 = !DILocation(line: 6, column: 11, scope: !4)
+!17 = distinct !{!17, !18}
+!18 = !{!"llvm.loop.unroll.disable"}
+!19 = !DILocation(line: 16, column: 20, scope: !20)
+!20 = !DISubprogram(name: "cond_sum_loop_hint", scope: !5, file: !5, line: 12, type: !6, isLocal: false, isDefinition: true, scopeLine: 12, flags: DIFlagPrototyped, isOptimized: true, function: double (i32*, i32)* @cond_sum_loop_hint, variables: !7)
+!21 = !DILocation(line: 16, column: 3, scope: !20)
+!22 = !DILocation(line: 17, column: 14, scope: !20)
+!23 = !DILocation(line: 20, column: 3, scope: !20)
+!24 = !DILocation(line: 17, column: 19, scope: !20)
+!25 = !DILocation(line: 17, column: 11, scope: !20)
+!26 = distinct !{!26, !27, !18}
+!27 = !{!"llvm.loop.vectorize.enable", i1 true}