+++ /dev/null
-//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This pass implements a simple loop unroller. It works best when loops have
-// been canonicalized by the -indvars pass, allowing it to determine the trip
-// counts of loops easily.
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "loop-unroll"
-#include "llvm/IntrinsicInst.h"
-#include "llvm/Transforms/Scalar.h"
-#include "llvm/Analysis/LoopInfo.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Support/CommandLine.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include <climits>
-
-using namespace llvm;
-
-static cl::opt<unsigned>
-UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
- cl::desc("The cut-off point for automatic loop unrolling"));
-
-static cl::opt<unsigned>
-UnrollCount("unroll-count", cl::init(0), cl::Hidden,
- cl::desc("Use this unroll count for all loops, for testing purposes"));
-
-static cl::opt<bool>
-UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
- cl::desc("Allows loops to be partially unrolled until "
- "-unroll-threshold loop size is reached."));
-
-namespace {
- class LoopUnroll : public LoopPass {
- public:
- static char ID; // Pass ID, replacement for typeid
- LoopUnroll() : LoopPass(&ID) {}
-
- /// A magic value for use with the Threshold parameter to indicate
- /// that the loop unroll should be performed regardless of how much
- /// code expansion would result.
- static const unsigned NoThreshold = UINT_MAX;
-
- bool runOnLoop(Loop *L, LPPassManager &LPM);
-
- /// This transformation requires natural loop information & requires that
- /// loop preheaders be inserted into the CFG...
- ///
- virtual void getAnalysisUsage(AnalysisUsage &AU) const {
- AU.addRequiredID(LoopSimplifyID);
- AU.addRequiredID(LCSSAID);
- AU.addRequired<LoopInfo>();
- AU.addPreservedID(LCSSAID);
- AU.addPreserved<LoopInfo>();
- // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
- // If loop unroll does not preserve dom info then LCSSA pass on next
- // loop will receive invalid dom info.
- // For now, recreate dom info, if loop is unrolled.
- AU.addPreserved<DominatorTree>();
- AU.addPreserved<DominanceFrontier>();
- }
- };
-}
-
-char LoopUnroll::ID = 0;
-static RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
-
-Pass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
-
-/// ApproximateLoopSize - Approximate the size of the loop.
-static unsigned ApproximateLoopSize(const Loop *L) {
- unsigned Size = 0;
- for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
- I != E; ++I) {
- BasicBlock *BB = *I;
- Instruction *Term = BB->getTerminator();
- for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
- if (isa<PHINode>(I) && BB == L->getHeader()) {
- // Ignore PHI nodes in the header.
- } else if (I->hasOneUse() && I->use_back() == Term) {
- // Ignore instructions only used by the loop terminator.
- } else if (isa<DbgInfoIntrinsic>(I)) {
- // Ignore debug instructions
- } else if (isa<GetElementPtrInst>(I) && I->hasOneUse()) {
- // Ignore GEP as they generally are subsumed into a load or store.
- } else if (isa<CallInst>(I)) {
- // Estimate size overhead introduced by call instructions which
- // is higher than other instructions. Here 3 and 10 are magic
- // numbers that help one isolated test case from PR2067 without
- // negatively impacting measured benchmarks.
- Size += isa<IntrinsicInst>(I) ? 3 : 10;
- } else {
- ++Size;
- }
-
- // TODO: Ignore expressions derived from PHI and constants if inval of phi
- // is a constant, or if operation is associative. This will get induction
- // variables.
- }
- }
-
- return Size;
-}
-
-bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
- assert(L->isLCSSAForm());
- LoopInfo *LI = &getAnalysis<LoopInfo>();
-
- BasicBlock *Header = L->getHeader();
- DEBUG(errs() << "Loop Unroll: F[" << Header->getParent()->getName()
- << "] Loop %" << Header->getName() << "\n");
- (void)Header;
-
- // Find trip count
- unsigned TripCount = L->getSmallConstantTripCount();
- unsigned Count = UnrollCount;
-
- // Automatically select an unroll count.
- if (Count == 0) {
- // Conservative heuristic: if we know the trip count, see if we can
- // completely unroll (subject to the threshold, checked below); otherwise
- // try to find greatest modulo of the trip count which is still under
- // threshold value.
- if (TripCount == 0)
- return false;
- Count = TripCount;
- }
-
- // Enforce the threshold.
- if (UnrollThreshold != NoThreshold) {
- unsigned LoopSize = ApproximateLoopSize(L);
- DEBUG(errs() << " Loop Size = " << LoopSize << "\n");
- uint64_t Size = (uint64_t)LoopSize*Count;
- if (TripCount != 1 && Size > UnrollThreshold) {
- DEBUG(errs() << " Too large to fully unroll with count: " << Count
- << " because size: " << Size << ">" << UnrollThreshold << "\n");
- if (!UnrollAllowPartial) {
- DEBUG(errs() << " will not try to unroll partially because "
- << "-unroll-allow-partial not given\n");
- return false;
- }
- // Reduce unroll count to be modulo of TripCount for partial unrolling
- Count = UnrollThreshold / LoopSize;
- while (Count != 0 && TripCount%Count != 0) {
- Count--;
- }
- if (Count < 2) {
- DEBUG(errs() << " could not unroll partially\n");
- return false;
- }
- DEBUG(errs() << " partially unrolling with count: " << Count << "\n");
- }
- }
-
- // Unroll the loop.
- Function *F = L->getHeader()->getParent();
- if (!UnrollLoop(L, Count, LI, &LPM))
- return false;
-
- // FIXME: Reconstruct dom info, because it is not preserved properly.
- DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
- if (DT) {
- DT->runOnFunction(*F);
- DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
- if (DF)
- DF->runOnFunction(*F);
- }
- return true;
-}
--- /dev/null
+//===-- LoopUnroll.cpp - Loop unroller pass -------------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This pass implements a simple loop unroller. It works best when loops have
+// been canonicalized by the -indvars pass, allowing it to determine the trip
+// counts of loops easily.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-unroll"
+#include "llvm/IntrinsicInst.h"
+#include "llvm/Transforms/Scalar.h"
+#include "llvm/Analysis/LoopInfo.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Support/CommandLine.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include <climits>
+
+using namespace llvm;
+
+static cl::opt<unsigned>
+UnrollThreshold("unroll-threshold", cl::init(100), cl::Hidden,
+ cl::desc("The cut-off point for automatic loop unrolling"));
+
+static cl::opt<unsigned>
+UnrollCount("unroll-count", cl::init(0), cl::Hidden,
+ cl::desc("Use this unroll count for all loops, for testing purposes"));
+
+static cl::opt<bool>
+UnrollAllowPartial("unroll-allow-partial", cl::init(false), cl::Hidden,
+ cl::desc("Allows loops to be partially unrolled until "
+ "-unroll-threshold loop size is reached."));
+
+namespace {
+ class LoopUnroll : public LoopPass {
+ public:
+ static char ID; // Pass ID, replacement for typeid
+ LoopUnroll() : LoopPass(&ID) {}
+
+ /// A magic value for use with the Threshold parameter to indicate
+ /// that the loop unroll should be performed regardless of how much
+ /// code expansion would result.
+ static const unsigned NoThreshold = UINT_MAX;
+
+ bool runOnLoop(Loop *L, LPPassManager &LPM);
+
+ /// This transformation requires natural loop information & requires that
+ /// loop preheaders be inserted into the CFG...
+ ///
+ virtual void getAnalysisUsage(AnalysisUsage &AU) const {
+ AU.addRequiredID(LoopSimplifyID);
+ AU.addRequiredID(LCSSAID);
+ AU.addRequired<LoopInfo>();
+ AU.addPreservedID(LCSSAID);
+ AU.addPreserved<LoopInfo>();
+ // FIXME: Loop unroll requires LCSSA. And LCSSA requires dom info.
+ // If loop unroll does not preserve dom info then LCSSA pass on next
+ // loop will receive invalid dom info.
+ // For now, recreate dom info, if loop is unrolled.
+ AU.addPreserved<DominatorTree>();
+ AU.addPreserved<DominanceFrontier>();
+ }
+ };
+}
+
+char LoopUnroll::ID = 0;
+static RegisterPass<LoopUnroll> X("loop-unroll", "Unroll loops");
+
+Pass *llvm::createLoopUnrollPass() { return new LoopUnroll(); }
+
+/// ApproximateLoopSize - Approximate the size of the loop.
+static unsigned ApproximateLoopSize(const Loop *L) {
+ unsigned Size = 0;
+ for (Loop::block_iterator I = L->block_begin(), E = L->block_end();
+ I != E; ++I) {
+ BasicBlock *BB = *I;
+ Instruction *Term = BB->getTerminator();
+ for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I) {
+ if (isa<PHINode>(I) && BB == L->getHeader()) {
+ // Ignore PHI nodes in the header.
+ } else if (I->hasOneUse() && I->use_back() == Term) {
+ // Ignore instructions only used by the loop terminator.
+ } else if (isa<DbgInfoIntrinsic>(I)) {
+ // Ignore debug instructions
+ } else if (isa<GetElementPtrInst>(I) && I->hasOneUse()) {
+ // Ignore GEP as they generally are subsumed into a load or store.
+ } else if (isa<CallInst>(I)) {
+ // Estimate size overhead introduced by call instructions which
+ // is higher than other instructions. Here 3 and 10 are magic
+ // numbers that help one isolated test case from PR2067 without
+ // negatively impacting measured benchmarks.
+ Size += isa<IntrinsicInst>(I) ? 3 : 10;
+ } else {
+ ++Size;
+ }
+
+ // TODO: Ignore expressions derived from PHI and constants if inval of phi
+ // is a constant, or if operation is associative. This will get induction
+ // variables.
+ }
+ }
+
+ return Size;
+}
+
+bool LoopUnroll::runOnLoop(Loop *L, LPPassManager &LPM) {
+ assert(L->isLCSSAForm());
+ LoopInfo *LI = &getAnalysis<LoopInfo>();
+
+ BasicBlock *Header = L->getHeader();
+ DEBUG(errs() << "Loop Unroll: F[" << Header->getParent()->getName()
+ << "] Loop %" << Header->getName() << "\n");
+ (void)Header;
+
+ // Find trip count
+ unsigned TripCount = L->getSmallConstantTripCount();
+ unsigned Count = UnrollCount;
+
+ // Automatically select an unroll count.
+ if (Count == 0) {
+ // Conservative heuristic: if we know the trip count, see if we can
+ // completely unroll (subject to the threshold, checked below); otherwise
+ // try to find greatest modulo of the trip count which is still under
+ // threshold value.
+ if (TripCount == 0)
+ return false;
+ Count = TripCount;
+ }
+
+ // Enforce the threshold.
+ if (UnrollThreshold != NoThreshold) {
+ unsigned LoopSize = ApproximateLoopSize(L);
+ DEBUG(errs() << " Loop Size = " << LoopSize << "\n");
+ uint64_t Size = (uint64_t)LoopSize*Count;
+ if (TripCount != 1 && Size > UnrollThreshold) {
+ DEBUG(errs() << " Too large to fully unroll with count: " << Count
+ << " because size: " << Size << ">" << UnrollThreshold << "\n");
+ if (!UnrollAllowPartial) {
+ DEBUG(errs() << " will not try to unroll partially because "
+ << "-unroll-allow-partial not given\n");
+ return false;
+ }
+ // Reduce unroll count to be modulo of TripCount for partial unrolling
+ Count = UnrollThreshold / LoopSize;
+ while (Count != 0 && TripCount%Count != 0) {
+ Count--;
+ }
+ if (Count < 2) {
+ DEBUG(errs() << " could not unroll partially\n");
+ return false;
+ }
+ DEBUG(errs() << " partially unrolling with count: " << Count << "\n");
+ }
+ }
+
+ // Unroll the loop.
+ Function *F = L->getHeader()->getParent();
+ if (!UnrollLoop(L, Count, LI, &LPM))
+ return false;
+
+ // FIXME: Reconstruct dom info, because it is not preserved properly.
+ DominatorTree *DT = getAnalysisIfAvailable<DominatorTree>();
+ if (DT) {
+ DT->runOnFunction(*F);
+ DominanceFrontier *DF = getAnalysisIfAvailable<DominanceFrontier>();
+ if (DF)
+ DF->runOnFunction(*F);
+ }
+ return true;
+}
--- /dev/null
+//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
+//
+// The LLVM Compiler Infrastructure
+//
+// This file is distributed under the University of Illinois Open Source
+// License. See LICENSE.TXT for details.
+//
+//===----------------------------------------------------------------------===//
+//
+// This file implements some loop unrolling utilities. It does not define any
+// actual pass or policy, but provides a single function to perform loop
+// unrolling.
+//
+// It works best when loops have been canonicalized by the -indvars pass,
+// allowing it to determine the trip counts of loops easily.
+//
+// The process of unrolling can produce extraneous basic blocks linked with
+// unconditional branches. This will be corrected in the future.
+//===----------------------------------------------------------------------===//
+
+#define DEBUG_TYPE "loop-unroll"
+#include "llvm/Transforms/Utils/UnrollLoop.h"
+#include "llvm/BasicBlock.h"
+#include "llvm/ADT/Statistic.h"
+#include "llvm/Analysis/ConstantFolding.h"
+#include "llvm/Analysis/LoopPass.h"
+#include "llvm/Support/Debug.h"
+#include "llvm/Support/raw_ostream.h"
+#include "llvm/Transforms/Utils/BasicBlockUtils.h"
+#include "llvm/Transforms/Utils/Cloning.h"
+#include "llvm/Transforms/Utils/Local.h"
+#include <cstdio>
+
+using namespace llvm;
+
+// TODO: Should these be here or in LoopUnroll?
+STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
+STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
+
+/// RemapInstruction - Convert the instruction operands from referencing the
+/// current values into those specified by ValueMap.
+static inline void RemapInstruction(Instruction *I,
+ DenseMap<const Value *, Value*> &ValueMap) {
+ for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
+ Value *Op = I->getOperand(op);
+ DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
+ if (It != ValueMap.end()) Op = It->second;
+ I->setOperand(op, Op);
+ }
+}
+
+/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
+/// only has one predecessor, and that predecessor only has one successor.
+/// The LoopInfo Analysis that is passed will be kept consistent.
+/// Returns the new combined block.
+static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
+ // Merge basic blocks into their predecessor if there is only one distinct
+ // pred, and if there is only one distinct successor of the predecessor, and
+ // if there are no PHI nodes.
+ BasicBlock *OnlyPred = BB->getSinglePredecessor();
+ if (!OnlyPred) return 0;
+
+ if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
+ return 0;
+
+ DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred);
+
+ // Resolve any PHI nodes at the start of the block. They are all
+ // guaranteed to have exactly one entry if they exist, unless there are
+ // multiple duplicate (but guaranteed to be equal) entries for the
+ // incoming edges. This occurs when there are multiple edges from
+ // OnlyPred to OnlySucc.
+ FoldSingleEntryPHINodes(BB);
+
+ // Delete the unconditional branch from the predecessor...
+ OnlyPred->getInstList().pop_back();
+
+ // Move all definitions in the successor to the predecessor...
+ OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
+
+ // Make all PHI nodes that referred to BB now refer to Pred as their
+ // source...
+ BB->replaceAllUsesWith(OnlyPred);
+
+ std::string OldName = BB->getName();
+
+ // Erase basic block from the function...
+ LI->removeBlock(BB);
+ BB->eraseFromParent();
+
+ // Inherit predecessor's name if it exists...
+ if (!OldName.empty() && !OnlyPred->hasName())
+ OnlyPred->setName(OldName);
+
+ return OnlyPred;
+}
+
+/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
+/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
+/// can only fail when the loop's latch block is not terminated by a conditional
+/// branch instruction. However, if the trip count (and multiple) are not known,
+/// loop unrolling will mostly produce more code that is no faster.
+///
+/// The LoopInfo Analysis that is passed will be kept consistent.
+///
+/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
+/// removed from the LoopPassManager as well. LPM can also be NULL.
+bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
+ assert(L->isLCSSAForm());
+
+ BasicBlock *Header = L->getHeader();
+ BasicBlock *LatchBlock = L->getLoopLatch();
+ BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
+
+ if (!BI || BI->isUnconditional()) {
+ // The loop-rotate pass can be helpful to avoid this in many cases.
+ DEBUG(errs() <<
+ " Can't unroll; loop not terminated by a conditional branch.\n");
+ return false;
+ }
+
+ // Find trip count
+ unsigned TripCount = L->getSmallConstantTripCount();
+ // Find trip multiple if count is not available
+ unsigned TripMultiple = 1;
+ if (TripCount == 0)
+ TripMultiple = L->getSmallConstantTripMultiple();
+
+ if (TripCount != 0)
+ DEBUG(errs() << " Trip Count = " << TripCount << "\n");
+ if (TripMultiple != 1)
+ DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n");
+
+ // Effectively "DCE" unrolled iterations that are beyond the tripcount
+ // and will never be executed.
+ if (TripCount != 0 && Count > TripCount)
+ Count = TripCount;
+
+ assert(Count > 0);
+ assert(TripMultiple > 0);
+ assert(TripCount == 0 || TripCount % TripMultiple == 0);
+
+ // Are we eliminating the loop control altogether?
+ bool CompletelyUnroll = Count == TripCount;
+
+ // If we know the trip count, we know the multiple...
+ unsigned BreakoutTrip = 0;
+ if (TripCount != 0) {
+ BreakoutTrip = TripCount % Count;
+ TripMultiple = 0;
+ } else {
+ // Figure out what multiple to use.
+ BreakoutTrip = TripMultiple =
+ (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
+ }
+
+ if (CompletelyUnroll) {
+ DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
+ << " with trip count " << TripCount << "!\n");
+ } else {
+ DEBUG(errs() << "UNROLLING loop %" << Header->getName()
+ << " by " << Count);
+ if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
+ DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
+ } else if (TripMultiple != 1) {
+ DEBUG(errs() << " with " << TripMultiple << " trips per branch");
+ }
+ DEBUG(errs() << "!\n");
+ }
+
+ std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
+
+ bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
+ BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
+
+ // For the first iteration of the loop, we should use the precloned values for
+ // PHI nodes. Insert associations now.
+ typedef DenseMap<const Value*, Value*> ValueMapTy;
+ ValueMapTy LastValueMap;
+ std::vector<PHINode*> OrigPHINode;
+ for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
+ PHINode *PN = cast<PHINode>(I);
+ OrigPHINode.push_back(PN);
+ if (Instruction *I =
+ dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
+ if (L->contains(I->getParent()))
+ LastValueMap[I] = I;
+ }
+
+ std::vector<BasicBlock*> Headers;
+ std::vector<BasicBlock*> Latches;
+ Headers.push_back(Header);
+ Latches.push_back(LatchBlock);
+
+ for (unsigned It = 1; It != Count; ++It) {
+ char SuffixBuffer[100];
+ sprintf(SuffixBuffer, ".%d", It);
+
+ std::vector<BasicBlock*> NewBlocks;
+
+ for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
+ E = LoopBlocks.end(); BB != E; ++BB) {
+ ValueMapTy ValueMap;
+ BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
+ Header->getParent()->getBasicBlockList().push_back(New);
+
+ // Loop over all of the PHI nodes in the block, changing them to use the
+ // incoming values from the previous block.
+ if (*BB == Header)
+ for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
+ PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
+ Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal))
+ if (It > 1 && L->contains(InValI->getParent()))
+ InVal = LastValueMap[InValI];
+ ValueMap[OrigPHINode[i]] = InVal;
+ New->getInstList().erase(NewPHI);
+ }
+
+ // Update our running map of newest clones
+ LastValueMap[*BB] = New;
+ for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
+ VI != VE; ++VI)
+ LastValueMap[VI->first] = VI->second;
+
+ L->addBasicBlockToLoop(New, LI->getBase());
+
+ // Add phi entries for newly created values to all exit blocks except
+ // the successor of the latch block. The successor of the exit block will
+ // be updated specially after unrolling all the way.
+ if (*BB != LatchBlock)
+ for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
+ UI != UE;) {
+ Instruction *UseInst = cast<Instruction>(*UI);
+ ++UI;
+ if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
+ PHINode *phi = cast<PHINode>(UseInst);
+ Value *Incoming = phi->getIncomingValueForBlock(*BB);
+ phi->addIncoming(Incoming, New);
+ }
+ }
+
+ // Keep track of new headers and latches as we create them, so that
+ // we can insert the proper branches later.
+ if (*BB == Header)
+ Headers.push_back(New);
+ if (*BB == LatchBlock) {
+ Latches.push_back(New);
+
+ // Also, clear out the new latch's back edge so that it doesn't look
+ // like a new loop, so that it's amenable to being merged with adjacent
+ // blocks later on.
+ TerminatorInst *Term = New->getTerminator();
+ assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
+ assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
+ Term->setSuccessor(!ContinueOnTrue, NULL);
+ }
+
+ NewBlocks.push_back(New);
+ }
+
+ // Remap all instructions in the most recent iteration
+ for (unsigned i = 0; i < NewBlocks.size(); ++i)
+ for (BasicBlock::iterator I = NewBlocks[i]->begin(),
+ E = NewBlocks[i]->end(); I != E; ++I)
+ RemapInstruction(I, LastValueMap);
+ }
+
+ // The latch block exits the loop. If there are any PHI nodes in the
+ // successor blocks, update them to use the appropriate values computed as the
+ // last iteration of the loop.
+ if (Count != 1) {
+ SmallPtrSet<PHINode*, 8> Users;
+ for (Value::use_iterator UI = LatchBlock->use_begin(),
+ UE = LatchBlock->use_end(); UI != UE; ++UI)
+ if (PHINode *phi = dyn_cast<PHINode>(*UI))
+ Users.insert(phi);
+
+ BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
+ for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
+ SI != SE; ++SI) {
+ PHINode *PN = *SI;
+ Value *InVal = PN->removeIncomingValue(LatchBlock, false);
+ // If this value was defined in the loop, take the value defined by the
+ // last iteration of the loop.
+ if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
+ if (L->contains(InValI->getParent()))
+ InVal = LastValueMap[InVal];
+ }
+ PN->addIncoming(InVal, LastIterationBB);
+ }
+ }
+
+ // Now, if we're doing complete unrolling, loop over the PHI nodes in the
+ // original block, setting them to their incoming values.
+ if (CompletelyUnroll) {
+ BasicBlock *Preheader = L->getLoopPreheader();
+ for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
+ PHINode *PN = OrigPHINode[i];
+ PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
+ Header->getInstList().erase(PN);
+ }
+ }
+
+ // Now that all the basic blocks for the unrolled iterations are in place,
+ // set up the branches to connect them.
+ for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
+ // The original branch was replicated in each unrolled iteration.
+ BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
+
+ // The branch destination.
+ unsigned j = (i + 1) % e;
+ BasicBlock *Dest = Headers[j];
+ bool NeedConditional = true;
+
+ // For a complete unroll, make the last iteration end with a branch
+ // to the exit block.
+ if (CompletelyUnroll && j == 0) {
+ Dest = LoopExit;
+ NeedConditional = false;
+ }
+
+ // If we know the trip count or a multiple of it, we can safely use an
+ // unconditional branch for some iterations.
+ if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
+ NeedConditional = false;
+ }
+
+ if (NeedConditional) {
+ // Update the conditional branch's successor for the following
+ // iteration.
+ Term->setSuccessor(!ContinueOnTrue, Dest);
+ } else {
+ Term->setUnconditionalDest(Dest);
+ // Merge adjacent basic blocks, if possible.
+ if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
+ std::replace(Latches.begin(), Latches.end(), Dest, Fold);
+ std::replace(Headers.begin(), Headers.end(), Dest, Fold);
+ }
+ }
+ }
+
+ // At this point, the code is well formed. We now do a quick sweep over the
+ // inserted code, doing constant propagation and dead code elimination as we
+ // go.
+ const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
+ for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
+ BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
+ for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
+ Instruction *Inst = I++;
+
+ if (isInstructionTriviallyDead(Inst))
+ (*BB)->getInstList().erase(Inst);
+ else if (Constant *C = ConstantFoldInstruction(Inst,
+ Header->getContext())) {
+ Inst->replaceAllUsesWith(C);
+ (*BB)->getInstList().erase(Inst);
+ }
+ }
+
+ NumCompletelyUnrolled += CompletelyUnroll;
+ ++NumUnrolled;
+ // Remove the loop from the LoopPassManager if it's completely removed.
+ if (CompletelyUnroll && LPM != NULL)
+ LPM->deleteLoopFromQueue(L);
+
+ // If we didn't completely unroll the loop, it should still be in LCSSA form.
+ if (!CompletelyUnroll)
+ assert(L->isLCSSAForm());
+
+ return true;
+}
+++ /dev/null
-//===-- UnrollLoop.cpp - Loop unrolling utilities -------------------------===//
-//
-// The LLVM Compiler Infrastructure
-//
-// This file is distributed under the University of Illinois Open Source
-// License. See LICENSE.TXT for details.
-//
-//===----------------------------------------------------------------------===//
-//
-// This file implements some loop unrolling utilities. It does not define any
-// actual pass or policy, but provides a single function to perform loop
-// unrolling.
-//
-// It works best when loops have been canonicalized by the -indvars pass,
-// allowing it to determine the trip counts of loops easily.
-//
-// The process of unrolling can produce extraneous basic blocks linked with
-// unconditional branches. This will be corrected in the future.
-//===----------------------------------------------------------------------===//
-
-#define DEBUG_TYPE "loop-unroll"
-#include "llvm/Transforms/Utils/UnrollLoop.h"
-#include "llvm/BasicBlock.h"
-#include "llvm/ADT/Statistic.h"
-#include "llvm/Analysis/ConstantFolding.h"
-#include "llvm/Analysis/LoopPass.h"
-#include "llvm/Support/Debug.h"
-#include "llvm/Support/raw_ostream.h"
-#include "llvm/Transforms/Utils/BasicBlockUtils.h"
-#include "llvm/Transforms/Utils/Cloning.h"
-#include "llvm/Transforms/Utils/Local.h"
-#include <cstdio>
-
-using namespace llvm;
-
-// TODO: Should these be here or in LoopUnroll?
-STATISTIC(NumCompletelyUnrolled, "Number of loops completely unrolled");
-STATISTIC(NumUnrolled, "Number of loops unrolled (completely or otherwise)");
-
-/// RemapInstruction - Convert the instruction operands from referencing the
-/// current values into those specified by ValueMap.
-static inline void RemapInstruction(Instruction *I,
- DenseMap<const Value *, Value*> &ValueMap) {
- for (unsigned op = 0, E = I->getNumOperands(); op != E; ++op) {
- Value *Op = I->getOperand(op);
- DenseMap<const Value *, Value*>::iterator It = ValueMap.find(Op);
- if (It != ValueMap.end()) Op = It->second;
- I->setOperand(op, Op);
- }
-}
-
-/// FoldBlockIntoPredecessor - Folds a basic block into its predecessor if it
-/// only has one predecessor, and that predecessor only has one successor.
-/// The LoopInfo Analysis that is passed will be kept consistent.
-/// Returns the new combined block.
-static BasicBlock *FoldBlockIntoPredecessor(BasicBlock *BB, LoopInfo* LI) {
- // Merge basic blocks into their predecessor if there is only one distinct
- // pred, and if there is only one distinct successor of the predecessor, and
- // if there are no PHI nodes.
- BasicBlock *OnlyPred = BB->getSinglePredecessor();
- if (!OnlyPred) return 0;
-
- if (OnlyPred->getTerminator()->getNumSuccessors() != 1)
- return 0;
-
- DEBUG(errs() << "Merging: " << *BB << "into: " << *OnlyPred);
-
- // Resolve any PHI nodes at the start of the block. They are all
- // guaranteed to have exactly one entry if they exist, unless there are
- // multiple duplicate (but guaranteed to be equal) entries for the
- // incoming edges. This occurs when there are multiple edges from
- // OnlyPred to OnlySucc.
- FoldSingleEntryPHINodes(BB);
-
- // Delete the unconditional branch from the predecessor...
- OnlyPred->getInstList().pop_back();
-
- // Move all definitions in the successor to the predecessor...
- OnlyPred->getInstList().splice(OnlyPred->end(), BB->getInstList());
-
- // Make all PHI nodes that referred to BB now refer to Pred as their
- // source...
- BB->replaceAllUsesWith(OnlyPred);
-
- std::string OldName = BB->getName();
-
- // Erase basic block from the function...
- LI->removeBlock(BB);
- BB->eraseFromParent();
-
- // Inherit predecessor's name if it exists...
- if (!OldName.empty() && !OnlyPred->hasName())
- OnlyPred->setName(OldName);
-
- return OnlyPred;
-}
-
-/// Unroll the given loop by Count. The loop must be in LCSSA form. Returns true
-/// if unrolling was succesful, or false if the loop was unmodified. Unrolling
-/// can only fail when the loop's latch block is not terminated by a conditional
-/// branch instruction. However, if the trip count (and multiple) are not known,
-/// loop unrolling will mostly produce more code that is no faster.
-///
-/// The LoopInfo Analysis that is passed will be kept consistent.
-///
-/// If a LoopPassManager is passed in, and the loop is fully removed, it will be
-/// removed from the LoopPassManager as well. LPM can also be NULL.
-bool llvm::UnrollLoop(Loop *L, unsigned Count, LoopInfo* LI, LPPassManager* LPM) {
- assert(L->isLCSSAForm());
-
- BasicBlock *Header = L->getHeader();
- BasicBlock *LatchBlock = L->getLoopLatch();
- BranchInst *BI = dyn_cast<BranchInst>(LatchBlock->getTerminator());
-
- if (!BI || BI->isUnconditional()) {
- // The loop-rotate pass can be helpful to avoid this in many cases.
- DEBUG(errs() <<
- " Can't unroll; loop not terminated by a conditional branch.\n");
- return false;
- }
-
- // Find trip count
- unsigned TripCount = L->getSmallConstantTripCount();
- // Find trip multiple if count is not available
- unsigned TripMultiple = 1;
- if (TripCount == 0)
- TripMultiple = L->getSmallConstantTripMultiple();
-
- if (TripCount != 0)
- DEBUG(errs() << " Trip Count = " << TripCount << "\n");
- if (TripMultiple != 1)
- DEBUG(errs() << " Trip Multiple = " << TripMultiple << "\n");
-
- // Effectively "DCE" unrolled iterations that are beyond the tripcount
- // and will never be executed.
- if (TripCount != 0 && Count > TripCount)
- Count = TripCount;
-
- assert(Count > 0);
- assert(TripMultiple > 0);
- assert(TripCount == 0 || TripCount % TripMultiple == 0);
-
- // Are we eliminating the loop control altogether?
- bool CompletelyUnroll = Count == TripCount;
-
- // If we know the trip count, we know the multiple...
- unsigned BreakoutTrip = 0;
- if (TripCount != 0) {
- BreakoutTrip = TripCount % Count;
- TripMultiple = 0;
- } else {
- // Figure out what multiple to use.
- BreakoutTrip = TripMultiple =
- (unsigned)GreatestCommonDivisor64(Count, TripMultiple);
- }
-
- if (CompletelyUnroll) {
- DEBUG(errs() << "COMPLETELY UNROLLING loop %" << Header->getName()
- << " with trip count " << TripCount << "!\n");
- } else {
- DEBUG(errs() << "UNROLLING loop %" << Header->getName()
- << " by " << Count);
- if (TripMultiple == 0 || BreakoutTrip != TripMultiple) {
- DEBUG(errs() << " with a breakout at trip " << BreakoutTrip);
- } else if (TripMultiple != 1) {
- DEBUG(errs() << " with " << TripMultiple << " trips per branch");
- }
- DEBUG(errs() << "!\n");
- }
-
- std::vector<BasicBlock*> LoopBlocks = L->getBlocks();
-
- bool ContinueOnTrue = L->contains(BI->getSuccessor(0));
- BasicBlock *LoopExit = BI->getSuccessor(ContinueOnTrue);
-
- // For the first iteration of the loop, we should use the precloned values for
- // PHI nodes. Insert associations now.
- typedef DenseMap<const Value*, Value*> ValueMapTy;
- ValueMapTy LastValueMap;
- std::vector<PHINode*> OrigPHINode;
- for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
- PHINode *PN = cast<PHINode>(I);
- OrigPHINode.push_back(PN);
- if (Instruction *I =
- dyn_cast<Instruction>(PN->getIncomingValueForBlock(LatchBlock)))
- if (L->contains(I->getParent()))
- LastValueMap[I] = I;
- }
-
- std::vector<BasicBlock*> Headers;
- std::vector<BasicBlock*> Latches;
- Headers.push_back(Header);
- Latches.push_back(LatchBlock);
-
- for (unsigned It = 1; It != Count; ++It) {
- char SuffixBuffer[100];
- sprintf(SuffixBuffer, ".%d", It);
-
- std::vector<BasicBlock*> NewBlocks;
-
- for (std::vector<BasicBlock*>::iterator BB = LoopBlocks.begin(),
- E = LoopBlocks.end(); BB != E; ++BB) {
- ValueMapTy ValueMap;
- BasicBlock *New = CloneBasicBlock(*BB, ValueMap, SuffixBuffer);
- Header->getParent()->getBasicBlockList().push_back(New);
-
- // Loop over all of the PHI nodes in the block, changing them to use the
- // incoming values from the previous block.
- if (*BB == Header)
- for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
- PHINode *NewPHI = cast<PHINode>(ValueMap[OrigPHINode[i]]);
- Value *InVal = NewPHI->getIncomingValueForBlock(LatchBlock);
- if (Instruction *InValI = dyn_cast<Instruction>(InVal))
- if (It > 1 && L->contains(InValI->getParent()))
- InVal = LastValueMap[InValI];
- ValueMap[OrigPHINode[i]] = InVal;
- New->getInstList().erase(NewPHI);
- }
-
- // Update our running map of newest clones
- LastValueMap[*BB] = New;
- for (ValueMapTy::iterator VI = ValueMap.begin(), VE = ValueMap.end();
- VI != VE; ++VI)
- LastValueMap[VI->first] = VI->second;
-
- L->addBasicBlockToLoop(New, LI->getBase());
-
- // Add phi entries for newly created values to all exit blocks except
- // the successor of the latch block. The successor of the exit block will
- // be updated specially after unrolling all the way.
- if (*BB != LatchBlock)
- for (Value::use_iterator UI = (*BB)->use_begin(), UE = (*BB)->use_end();
- UI != UE;) {
- Instruction *UseInst = cast<Instruction>(*UI);
- ++UI;
- if (isa<PHINode>(UseInst) && !L->contains(UseInst->getParent())) {
- PHINode *phi = cast<PHINode>(UseInst);
- Value *Incoming = phi->getIncomingValueForBlock(*BB);
- phi->addIncoming(Incoming, New);
- }
- }
-
- // Keep track of new headers and latches as we create them, so that
- // we can insert the proper branches later.
- if (*BB == Header)
- Headers.push_back(New);
- if (*BB == LatchBlock) {
- Latches.push_back(New);
-
- // Also, clear out the new latch's back edge so that it doesn't look
- // like a new loop, so that it's amenable to being merged with adjacent
- // blocks later on.
- TerminatorInst *Term = New->getTerminator();
- assert(L->contains(Term->getSuccessor(!ContinueOnTrue)));
- assert(Term->getSuccessor(ContinueOnTrue) == LoopExit);
- Term->setSuccessor(!ContinueOnTrue, NULL);
- }
-
- NewBlocks.push_back(New);
- }
-
- // Remap all instructions in the most recent iteration
- for (unsigned i = 0; i < NewBlocks.size(); ++i)
- for (BasicBlock::iterator I = NewBlocks[i]->begin(),
- E = NewBlocks[i]->end(); I != E; ++I)
- RemapInstruction(I, LastValueMap);
- }
-
- // The latch block exits the loop. If there are any PHI nodes in the
- // successor blocks, update them to use the appropriate values computed as the
- // last iteration of the loop.
- if (Count != 1) {
- SmallPtrSet<PHINode*, 8> Users;
- for (Value::use_iterator UI = LatchBlock->use_begin(),
- UE = LatchBlock->use_end(); UI != UE; ++UI)
- if (PHINode *phi = dyn_cast<PHINode>(*UI))
- Users.insert(phi);
-
- BasicBlock *LastIterationBB = cast<BasicBlock>(LastValueMap[LatchBlock]);
- for (SmallPtrSet<PHINode*,8>::iterator SI = Users.begin(), SE = Users.end();
- SI != SE; ++SI) {
- PHINode *PN = *SI;
- Value *InVal = PN->removeIncomingValue(LatchBlock, false);
- // If this value was defined in the loop, take the value defined by the
- // last iteration of the loop.
- if (Instruction *InValI = dyn_cast<Instruction>(InVal)) {
- if (L->contains(InValI->getParent()))
- InVal = LastValueMap[InVal];
- }
- PN->addIncoming(InVal, LastIterationBB);
- }
- }
-
- // Now, if we're doing complete unrolling, loop over the PHI nodes in the
- // original block, setting them to their incoming values.
- if (CompletelyUnroll) {
- BasicBlock *Preheader = L->getLoopPreheader();
- for (unsigned i = 0, e = OrigPHINode.size(); i != e; ++i) {
- PHINode *PN = OrigPHINode[i];
- PN->replaceAllUsesWith(PN->getIncomingValueForBlock(Preheader));
- Header->getInstList().erase(PN);
- }
- }
-
- // Now that all the basic blocks for the unrolled iterations are in place,
- // set up the branches to connect them.
- for (unsigned i = 0, e = Latches.size(); i != e; ++i) {
- // The original branch was replicated in each unrolled iteration.
- BranchInst *Term = cast<BranchInst>(Latches[i]->getTerminator());
-
- // The branch destination.
- unsigned j = (i + 1) % e;
- BasicBlock *Dest = Headers[j];
- bool NeedConditional = true;
-
- // For a complete unroll, make the last iteration end with a branch
- // to the exit block.
- if (CompletelyUnroll && j == 0) {
- Dest = LoopExit;
- NeedConditional = false;
- }
-
- // If we know the trip count or a multiple of it, we can safely use an
- // unconditional branch for some iterations.
- if (j != BreakoutTrip && (TripMultiple == 0 || j % TripMultiple != 0)) {
- NeedConditional = false;
- }
-
- if (NeedConditional) {
- // Update the conditional branch's successor for the following
- // iteration.
- Term->setSuccessor(!ContinueOnTrue, Dest);
- } else {
- Term->setUnconditionalDest(Dest);
- // Merge adjacent basic blocks, if possible.
- if (BasicBlock *Fold = FoldBlockIntoPredecessor(Dest, LI)) {
- std::replace(Latches.begin(), Latches.end(), Dest, Fold);
- std::replace(Headers.begin(), Headers.end(), Dest, Fold);
- }
- }
- }
-
- // At this point, the code is well formed. We now do a quick sweep over the
- // inserted code, doing constant propagation and dead code elimination as we
- // go.
- const std::vector<BasicBlock*> &NewLoopBlocks = L->getBlocks();
- for (std::vector<BasicBlock*>::const_iterator BB = NewLoopBlocks.begin(),
- BBE = NewLoopBlocks.end(); BB != BBE; ++BB)
- for (BasicBlock::iterator I = (*BB)->begin(), E = (*BB)->end(); I != E; ) {
- Instruction *Inst = I++;
-
- if (isInstructionTriviallyDead(Inst))
- (*BB)->getInstList().erase(Inst);
- else if (Constant *C = ConstantFoldInstruction(Inst,
- Header->getContext())) {
- Inst->replaceAllUsesWith(C);
- (*BB)->getInstList().erase(Inst);
- }
- }
-
- NumCompletelyUnrolled += CompletelyUnroll;
- ++NumUnrolled;
- // Remove the loop from the LoopPassManager if it's completely removed.
- if (CompletelyUnroll && LPM != NULL)
- LPM->deleteLoopFromQueue(L);
-
- // If we didn't completely unroll the loop, it should still be in LCSSA form.
- if (!CompletelyUnroll)
- assert(L->isLCSSAForm());
-
- return true;
-}